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ABSTRACT 

Road speed limits have been widely implemented in many countries to improve traffic 

safety and environmental quality. In this paper, we provide a different perspective on 

the network-wide impacts of speed limits: managing network uncertainty. 

Specifically, a multi-dimensional modeling approach is proposed to investigate the 

impacts of speed limits on link travel time uncertainty profile, travelers’ risk-averse 

route choice decisions, and network flow reallocation under uncertainty. 

Methodologically, a truncated travel time probability distribution is proposed and its 

moment expression is derived to characterize the impact of speed limit on link travel 

time uncertainty profile. The mean-excess travel time (METT) is then adopted as a 

risk measure to account for the travelers’ risk-averse route choice adjustment and 

network flow reallocation induced by speed limits. We find that a speed limit scheme 

has different impacts on various dimensions of travel time uncertainty. After imposing 

a speed limit, the mean travel time on the directly affected link is increased while the 

travel time variance is reduced. However, both the skewness (i.e., asymmetry 

indicator) and kurtosis (i.e., fatness indicator of distribution tail) are significantly 

increased as the speed limit becomes tighter. Also, a speed limit increases both the 

travel time budget and METT on the directly affected links. The shift in travel time 

uncertainty profile of the directly affected links further adjusts the traveler’s 

risk-averse route choice decisions, the travel time uncertainty profile of the indirectly 

affected links, and consequently the network flow reallocation. 
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1 INTRODUCTION 

Recent empirical studies have pointed out that travel time uncertainty plays an 

important role in travelers’ travel choice decisions (e.g., route choice and departure 

time choice). Travelers treat travel time uncertainty as a risk in their travel choices, 

because it introduces uncertainty for an on-time arrival at the destination and travel 

schedule.  Transportation systems uncertainty could be managed or handled from 

travel demand side (i.e., O-D demand), traffic supply side (i.e., link capacity and road 

speed control), or travelers’ behavior side (i.e., travelers’ perception on network 

conditions).  The typical strategies of managing or hedging against uncertainty 

include network capacity enhancement (e.g., Chen et al., 2011a), travelers’ 

information provision (e.g., Siu and Lo, 2006; Xu et al., 2013), and road pricing (e.g., 

Li et al., 2008; Gardner et al., 2008; Dong and Mahmassani, 2013). In this paper, we 

address the possibility of adopting speed limit to explicitly manage network 

uncertainty.  

 

Road speed limits are widely implemented in most countries to regulate the maximum 

permissible vehicular speed. The main motivation of speed limits is to improve road 

traffic safety and to reduce the number of road traffic casualties from traffic collisions. 

The World Health Organization (WHO, 2004) identifies speed control as one of 

various interventions likely to reduce road casualties. Other than the safety 

consideration, speed limits can also be used to improve local air quality issues or 

other factors affecting environmental quality (e.g., vehicular noise, vibration, and 

emission).  Some cities have reduced speed limits to as low as 30 km/h for 

improving both safety and efficiency (Archer et al., 2008). For a more comprehensive 

review on the impacts of speed limits on accidents, CO2 and air pollution emissions, 

noise emissions and speed choice behaviors, interested readers are directed to 

Nitzsche and Tscharaktschiew (2013).  

 

Most existing studies focused on the impact of speed limits from a local perspective, 

while the network flow reallocation effect due to speed limits has not been explored in 

depth.  Recently, Yang et al. (2012) made the first attempt to investigate the impact 

of a link-specific speed limit law on the network-wide traffic flow reallocation. Yang 

et al. (2013) extended the speed limit problem to a tri-objective bi-level programming 

model to design optimal link-specific speed limits with the minimization of total 

travel time (TTT), number of expected accidents and vehicular emissions 

simultaneously, while Wang (2013) considered designing the optimal speed limit 

scheme to maximize network efficiency (i.e., minimize TTT) with consideration of 
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network equity (i.e., travel time change after imposing a speed limit scheme among 

road users from different origin-destination (O-D) pairs). Both studies found that TTT 

may decrease or increase after imposing a speed limit scheme. In addition, Nitzsche 

and Tscharaktschiew (2013) provided a more general/overall assessment of speed 

limits on an urban economy. They employed a simulation-based spatial computable 

general equilibrium model to an ‘average’ German metropolitan area and its residents, 

while considering the behavioral changes (e.g., route choice, mode choice, 

adjustments in time allocation, and changes in demand patterns) and economic, 

environmental and spatial effects. Yang et al. (2015) further considered road users’ 

non-obedient behavior in speed selection. Road users determine their actual speeds on 

each link according to the subjective travel time cost, perceived crash risk, and 

perceived ticket risk. Heterogeneous travelers interact with each other and choose 

their own optimal speed, resulting in a Nash equilibrium speed pattern. To the best 

knowledge of the authors, there are very few studies that explicitly investigate the 

impact of speed limits on traveler’s risk-taking route choice decisions and the 

resultant network flow reallocations under uncertainty. An exception is that Yan et al. 

(2015) examined the impacts of speed limits on the performance of link capacity 

degradable transportation networks via the mean and variance of link and route travel 

time as well as total travel time. They found that imposing some speed limits can 

reduce the mean and standard deviation of total travel time simultaneously for some 

networks, but cannot always reduce the total travel time budget of a network. 

 

Intuitively, after imposing a speed limit on a link, the link (average) travel time will 

be increased, and the travel time distribution may be squeezed with a larger leftmost 

point (i.e., larger mean and smaller variability). Speed limits have a direct impact on 

travel time uncertainty. How does a speed limit change the travel time uncertainty 

profile? Does the speed limit help to reduce travel time uncertainty?  The changes in 

travel time uncertainty profile may further affect the travelers’ risk-taking route choice 

decisions. The risk-averse route choice adjustment caused by speed limits will lead to 

the traffic flow reallocation, further affecting the network uncertainty profile. 

Travelers have different risk-aversion attitudes towards travel time uncertainty. Which 

group of travelers (more risk-averse or less risk-averse) will be more affected by 

speed limits in their route choice decisions? Addressing these issues is critical in 

understanding travelers’ responses to a speed limit scheme and assessing the effect of 

a speed limit scheme under an uncertain environment. 

 

In this paper, we address the possibility of using speed limits to manage network 
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uncertainty, which is significantly different from prior studies on investigating the 

network-wide impacts of speed limits (e.g., Yang et al., 2012, 2013; Wang, 2013).  

To this end, we explicitly model the multi-dimensional impacts of speed limits on link 

travel time uncertainty, travelers’ risk-averse route choice decisions, and network flow 

reallocation under uncertainty.  Specifically, the modeling approaches include: (1) a 

truncated link travel time probability distribution is proposed and its moments 

expression is derived to characterize the effect of speed limits on link travel time 

uncertainty profile; and (2) the risk measure of mean-excess travel time (METT) 

introduced by Chen and Zhou (2010) is adopted as a risk-averse route choice criterion 

with a complete consideration of both on-time arrival reliability and late arrival 

unreliability. By solving the METT-based traffic equilibrium model, we are able to 

uncover the impacts of a speed limit scheme on the travel time uncertainty profiles of 

both directly and indirectly affected links as well as the resultant network flow 

reallocation from collective route choice decisions under an uncertain environment. 

 

The remainder of this paper is organized as follows. Section 2 models the effect of 

speed limit on link travel time uncertainty profile. Section 3 presents the METT-based 

route choice model under uncertainty. To further consider congestion effect, Section 4 

presents the METT-based traffic equilibrium model. Then, Section 5 provides some 

numerical examples to illustrate the effect of speed limit on network uncertainty. 

Finally, some concluding remarks are summarized in Section 6. It is worth noting that 

to lay out the modeling and analysis step by step, Section 2 and Section 3 model the 

direct impacts of speed limit on the travel time distribution and METT of the link that 

speed limit is directly imposed on (i.e., travel time uncertainty pattern is given without 

rerouting consideration). Section 4 then models the indirect impacts of speed limit on 

network uncertainty through rerouting and network flow reallocation.  

 

2 MODELING EFFECT OF SPEED LIMIT ON LINK TIME UNCERTAINTY 

In this section, we model the effect of speed limit on link travel time uncertainty by 

using a truncated link travel time probability distribution and its moments.  Consider 

a strongly connected network G=[N, A], where N and A denote the sets of nodes and 

links, respectively. Let W denote the set of O-D pairs, and Pw denote the set of routes 

connecting O-D pair w W . 
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2.1 Truncated Link Travel Time Distribution and Moments Derivation 

The link travel time functions without and with speed limit are shown in Figure 1. 

Without a speed limit, the minimum travel time is the free-flow travel time t0. After 

imposing a speed limit s , the minimum travel time ( t ) equals the link length (L) 

divided by the speed limit ( s ), i.e., /t L s .  

Flow v

t0

 
(a) Without speed limit 

Flow v

t0

v

t

 
(b) With speed limit 

Figure 1 Link performance (or travel time) functions (Yang et al., 2012) 

 

The above link travel time functions provide an aggregate relationship between a 

deterministic traffic flow and a deterministic travel time. To deal with the travel time 

uncertainty, we look at the probability density function (PDF) or cumulative 

distribution function (CDF) of link travel time. Without loss of generality, Figure 2(a) 

illustrates an asymmetric PDF of link travel time without speed limit. After imposing 

a speed limit scheme s , the original fast drivers need to slow down with the 

minimum travel time of /t L s , while the slow drivers on the right side of the 

distribution tail are not much affected. Hence, we can model the link travel time 

distribution with speed limit as a truncation of the original distribution without speed 

limit, as shown in Figure 2(b). However, a direct truncation of the original PDF does 

not provide a valid PDF. Instead, we need to scale it so that it can be properly 

integrated to one to fulfill the conservation property of a valid PDF. Mathematically, 

the new PDF of link travel time with speed limit can be expressed as 

   
 1

f T
f T T t

F t
 


, (1)

where f(.) and F(.) are the PDF and CDF of the random travel time T, respectively; 

and    PrF t T t  . Note that for a given speed limit, the fixed denominator (a 

fraction) makes the distribution taller. However, different parts of the PDF (e.g., the 
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part immediate to the right of the speed limit, and the part toward the tail) have 

different proportions, making the scaling effect visually different.  

Travel time T  
(a) Without speed limit 

Travel time Tt  
(b) With speed limit 

Figure 2 Link travel time probability distributions 

 

Remark: We recognize that the truncated or rescaled travel time distribution may not 

be a realistic way for modeling the unknown impact of speed limit on travel time 

uncertainty. Other than the truncated/rescaled travel time distribution suggested in this 

paper, one may consider other ways of modeling the impacts of speed limit under 

uncertainty. The selection of modeling approach needs to consider the tradeoff 

between behavioral realism and mathematical tractability. For example, rather than 

truncated continuous distributions, we could also use discrete distributions by 

assuming all previous speeding travelers will drive around the newly posted speed 

limit. This approach may be more realistic and understandable. However, it loses 

some mathematical tractability due to its discontinuity when embedding it to the 

network equilibrium model. Considering the truncation or rescaling, our proposed 

approach underestimates the probability around the speed limit and overestimates the 

probability of the distribution tail greater than the speed limit, and accordingly 

overestimates the travel time budget (TTB) and mean-excess travel time (METT).  

Alternatively, one may use shifted travel time distributions. However, a direct shift of 

travel time distribution (e.g., lognormal) leads to a low frequency/probability near the 

speed limit point (i.e., the location parameter of travel time distribution). A (new) 

speed limit not only changes the location parameter of travel time distribution, but 

also affects the entire distribution profile (e.g., the variance, skewness and kurtosis). A 

straightforward example is that a tighter speed limit reduces the travel time variability; 

while a simple distribution shift does not change the variance. After imposing a tighter 

speed limit scheme, the original fast drivers (i.e., the short travel times between the 

two location parameters of the before and after distributions) need to slow down with 
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a larger minimum travel time, while the slow drivers on the right-hand side of the 

distribution tail are not much affected. The original fast drivers usually do not slow 

down too much; instead, their driving preference may make them drive just around 

the new speed limit. Accordingly, the travel times around the new speed limit will 

have a much greater frequency than that in the simple shifted distribution. This 

change of travel time distribution around the new speed limit can be better captured 

by our proposed approach, to be shown in Figure 3 and Figure 7. In summary, the 

above difficulties and complexities motivate us to use a truncated/rescaled travel time 

distribution in this paper. 

 

Let us consider the lognormal distributed link travel time  ~ ,T LN   . Note that 

lognormal distribution has been extensively adopted in general reliability applications 

to model failure times. It can capture the asymmetric and skewed characteristics of a 

random variable. In the context of transportation systems, it has been used to 

characterize travel demand and travel time uncertainties (e.g., Zhao and Kockelman, 

2002; Zhou and Chen, 2008). Furthermore, recent empirical studies have also justified 

the use of lognormal distribution to characterize travel time uncertainty. For example, 

Arezoumandi (2011) fitted the 24-hour travel time data across Interstate 255/270 in St. 

Louis County, Missouri, USA to several distributions, including gamma, largest 

extreme value, log-logistic, lognormal, and Weibull distributions. He concluded that 

the lognormal distribution provided the best fit for post-variable speed limit 

conditions. Chen et al. (2014) used travel time estimates of 242 weekdays from the 

real-time travel information system in Hong Kong to generate travel time distribution 

for each link (totally 3655 links) and each 5-minute interval. The link travel time 

distributions were fitted to either a lognormal or a normal distribution using 

chi-square tests (83.4% were lognormal distributions and 16.6% were normal 

distributions). Thus, lognormal distribution is a reasonable PDF for characterizing 

travel time distribution. However, other valid distributions can also be used in the 

proposed analysis framework. 

 

The n-th generic moment of T without speed limit can be expressed as follows 

(Johnson et al., 1994): 

2
2exp

2
n n

E T n  
 

      
 

. (2)

The two parameters   and   can be calculated from the mean and variance of 



 8

travel time (i.e., t and ε): 

    21
ln ln 1

2
t t    , (3)

  22 ln 1 t   . (4)

With a speed limit s  (i.e., the minimum travel time is /t L s ), the truncated 

travel time has the following PDF: 

 

 2

22

ln1
exp

22

ln
1

T

T
f T T t

t







 
 
   

  
 

. (5)

The n-th generic moment of the truncated travel time can be written as follows: 

 2

22

ln1
exp

22

ln

n

t
n

T
T dT

T
E T T t

t







  
 
         

 


. (6)

By setting  lnx T    , i.e.,  expT x   , we have 
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 (7)

By setting y x n  , we have 

 2

220

ln2 2 2

2 2
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1
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  (8)

where 
2

2exp
2

n n
E T n 

 
     

 
. Finally, we have 
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

 (9)

With the n-th generic moment expression, we can further calculate the variance, 

skewness, and kurtosis, which are related to the second, third and fourth moments, 

respectively. To simplify the notation, we use T   to denote the random travel time 

under speed limit (i.e., with the lower bound t ), n nE T T t E T         . 

Variance=   22E T E T     , (10)

Skewness=
    

   

3 2 3

3
2 22

2 3E T E T E T E T

E T E T

           

    

, (11)

Kurtosis= 

         

   

24 22 2 3 4

222

6 12 3 4E T E T E T E T E T E T E T

E T E T

                        

    

. (12)

Note that most PDFs have at most three or four parameters to be estimated (e.g., 

location, scale, and shape parameters). The first four moments are generally sufficient 

to fit/estimate an asymmetric PDF (Hill et al., 1976; Clark and Watling, 2005). 

 

2.2 Illustrative Example of Truncated Link Travel Time Distribution 

For illustration purposes, a single-link network is considered. Assume the travel time 

follows the lognormal distribution with the mean of 15 and the coefficient of variation 

(COV) of 0.30. The link length is 10 km.  Figure 3 shows the probability density 

profiles of travel time without speed limit and with the speed limit of 50 km/h. The 

speed limit of 50 km/h corresponds to the minimum travel time of 12 min. One can 

see that the travel time distribution above the minimum travel time of 12 min (i.e., 

solid curve) is significantly different from the case with speed limit (i.e., dashed 

curve). The truncated distribution needs to be scaled so that it can be integrated to one 

as a valid PDF.   
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Figure 3 Probability density functions of link travel time with and without speed limit 

 

To be more precise, Table 1 presents the common statistics (i.e., mean, standard 

deviation (SD), COV, skewness, and kurtosis) of link travel time under different speed 

limit schemes.  These statistics correspond to the first four moments of a random 

variable. Hence using them together could provide a relatively accurate and complete 

characterization of travel time uncertainty compared to the mean and SD alone. SD 

and COV are usually adopted to measure the absolute and relative dispersion, 

respectively; skewness characterizes the asymmetry of a probability distribution, 

while kurtosis characterizes the flatness or peakedness of a distribution relative to the 

normal distribution.  A normal distribution has zero skewness and zero excess 

kurtosis (or kurtosis of 3).  If the skewness S is less than -1 or greater than +1, the 

distribution is highly skewed.  Also, if the (excess) kurtosis K is greater than 0, the 

distribution is called leptokurtic. Compared to a normal distribution, its central peak is 

higher and sharper, and its tail is longer and fatter. 

 

We would expect an increase of the expected travel time and a reduction of the 

variance due to the truncation of speed limit. The reason is that a speed limit scheme 

makes the original fast drivers (i.e., short travel times) slow down while the original 

slow drivers are not much affected. These changes can be observed by the mean, SD 

and COV columns of Table 1. Speed limits can contribute to the travel time variability 

reduction on the imposed links. Small travel time variability is generally desirable, 

since it could enhance the predictability of actual travel times. To guarantee a high 
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reliability of punctual arrival at the destination, some travelers even prefer a route 

with high mean but low travel time variance. 

 

Table 1 Effect of speed limits on link travel time distribution characteristics 

Speed limit Mean SD COV Skewness Kurtosis 
No 15.00  

↑ 

4.50 

↓ 

0.30 

↓ 

0.93  

↑ 

1.57  

↑ 

70 15.30  4.33 0.28 1.08  1.85  
65 15.48  4.25 0.27 1.14  2.01  
60 15.76  4.15 0.26 1.22  2.23  
55 16.18  4.03 0.25 1.31  2.54  
50 16.80  3.88 0.23 1.41  2.94  
45 17.69  3.71 0.21 1.53  3.44  
40 18.96  3.54 0.19 1.65  4.03  
35 20.77  3.38 0.16 1.77  4.68  
30 23.36  3.24 0.14 1.88  5.35  

Note: ↑: increase from No to 30; ↓: decrease from No to 30.  

 

However, this is not a complete picture about the impacts of speed limits.  From 

Table 1, we can also see that both the skewness and kurtosis values increase as the 

speed limit scheme becomes tighter. Particularly, the kurtosis value has a significant 

increase.  In the context of travel time uncertainty, large skewness and kurtosis 

values are generally not preferable. A larger skewness value indicates that the travel 

time distribution become more asymmetric, and there is a higher probability of 

encountering extremely long travel times (relative to the mean travel time).  The 

kurtosis value quantifies the weight of distribution tail relative to the rest of a 

distribution.  A larger kurtosis value indicates that the right tail of travel time 

distribution (i.e., the slower travel times) becomes fatter.  To sum up, a speed limit 

scheme has different impacts (positive or negative) on different dimensions of travel 

time uncertainty (e.g., centrality, variability, asymmetry, and peakedness).  Hence, 

both the positive impact (in terms of the variability) and the negative impact (in terms 

of the asymmetry and peakedness) need to be considered simultaneously in the 

assessment and design of a speed limit scheme.  After imposing speed limits, the 

travel time distribution exhibits a strong positive skewness and a significantly long 

and fat upper tail. From the travelers’ viewpoint, a longer and fatter travel time 

distribution tail corresponds to a higher degree of uncertainty, particularly a larger 

unreliability. This distribution profile shift may further have a significant impact on 

traveler’s risk-taking route choice decisions (to be shown in Sections 3.2 and 5).  
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3 METT-BASED ROUTE CHOICE MODEL UNDER UNCERTAINTY 

This section presents the concept of mean-excess travel time (METT) and illustrates 

the impact of speed limits on METT-based route choice decisions under uncertainty. 

In the literature, many risk criteria have been proposed for capturing the travelers’ 

route choice decisions under travel time uncertainty, such as travel time budget (Lo et 

al., 2006), percentile travel time (Nie and Wu, 2009), and METT (Chen and Zhou, 

2010). We refer to Xu et al. (2017) for a more detailed summary on the existing traffic 

equilibrium models under uncertainty, including expected utility, reliability, prospect 

theory, game theory, ambiguity-aware CARA (constant absolute risk aversion) travel 

time model, stochastic dominance, and multi-objective optimization, etc.  

 

3.1 Mean-Excess Travel Time (METT) 

Definition (Chen and Zhou, 2010): The mean-excess travel time (METT)  w
p   on 

route p between O-D pair w with respect to a predefined confidence level α is defined 

as the conditional expectation of route travel time w
pT  exceeding the corresponding 

travel time budget (TTB)  w
p  , i.e., 

    , ,w w w w w
p p p pE T T p P w W          , (13)

where  E   is the expectation operator; and  w
p   is endogenously determined by 

the following travel time reliability chance-constrained model: 

    min Prw w
p pT       , (14)

  , ,w w w
p pE T p P w W        , (15)

where  w
p   is a buffer time added to the expected travel time w

pE T    to ensure 

the travel time reliability requirement for on-time arrivals at the confidence level (CL) 

α. Given a CL , the TTB is the minimum threshold allowed by travelers such that the 

cumulative probability of actual travel time less than this threshold is at least . 

 

Meanwhile, Eq. (13) can be decomposed as: 

         , ,w w w w w w w
p p p p p pE T T p P w W                , (16)

where the first and second terms represent the reliability (in terms of TTB) and 

unreliability (in terms of expected excess delay (EED)) aspects of travel time 
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uncertainty, respectively. These two terms explicitly characterize the left region of the 

travel time distribution with the α-percentile reliability requirement and the right 

region with the (1-α) percentile of unreliability in the distribution tail, respectively. In 

this sense, METT considers both on-time arrival reliability requirement (via TTB) and 

late arrival unreliability (via EED), while TTB only considers on-time arrival 

reliability requirement. We should point out that the decomposition of METT into two 

terms (i.e., TTB and EED) is only for the convenience of explicitly presenting the 

composition of METT. However, these two terms are interdependent through the CL.  
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Figure 4 Illustration of mean-excess travel time (Chen and Zhou, 2010) 

 

3.2 Effect of Speed Limit on the METT-based Route Choice Decisions 

(1) Theoretical Analysis 

First of all, we provide a theoretical analysis on the METT change of the imposed link 

before and after implementing a speed limit scheme.  

Proposition 1: Without considering network flow reallocation, speed limit increases 

both TTB and METT on the directly affected links. 

Proof. Recall that METT is defined according to TTB as shown in Eq. (13). Also, the 

CDF is monotonically increasing for continuous travel time distributions. Then, the 

cumulative probability α (i.e., travel time reliability (TTR)) can be uniquely mapped 

to the corresponding travel time value (i.e., TTB). With this relationship, we examine 

the change of TTR first. The difference (with and without speed limit) in the 

reliability of finishing this trip within the threshold b (b t ) can be expressed as: 
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 (17)

where   1F b   is used in the inequality. The CDF curve with speed limit is below 

the CDF curve without speed limit. For the same travel time threshold, the reliability 

of on-time arrival is reduced after imposing a speed limit scheme.  Considering the 

relationship between TTR and TTB, we have: 

   with without 0TTB TTB   . (18)

In other words, the TTB on the imposed link of speed limit is increased. According to 

Chen et al. (2011b), METT can be expressed in terms of TTB as follows: 

   
11

1
METT TTB d


  




  . (19)

By substituting Eq. (18) into Eq. (19), we can obtain: 

   

   

    

with without

1 1

with without

1

with without

1 1

1 1
1

0.
1

METT METT

TTB d TTB d

TTB TTB d

 



 

   
 

  




 
 

  


 



 
(20)

The above theoretical analysis indicates that speed limits always increase both the 

TTB and METT on the directly affected links. However, the impacts on the indirectly 

affected links are not apparent due to the network flow reallocation based on the 

METT route choice criterion under network uncertainty.  

 

(2) Numerical Illustration 

Below we consider a simple network with one O-D pair connected by three parallel 

links to illustrate the effect of speed limit on the METT-based route choice model. 

Specifically, we examine: (a) the impact of speed limits on travelers’ risk-averse route 

choice criteria in terms of mean, SD and METT, (b) the impact of different speed limit 

schemes on the travelers’ route choice shift, and (c) the impact of speed limits on 

different groups of travelers classified by their risk-aversion attitudes. 
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The three links have the same length of 10 km. The link travel times follow the 

lognormal distribution with the mean of 15, 18, and 20 and the COV of 0.30, 0.20, 

and 0.15, respectively. Link 1 has the smallest mean travel time but the largest travel 

time variability; while link 3 has the largest mean travel time but the smallest travel 

time variability. Figure 5(a) and Figure 5(b) show different impacts of speed limits on 

the mean and SD of travel time on each link. Specifically, the mean of travel time on 

three links is always increasing as the speed limit becomes tighter; whereas the SD of 

travel time on three links is always decreasing in this process. It seems that there is a 

tradeoff on the impact of speed limits between the mean and SD of travel time. This 

indicates the need to explicitly consider the traveler’s risk-taking route choice 

decisions (i.e., with a risk strategy towards uncertainty) when modeling the travelers’ 

behaviors and assessing the impact of a speed limit scheme. Different risk criteria 

(e.g., mean, mean-variance, TTB, and METT) measure the relationship between mean 

and SD differently, leading to different route choice decisions.  In this example, we 

adopt the METT as a risk-averse route choice criterion to consider the travelers’ 

on-time arrival reliability and late arrival unreliability simultaneously. All travelers 

are assumed to have the same confidence level of 0.85.  

 

Before implementing any speed limit scheme (i.e., do-nothing case), link 1 has the 

smallest METT as shown in Figure 5(c). Accordingly, without congestion 

consideration, all travelers will choose link 1 due to the lowest ‘cost’ or ‘disutility’.  

After imposing a speed limit scheme, the METTs of all three links are increased but 

with different extents, leading to different route choice decisions.  From link 1 to 

link 3, the METT curves become steadier. The reason is that link 1 has the smallest 

mean travel time and the largest variance, whose stochastic characteristics are more 

affected by the truncation of speed limits.  In addition, the turning point of METT 

curve between the steady portion and the increasing portion is different for the three 

links.  When the uniform speed limit is larger than 50 km/h, the METT relationship 

of three links is unchanged relative to the do-nothing case. When the speed limits are 

set at 35-45 km/h, link 2 has the smallest METT; whereas if the speed limits are 

further tighter, link 3 becomes the optimal choice with the smallest METT.  With a 

strict speed limit scheme (i.e., a large minimum travel time), the truncation effect is 

more significant to links with relatively short travel times, as shown by the sharp 

METT increase of link 1 and link 2. Hence, the METTs of links 1 and 2 are larger 

than that of link 3 under a strict speed limit.  On the other hand, if the speed limit 

scheme is only imposed on link 1, we observe different route choice decisions 

compared to the above uniform speed limit scheme. Specifically, as long as the speed 
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limit on link 1 is lower than 50 km/h, link 2 is always the best choice; whereas link 3 

will never be the best alternative.  
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From the above observations, a speed limit scheme imposes different impacts on the 

travel time uncertainty among the links. Implementing speed limits could have a 

substantial impact on travelers’ risk-averse route choice decisions and consequently 

the network equilibrium state. The impact of speed limits on travelers’ risk-averse 

route choice behaviors should also be explicitly considered in designing the optimal 

speed limit scheme.  

 

To examine which group of travelers is more affected by speed limit implementation, 

we continue to look at the example used in Section 2.2. Confidence level (CL) 

represents the travelers’ risk-aversion attitude. The larger the confidence level, the 

more risk-averse are the travelers. Figure 6 shows the travel time budget (TTB), the 

expected excess delay (EED), and the mean-excess travel time (METT) under 

different combinations of CLs and speed limits. We can see that the increase of TTB 

and METT and the decrease of EED are more significant for lower CLs. In particular, 

the EED is substantially reduced under lower CLs. More risk-averse travelers with a 

higher CL are relatively less affected by speed limits.  In general, TTB and METT 

are both increasing and EED is decreasing as the speed limit becomes tighter. With a 

tighter speed limit (i.e., larger skewness and kurtosis as shown in Table 1), travelers 

need to budget a longer buffer time to ensure a certain reliability requirement. 

However, the benefit is that the unreliability (or tardy time, in terms of the EED) 

beyond the reliability requirement can be significantly reduced, especially for less 

conservative travelers.  
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Figure 6 Effect of speed limits on METT under different confidence levels (CLs) 
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4 MEAN-EXCESS TRAFFIC EQUILIBRIUM (METE) 

Note that the modeling and illustrative examples presented in Sections 2 and 3 are for 

a given flow and travel time uncertainty pattern without rerouting consideration (i.e., 

may not be in equilibrium). The traffic flow reallocation effect due to speed limits and 

congestion effect have not been captured. With the above risk-averse route choice 

criterion of METT and also the congestion effect, we have the following mean-excess 

traffic equilibrium (METE) conditions:  

 
*

*

, if 0
, ,

, if 0

w w
pw w

p w w
p

u f
p P w W

u f


    
 

*f , (21)

where w
pf  is the flow on route p between O-D pair w ; wu  is the minimum METT 

between O-D pair w , i.e.,  min ,w w w
pu p P  . Here the route and O-D cost 

variables are associated with the travel time uncertainty under a speed limit scheme. 

The METE state is reached by allocating O-D demands to the network such that for 

each O-D pair, all used routes have equal and minimal METT. Mathematically, the 

above ‘if-then’ condition can be equivalently formulated as a variational inequality 

problem, which is to find a route flow pattern * f , such that 

   * * 0,
T

   η f f f f , (22)

where   is the constraint set defined below: 

,
w

w w
p

p P

f q w W


   , (23)

0, ,w w
pf p P w W    , (24)

where wq  is the demand of O-D pair w. Eq. (23) is the demand conservation 

constraint; and Eq. (24) is a non-negativity constraint on the route flows.  

 

The modeling approach presented in Section 2 and Section 3 is general since it 

directly works with the travel time distribution without specifying the uncertainty 

sources yet. Day-to-day demand fluctuation and capacity degradation are two main 

sources of uncertainty in transportation systems. Also, most traffic equilibrium models 

under uncertainty considered either demand uncertainty or capacity uncertainty or 

both. In the numerical examples of Section 5, we will consider travel demand 

fluctuation as a representative uncertainty source. The lognormal distribution will be 

used to characterize travel demand, traffic flow, and travel time uncertainties. With the 

modeling of uncertainty propagation (travel demand-route flow-link flow- link travel 
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time) and the lognormal distribution characterization of flows and travel times, we are 

able to calculate the moments of link travel time without or with speed limits as in Eq. 

(2) or Eq. (9). The concept of cumulants is then used to aggregate the moments of link 

travel times to route travel times. The first four moments of route travel times are 

further used to analytically approximate the TTB and METT used in Eq. (22). The 

detailed process can be found in Chen et al. (2011b) and Xu et al. (2013). The 

uncertainty propagation from link travel time to route travel time is critical in the 

above modeling process. When we use the route-based METT model (Chen and Zhou, 

2010), we need to reply on the Central Limit Theorem for propagating link travel time 

distribution to route travel time distribution under the assumption of independent link 

travel times and normally distributed route travel times. However, we do not need this 

assumption in the link-based METT model (Xu et al., 2017). By solving the above 

METE model, we can capture the impacts of a speed limit scheme on travel time 

uncertainty profiles of both directly and indirectly affected links as well as the 

resultant network flow reallocation.  

 

5 NUMERICAL EXAMPLES 

In this section, we provide numerical examples to demonstrate the impacts of speed 

limits on traffic flow reallocation and the shift of travel time uncertainty profile on 

both directly and indirectly affected links.  A simple network with one O-D pair and 

three parallel links/routes is used for ease of results exposition. We use the Bureau of 

Public Road (BPR) function with the parameters of 0.15 and 1. The free-flow travel 

times of the three links are, respectively, 20, 15, and 20 minutes, and their capacities 

are all 5 vehicles per minute (veh/min). The O-D demand follows the lognormal 

distribution with the mean of 25 flow units and the COV of 0.30. All travelers have 

the confidence level of 80%.  A speed limit scheme is only imposed on link 2. The 

maximum allowed speed is 45 km/h on this link. This setting is used to examine the 

shift of risk-averse route choice decisions.  

 

5.1 Traffic Equilibrium under a Given Speed Limit Scheme 

Table 2 presents the METE equilibrium flows without and with speed limit, as well as 

the corresponding travel time distribution characteristics and risk measures. As 

expected, both the equilibrium conditions and conservation constraints are fully 

satisfied. Figure 7 further depicts the travel time PDFs on link 2 without and with 

speed limit associated with the respective (different) METE flow pattern.  Without 

speed limit, more than 60% of travelers use link 2 due to its short free-flow travel 
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time, even though all three routes have equal METT. However, the standard deviation 

(SD) and COV on link 2 are much larger than those on link 1 and link 3. Generally, 

larger travel time variability is not preferable, since it adds uncertainty or risk for an 

on-time arrival at the destination. Some travelers may prefer to choose a route with 

high average travel time but low travel time variance, in order to guarantee a high 

reliability and predictability.  

 

Table 2 METE states without and with speed limit 

Speed 

Limit 
Route Flow 

Travel Time Characteristics 
TTB EED METT 

Mean SD COV Skew Kurt 

Without 

1 4.84  22.90 1.98 0.086 2.36 11.33 23.47  2.57  26.03 

2 15.32  21.89 2.64 0.121 1.21 2.69 23.71  2.32  26.03 

3 4.84  22.90 1.98 0.086 2.36 11.33 23.47  2.57  26.03 

With 

1 
5.10 

(↑) 

23.06 

(↑) 

2.03 

(↑) 

0.088 

(↑) 

2.29 

 

10.54 23.71 

(↑) 

2.57 26.28 

(↑) 

2 
14.80 

(↓) 

22.79 

(↑) 

2.02 

(↓) 

0.089 

(↓) 

3.09 

(↑) 

7.61 

(↑) 

24.57 

(↑) 

1.71 

(↓) 

26.28 

(↑) 

3 
5.10 

(↑) 

23.06 

(↑) 

2.03 

(↑) 

0.088 

(↑) 

2.29 10.54 23.71 

(↑) 

2.57 26.28 

(↑) 

Note: ↑: increase; ↓: decrease.  

 

The impacts of speed limits are twofold: direct and indirect change of travel time 

uncertainty profiles on each link, and traffic flow reallocations among the links.  

(a) Link 2: The speed limit scheme directly affects some fast drivers using link 2 to 

slow down. This increases the mean travel time from 21.89 to 22.79, the TTB 

from 23.71 to 24.57, and the METT from 26.03 to 26.28, respectively. 

Accordingly, link 2 does not provide sufficient incentive to attract travelers from 

selecting it. Some travelers will switch to link 1 and link 3, directly leading to the 

flow reduction on link 2 from 15.32 to 14.80 (i.e., 0.52).  Due to the ‘squeezing’ 

effect of speed limit, the COV on link 2 is reduced from 0.121 to 0.089. The 

unreliability of exceeding the TTB (i.e., EED) is also reduced from 2.32 to 1.71.  

However, the skewness (i.e., asymmetry) and kurtosis (i.e., peakedness) are 

significantly increased after the speed limit implementation, as shown in both 

Table 2 and Figure 7. In the context of travel time uncertainty, large skewness and 

kurtosis values are generally not preferable. There is a relatively higher chance of 

encountering extremely long travel times. 

(b) Links 1 and 3: Note that link 1 and link 3 have the same characteristics, thus they 

have the same flow and travel time uncertainty profile. The flow of 0.52 

originally on link 2 will be split to link 1 and link 3 equally, leading to the flow 
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increase on links 1 and 3 from 4.84 to 5.10 (i.e., 0.26). The flow increase further 

makes their mean travel time, SD, COV, TTB and METT larger. The skewness 

and kurtosis are slightly reduced. Since the examined speed limit scheme has no 

direct truncation on link 1 and link 3, their travel time uncertainty profiles are not 

changed significantly. 
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Figure 7 Travel time PDF of link 2 without and with speed limit 

 

In summary, even though the speed limit is link-specific, it has both direct and 

indirect impacts on all network links with different extents. The change of travel time 

uncertainty profiles on the network links lead to the network flow reallocations. Speed 

limits have both positive impact (in terms of COV and EED reduction) and negative 

impact (in terms of the mean travel time, TTB and METT increase) on the travel time 

uncertainty profile of the directly affected links. Hence, the risk measures that we use 

to model travelers’ route choice decisions should have a complete uncertainty 

characterization, including the multi-dimensional statistical characteristics (e.g., 

variability, asymmetry and peakedness) and the risk performance (e.g., reliability and 

unreliability under a given risk-aversion attitude).  

 

To demonstrate the necessity of considering the uncertainty-related impact of speed 

limits, we compare the UE and METE results in Table 3. Both models correspond to 

the speed limit of 45 km/h on link 2. Different route choice criteria provide different 

optimal routes, which reflect travelers’ different risk preferences and considerations 
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towards travel time uncertainty. These lead to different traffic flow patterns as well as 

different travel time uncertainty profiles on each link.  Under the equilibrium state of 

the UE model with equal mean travel time, though route 2 is used by most travelers, it 

actually has the highest TTB and METT. The reason is that the UE model only 

considers the expected value of travel time uncertainty and therefore does not account 

for the positive/negative impacts of speed limits on the travel time variability, 

skewness, and fatness of distribution tail.  Under the considerations of on-time 

arrival reliability and late arrival unreliability, travelers on route 2 are willing to 

switch to route 1 and route 3. A new equilibrium pattern will then reach with equal 

METT on all three routes. Therefore, a risk measure with a tailored uncertainty 

consideration (e.g., METT) is needed in order to comprehensively account for the 

impacts of speed limits on travelers’ risk-taking route choice decisions and network 

flow reallocations.  

 

Table 3 Comparison between UE and METE states (with speed limit) 

Speed 
Limit 

Route Flow 
Travel Time Characteristics 

TTB EED METT
Mean SD COV Skew Kurt 

UE* 
1 4.87  22.92 1.99 0.087 2.35 11.23 23.50 2.57  26.06 
2 15.26 22.92 2.09 0.091 2.89 6.89 24.70 1.81  26.50 
3 4.87  22.92 1.99 0.087 2.35 11.23 23.50 2.57  26.06 

METE 

1 5.10  23.06 2.03 0.088 2.29 10.54 23.71 2.57  26.28 

2 
14.80 

(↓) 
22.79

(↓) 
2.02 0.089 3.09 7.61 24.57

(↓) 
1.71 26.28 

(↓) 
3 5.10  23.06 2.03 0.088 2.29 10.54 23.71 2.57  26.28 

*: The UE is based on the expected route travel time, not simply the deterministic travel time 

 

5.2 Comparison among Various Speed Limit Schemes 

The above analyses correspond to the speed limit of 45 km/h on link 2. Figure 8 

shows the equilibrium METT and flows under various speed limits. We can see that 

with a tighter speed limit on link 2, the truncation effect on travel time uncertainty and 

network flow reallocation becomes more significant. The METT of link 2 becomes 

larger, and some travelers will give up link 2 and switch to link 1 or link 3. The flow 

increase on link 1 and link 3 also increases their METTs. Finally, the equilibrium 

METT of this O-D pair is also enlarged with an increasing rate. 
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Figure 8 Equilibrium METT and flows under various speed limits 

 

5.3 Sioux Falls Network Example 

In this section, we use the well-known Sioux Falls network to demonstrate the 

solvability of the proposed model with speed limit under uncertainty. This network 

has 24 nodes, 76 links and 550 O-D pairs. The O-D demands are assumed to follow 

the lognormal distribution with the variance-to-mean ratio (VMR) of 0.30. A 

behaviorally generated route set (Bekhor et al., 2008) is used to compare the flow 

pattern without and with speed limit. In this route set, each O-D pair has at most 13 

routes and 6.3 routes on average. We run the route-based METE model (Chen and 

Zhou, 2010) with the on-time arrival reliability requirement of 80%, and then identify 

the 30 links with the coefficient of variation (COV) of link travel time greater than 

0.50, as highlighted in Figure 9. A speed limit is imposed on these 30 links by 

increasing their respective free-flow travel time by 1.25 times.  

 

Without loss of generality, we choose O-D pair (3, 8) to demonstrate the equilibrium 

results. This O-D pair consists of 6 routes in the route set. The METE equilibrium 

results without and with the above speed limit scheme are shown in Table 4. One can 

readily verify that both equilibrium results satisfy the equilibrium conditions. Before 

imposing the speed limit, routes 1 and 2 are used despite that route 3 also has the 

identical equilibrium cost. After imposing the speed limit particularly on links 12 and 

16 with a large CV, the travelers originally chosen route 1 will move to route 3. 



 24

Accordingly, routes 2 and 3 become the equilibrium routes with the identical and 

minimum cost. In addition, the costs of all 6 routes get larger due to the effect of 

speed limit on the travel time uncertainty profile.  

 

 
Figure 9 Sioux Falls network 

 

Table 4 Equilibrium results of O-D pair (3, 8) without and with speed limit  

Route 
Route 

composition 
Without speed limit With speed limit 
Flow Cost Flow Cost 

1 6-9-12-16 0.0288 0.6289 0 0.6333 
2 6-9-13-24 0.1712 0.6289 0.1268 0.6331 
3 5-1-4-16 0 0.6289 0.0732 0.6331 
4 6-9-13-25-29-47 0 0.9203 0 0.9264 
5 6-10-32-29-47 0 0.9294 0 0.9339 
6 7-36-32-29-47 0 0.9770 0 0.9910 

 

To further examine the effect of speed limit on travel time uncertainty profile, Figure 

10 shows the relative difference of mean travel time, absolute difference of CV, 

relative difference of skewness and kurtosis after and before imposing the above 

speed limit scheme. One can see that majority of the 76 links have an increased 

expected travel time, a decreased CV, and an increased skewness and kurtosis. Similar 

to the small network in Section 5.1, a link speed limit has both direct and indirect 
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impacts on all network links with different extents. It has a positive impact on the 

variability reduction at the cost of increasing the mean, skewness and kurtosis. The 

change of link travel time uncertainty profiles results in the network flow 

reallocations after imposing a speed limit. This further demonstrates the necessity of a 

tailored risk measure with a multi-dimensional consideration for characterizing the 

travelers’ route choice decisions and planners’ network performance assessment in 

designing a speed limit scheme. 
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Figure 10 Change of link travel time uncertainty profile after imposing a speed limit 

 

6 CONCLUDING REMARKS 

In this paper, we provided a way to quantify the network-wide impacts of speed limits 

on road network uncertainty. Specifically, a multi-dimensional approach was used to 

model the impacts of speed limits on link travel time uncertainty, travelers’ risk-averse 

route choice decisions, and traffic flow reallocation under uncertainty.  First of all, a 

truncated travel time probability distribution was proposed and its moment expression 

was derived to characterize the multi-dimensional impacts of speed limit on link 

travel time uncertainty profile. Then, the METT was adopted as a risk measure to 

capture the travelers’ risk-averse route choice adjustment and equilibrium flow 

reallocation caused by speed limits. 
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From the theoretical and numerical analyses, we have the following observations. A 

speed limit scheme imposes different impacts (either positive or negative) on different 

dimensions of travel time uncertainty profile, including the statistical characteristics 

(e.g., variability, asymmetry, and fatness of distribution tail) and the risk performances 

(e.g., reliability and unreliability).  For the positive impact, speed limit increases the 

mean travel time on the directly affected link while reduces the travel time variance. 

For the negative impacts, speed limit significantly increases both the skewness (i.e., 

asymmetry indicator) and kurtosis (i.e., fatness indicator of distribution tail) of travel 

time uncertainty. Also, it increases the travel time budget and METT on the directly 

affected link.  Travelers choose different optimal routes under different speed limit 

schemes. The shift in travel time uncertainty profile on the directly affected links 

further adjusts the traveler’s risk-averse route choice decisions, the travel time 

uncertainty profile on the indirectly affected links, and consequently the equilibrium 

flow reallocation. 

 

In view of the importance of speed limits on network uncertainty, it is valuable to 

develop an optimization model for designing the optimal speed limit scheme under 

uncertainty. This model should explicitly capture the impacts of speed limits on 

travelers’ risk-averse route choice behaviors as well as the network-wide performance 

(e.g., Xu et al., 2014). To enhance the modeling realism, it is necessary to consider the 

joint effect of stochastic perception error (Chen et al., 2011b; Xu et al., 2013) and 

speed limit on network uncertainty, and to consider the relationship among design 

speed, posted speed limit and operating speed (Donnell et al., 2014). In this paper, the 

truncated continuous distribution was used to model the rescaled travel time 

distribution caused by a speed limit scheme, which may influence the specific results 

of route choice model and traffic equilibrium model. Future research should explore 

different ways (e.g., discrete distributions or stochastic speed processes (Kharoufeh 

and Gautam, 2004)) to deal with the speed adjustment as well as collecting empirical 

data to examine how drivers react to speed limits under an uncertain environment. 

Also, considering the safety motivation of implementing speed limits, we plan to 

assess its effectiveness on network uncertainty management specific to the capacity 

degradation caused by traffic incidents and work zones (e.g., Chen et al., 2002; Lo 

and Tung, 2003; Lo et al., 2006). Speed variance could be a predictor of crash 

occurrence probability. In this study, we implicitly assume that a link-specific speed 

limit is enforced for each whole link or at least a segment, which is quite common in 

freeways and urban expressways. However, the effect of a speed limit on actual travel 
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times may be different depending on how the speed limit is enforced. It is of interest 

to see the impacts of different implementations of monitoring vehicular speed (e.g., 

speed cameras at one location, number plate or electronic toll recognition speed 

systems, and in-car speed-limiters).  
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