The following publication Lu, H., Lyu, X., Cheng, H., Ling, Z., & Guo, H. (2019). Overview on the spatial-temporal characteristics of the ozone formation regime in China. Environmental Science: Processes & Impacts, 21(6), 916-929 is available at https://doi.org/10.1039/C9EM00098D.

- 1 Overview on the spatial-temporal characteristics of ozone formation regime in China
 - Haoxian Lu¹, Xiaopu Lyu¹, Hairong Cheng², Zhenhao Ling³, Hai Guo^{1*}
- 2 3 4
- 1. Air Quality Studies, Department of Civil and Environmental Engineering, The Hong Kong
- 5 Polytechnic University, Hong Kong, China
- 6 2. School of Resource and Environmental Sciences, Wuhan University, Wuhan, China
- 7 3. School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, China
- 8 * Corresponding author. <u>ceguohai@polyu.edu.hk</u>
- 9

10 Abstract

11 Ozone (O_3) , a main component in photochemical smog, is a secondary pollutant formed 12 through complex photochemical reactions involving nitrogen oxides (NO_x) and volatile 13 organic compounds (VOCs). Since the past decades, with the rapid economic 14 development, industrialization and urbanization, the mixing ratio of O₃ has been 15 increased substantially in China. O₃ non-attainment days have been frequently observed. 16 Despite great efforts made in these years, it is still difficult to alleviate O₃ pollution in 17 China, due to its non-linear relationship with the precursors. In view of the severe 18 situation in China, this study carries out a comprehensive review on the spatial-temporal 19 variations of relationship between O₃ and its precursors (i.e. O₃ formation regime), built 20 upon the previous reviews of the spatial-temporal variations of O₃ and its precursors 21 levels. Valuable findings from previous studies were laid out for better understanding 22 of O₃ pollution, followed by implications for the control of O₃ pollution. Literature 23 review indicates that O₃ formation in most areas of North China Plain (NCP), Yangtze 24 River Delta (YRD) and Pearl River Delta (PRD) regions is in a VOC-limited regime 25 during the high-O₃ seasons due to dramatic emissions from human activities in cities. 26 Out of these metropolitan areas, NOx-limited regime dominates rural/remote areas. 27 From summer to winter, O₃ formation regime over China shows a tendency to shift to 28 a VOC-limited regime. Furthermore, O₃ formation in China moved toward increasing 29 sensitivity to VOC emissions before the 12th-Five-Year-Plan. However, after the 12th-30 Five-Year-Plan, successful reduction of NO_x slowed down this trend. Further effective

31 controls of VOCs are expected to achieve sustained O₃ attainment in the future. To 32 timely solve the current O₃ pollution problem, precise control of O₃ precursors is 33 proposed, together with the joint prevention and control of regional air pollution.

34 Key words: Ozone; O₃ formation regime; Spatial-temporal; China

35

36 **1. Introduction**

37 Because of the rapid industrialization and urbanization in China, air pollution, such as 38 haze and photochemical smog characterized by high-levels of fine particulate matters 39 and/or ozone (O₃), has become more and more severe and aroused public attention in 40 recent years. Due to its strong oxidative capacity, surface O₃ poses adverse effects on 41 humans' health (Goodman et al., 2015; Sousa et al., 2013), growth and productivity of 42 crops (Bhatia et al., 2012), visibility (Aneja et al., 2004) and climate change (Ogundele 43 et al., 2011). To study O₃ pollution in China, nationwide O₃ monitoring has been 44 systematically conducted by the China National Environmental Monitoring Center 45 (CNEMC) and the local Environmental Monitoring Centers since 2013 46 (http://www.mep.gov.cn/), and extensive field measurements were also taken from time 47 to time by scientists over the past 20 years. Particularly, most of the measurements were 48 undertaken in North China Plain (NCP), Yangtze River Delta (YRD) and Pearl River 49 Delta (PRD) regions, where severe O₃ pollution has been often observed (Wu and Xie, 50 2017; Wang et al., 2017a). The characteristics of tropospheric O₃ pollution in China are 51 high concentrated, long lasting, wide spread, and yearly increasing. On one hand, most 52 cities such as Beijing, Tianjin, Shanghai, Nanjing, Guangzhou and Hong Kong 53 frequently suffered from high-level O₃ exposures, which exceeded either the National 54 Ambient Air Quality Standard (maximum hourly O₃ of 200 μ g/m³ \approx 100 ppbv) or the 55 World Health Organization Standard (maximum daily 8-h average (MDA8) $O_3 > 50$ 56 ppbv), and sometimes were even as high as 200 ppbv (Guo et al., 2013; Han et al., 57 2013; He et al., 2012; Cheng et al., 2010; Tu et al., 2007; Wang et al., 2006a). In 58 addition, a recently nationwide study found that four cities including Beijing,

59 Chengdu, Guangzhou and Shanghai suffered from O_3 exposure with MDA8 > 50 ppbv on more than 30% of the days from 2013 to 2015 (Wang et al., 2017b). 60 61 Compared to other industrialized regions in the world (i.e. Japan, South Korea, Europe 62 and the United States), the magnitude and frequency of high-ozone events were much 63 greater in China by analyzing the data of surface O_3 in 2013-2017 (Lu et al., 2018). On 64 the other hand, it was revealed that the continuous increases of O₃ levels were found in 65 China, not only in rural/remote areas but also in residential areas (p < 0.05). In 66 rural/remote areas, a continuous increase of surface O3 was firstly observed and 67 reported by Wang et al. (2009) in the background atmosphere of PRD, South China, 68 from 1994 to 2007. After that, increases of surface O₃ were reported likewise at other 69 rural sites in NCP and YRD in the past decade (Ma et al., 2016; Lin et al., 2009; Wang 70 et al., 2006b). In residential areas, the nationwide O_3 monitoring at 617 stations in 71 densely populated regions by CNEMC showed that the yearly average MDA8 O₃ 72 increased from 76.47 ppbv in 2013 to 82.60 ppbv in 2015 (Wang et al., 2017b). 73 Moreover, a recent nationwide study reported that the monthly mean MDA8 O₃ in 74 the four megacity clusters (i.e. Beijing-Tianjin-Hebei (BTH), YRD, PRD, and 75 Sichuan Basin (SCB)) all showed increasing trends in the summers of 2013 to 2017 except for some locations in PRD (Li et al., 2019). Hence, the tropospheric O₃ 76 77 pollution has become a critical issue in China.

78 The tropospheric O₃ is generally contributed by two sources, namely, the stratospheric 79 intrusion of O₃ to the troposphere, and the chemical reactions involving nitrogen oxide 80 (NO_x), volatile organic compounds (VOCs) and highly reactive radicals (e.g., hydroxyl 81 radical (OH) and hydroperoxyl radical (HO₂)) in the presence of sunlight in the 82 troposphere (Wang et al., 2017a; Steinfeld, 1998). However, the direct stratospheric O₃ 83 intrusion to the troposphere is very minor and most ground-level O₃ is formed in the 84 troposphere from the photochemical reactions above (Altshuller, 1984; 85 https://www.epa.gov/roe/). Therefore, control focus should be on the chemical 86 formation of O_3 in the troposphere. To achieve the purpose, it is essential to fully

87 understand the spatial-temporal variations of O₃, its precursors (i.e. VOCs and NO_x) 88 and their relationships so as to implement appropriate control measures for the 89 remediation of O₃ pollution. Though the spatial-temporal variations of O₃ and its 90 precursors over China were overviewed in previous papers, as well as the detailed 91 formation mechanisms of O₃ with its precursors (Diao et al., 2018; Guo et al., 2017; 92 Wang et al., 2017a), the spatial-temporal patterns of the relationship of O₃ with its 93 precursors (i.e. O₃ formation regime) have not been comprehensively reviewed and 94 summarized. In fact, the non-linear relationship of O₃ with its precursors makes the O₃ 95 pollution complicated, leading to continuous increase of O3 level despite the 96 implementation of intensive control measures in recent years. Therefore, understanding 97 the spatial-temporal patterns of O₃ formation regime would help us determine the most 98 efficient approach for O₃ reduction. All the studies of O₃ formation regime over the past 99 20 years in China were thoroughly reviewed in this paper. To our best knowledge, this 100 paper is in fact the first comprehensive review on the spatial-temporal characteristics 101 of O₃ formation regime in China.

102 This review paper mainly focuses on the O₃ formation regimes in different regions in 103 China. The 'Introduction' section provides the background and significance of the 104 review; The Section 2 reviews the spatial variations of O₃ formation regimes in China; 105 The Section 3 summarizes the seasonal, diurnal and long-term patterns of O₃ formation 106 regimes in China; and the Section 4 provides some directions for the control of O₃ 107 pollution.

108

109 2. Spatial variations of O₃ formation regimes

In general, O_3 formation regimes can be classified into three categories: VOC-limited (VOC-sensitive), NO_x-limited (NO_x-sensitive) and transition regime. The cause of different O₃ formation regimes is mainly attributed to the dual role of NO_x in O₃ formation by regulating the chemistry of HO_x radicals. On one hand, NO_x drives O₃ formation through the photochemical cycle involving NO_x, atomic oxygen (O), O₂ and 115 sunlight. On the other hand, NO_x retards the rate of O_3 formation through the reactions 116 with HO_x radicals to remove OH from oxidation cycle and produce relatively non-117 reactive species such as HNO₃. Moreover, the peroxy radicals (i.e. HO₂ and RO₂) 118 generated from the reactions of VOCs with OH efficiently convert NO to NO₂, resulting 119 in the accumulation of O₃ due to lack of NO titration effect (NO+O₃ \rightarrow NO₂+O₂) (Jenkin 120 and Clemitshaw, 2000; Sillman, 1999; Barker, 1995; Wang et al., 2017a). Therefore, at 121 low VOC/NO_x conditions, the reaction between OH and NO₂ is the dominant chain 122 terminating reaction, competing with chain propagating reactions of OH and VOCs. 123 Reducing the concentration of VOCs would lead to a decrease in O₃ formation (VOC-124 limited regime). On the other hand, at high VOC/NO_x ratios, reactions of OH and VOCs 125 are the dominant chain terminating reactions, while the oxidation of NO to NO₂ by HO₂ 126 and RO_2 is the key propagating reaction, which forms O_3 consequently. Hence, any 127 reduction in NO_x would decrease the photochemical O₃ formation (NO_x-limited 128 regime). Lastly, when the levels of VOCs and NOx are comparative, the reaction of OH 129 with neither VOCs nor NO_x is dominant and thus O_3 formation is limited by both NO_x 130 and VOCs. Namely, O_3 level is reduced by cutting both precursors (transition regime). 131 To determine O₃ formation regimes, there were a number of methods used to investigate 132 the O₃-precursors relationship, including relative ratios of VOCs/NOx, observed 133 indicators (i.e., O₃/NO_z, H₂O₂/NO_z or H₂O₂/HNO₃), correlation analysis of O₃ with 134 VOCs and NOx, observation-based model (OBM) and emission-based model (EBM), 135 which were comprehensively concluded and discussed by Wang et al. (2017a) and Guo 136 et al. (2017). The first three approaches simply use the field measurement data of O_3 137 and its precursors to identify O_3 formation regimes. VOCs/NO_x ratios reflect the 138 abundant O₃ precursors at a specific site and determine the O₃ formation regime based 139 on the experiential criteria in previous studies. Similarly, the values of observed 140 indicators represent the dominant precursor and/or reaction in O₃ formation according 141 to the standards summarized from previous studies and thus indicate O₃ formation 142 regimes. Correlation analysis of O₃ with VOCs and NO_x visually display the

143 relationship of O₃ with its precursor based on large quantities of averaged data covering 144 multiple days. Although these approaches are simple and straightforward, they are not 145 completely reliable by themselves and do not provide comprehensive analyses on the 146 nonlinear O₃ formation mechanism. In addition to the three approaches, the sensitivity 147 of O₃ production to various O₃ precursors can be quantified by conducting sensitivity 148 modeling analyses with an assumed reduction in the concentration of target precursors 149 via OBM and EBM. OBM simulates O₃ formation by inputting measurements of 150 gaseous pollutants and meteorological conditions, while EBM simulates O₃ formation 151 by importing the emission of VOCs and NO_x from the emission inventory. Compared 152 to EBM, OBM simulates O₃ photochemical production and destruction based on 153 measured ambient concentrations of O₃ and its precursors, which can avoid the 154 uncertainties caused by emission inventories and the simulated boundary layer 155 dynamics (Russell and Dennis, 2000). Nevertheless, EBM is able to study O₃ pollution 156 without the restriction of observation data and break the limitations of time and space 157 to investigate O₃ formation in a large-scale region and expected time period. It is 158 noteworthy that the determination of different O_3 formation regimes is difficult to reach 159 an agreement since it is dependent on the approach used for analysis of the O₃-precursor 160 relationships, and the criteria of different approaches are not the same. Despite the 161 potential differences of results, O₃ formation regime is basically determined by how the 162 O3 formation responds to the changes of its precursors, no matter which method is 163 adopted.

Previous studies indicated that large amount of O₃ precursors was emitted in the NCP, YRD and PRD regions - the most developed regions in China, and thus led to the elevated O₃ levels in these regions with continuously increasing trends in these years (Diao et al., 2018; Guo et al., 2017; Wang et al., 2017a). Among the three regions, the highest maximum O₃ and VOCs concentrations were found in NCP, followed by PRD and YRD. In addition, all these three regions had comparable and high NO_x emissions. Furthermore, the levels of O₃ and its precursors varied in different land-use function 171 areas in these regions. In urban/populated areas, the levels of O₃ precursors were usually 172 higher due to the massive anthropogenic emissions. However, higher values of 173 maximum hourly O₃ were mostly observed in rural/remote areas because of the aging 174 of air masses. Similarly, the relationship of O₃ with its precursors was extensively 175 explored in NCP, YRD and PRD regions for seeking enlightenments on O₃ pollution 176 control, especially in summer and autumn, when O₃ levels were usually higher due to 177 the favorable circumstances for O₃ formation (i.e. high temperature, strong solar 178 radiation, low relative humidity and high precursors levels) (Wang et al., 2017a). The 179 detailed review on the spatial variations of O₃ formation regime using the above 180 approaches in the three regions during the high-O₃ seasons is given below.

181 **2.1** The NCP region

Different O₃ formation regimes were frequently found in NCP during the high-O₃ season (i.e. summer). Representative studies are listed in Table 1. Most of these studies in NCP were conducted in Beijing and its surrounding areas. In general, NO_x-limited regimes were found in the rural/remote areas, whereas urban/populous areas were under the VOC-limited regimes. Besides, transition regime was more frequently found in NCP than in PRD and YRD.

188 VOC-limited regimes dominated in the urban areas of Beijing, a densely-populated city 189 with serious pollution problems (Zhang et al., 2014; Tang et al., 2010; Chou et al., 2009; 190 Shao et al., 2009a; Xu et al., 2008). By adopting different emission inventories in 191 different domains in a community multiscale air quality (CMAQ) model, Xu et al. 192 (2008) revealed that in summer 2000, the urban areas of Beijing were generally in a 193 VOC-limited regime, while the urban downwind areas changed gradually to a NO_x-194 limited condition. Similarly, sensitivity analysis of O₃ formation in central urban 195 Beijing was performed by Tang et al. (2010) in August 2006 using the Nested Air 196 Quality Prediction Model System (NAQPMS). It was found that abatement of the most 197 contributing VOCs could be more efficient on reducing the high levels of surface O₃, 198 while inadequate abatement of NOx would lead to a reverse outcome. Apart from model

simulation, a few field measurements at PKU (an urban site) in summer proved that O₃
formation was mostly in a VOC-limited regime (Zhang et al., 2014; Chou et al., 2009;
Shao et al., 2009a). In addition to Beijing, a VOC-limited regime was also identified at
an urban site in Tianjin (i.e. Tieta) using the NCAR-Master Mechanism model (NCARMM) to reveal the response of local O₃ to the emissions of its precursors during JulyAugust of 2010 and 2011 (Wei et al., 2015).

Furthermore, NO_x-limited regime in NCP was reported by few studies. A 5-week field campaign was conducted at a suburban site in Tianjin in summer 2009. In the study, a NO_x-limited regime was identified, diagnosed by the VOCs/NO_x ratios and further verified by a photochemical box model (i.e. NCAR-MM) (Ran et al., 2011). Apart from field measurements, the chemical sensitivity of O₃ formation over NCP region was investigated in summer 2015 by a recent study using the regional atmospheric modeling system-community multiscale air quality (RAMS-CMAQ) (Han et al., 2018). Results

212 indicated that NO_x-sensitive regimes dominated in remote/rural areas in the NCP.

213 Besides, areas in NCP were frequently found under transition regimes. For instance, 214 from a sampling campaign at PKU and Yufa (a rural site) in summer 2006, transition 215 regimes were identified at both sites by two studies (Lu et al., 2010; Shao et al., 2009a). 216 On one hand, Lu et al. (2010) adopted the relative incremental reactivity (RIR) values 217 and the parameter L_N/Q (fraction of radicals removed by reaction with NO_x related to 218 total radical production rates) to determine the O₃ formation regime. It was reported 219 that NOx-sensitive and VOC-sensitive regimes existed and frequently shifted to each 220 other at both sites. On the other hand, Shao et al. (2009a) analyzed the O₃ formation 221 regime at Yufa through the correlation between the daily maximum O₃ and the initial 222 VOCs and NO_x level (correlation: $[O_3]_{max} = 0.26[VOCs]_{initial} + 2.24[NO_x]_{initial} + 48.9$). 223 The correlation suggested that O_3 formation was sensitive to both emissions of VOCs 224 and NO_x. Moreover, a recent study at a rural site downwind of Jinan in summer 2013 225 suggested that O₃ production was in a transition regime, analyzed by the OBM model 226 (Zong et al., 2018). In addition to measurement-based analyses, Liu et al. (2012) simulated the summertime photochemistry near the surface in Beijing in 2007 using a 1-D photochemical model. It was found that O₃ production was neither NO_x-limited nor VOC-limited, but was in a transition regime. Furthermore, a recent model study indicated that the emissions of VOCs and NO_x both vastly influenced O₃ formation in the suburban areas of NCP region in summer 2015 (Han et al., 2018).

- 232
- 233

Table 1 Summary of the studies of O₃ formation regime in the NCP

City	Site/Area	Year & Season	Land-use function	O ₃ formation	Method	Reference
				regime		
Beijing	PKU	2004-2006, Summer	Urban	VOC-limited	Correlation analysis	Shao et al. (2009a)
		2005-2011, Summer	Urban	VOC-limited	Observation-based model &	Zhang et al. (2014)
					Correlation analysis	
		2006, Summer	Urban	VOC-limited	Observation-based model	Chou et al. (2009)
		2007, Summer	Urban	Transition	Emission-based model	Liu et al. (2012)
		2006, Summer	Urban	Transition	Observation-based model	Lu et al. (2010)
	Yu Fa	-	Rural	-		
		2004-2006, Summer	Rural	-	Correlation analysis	Shao et al. (2009a)
	Central urban	2006, Summer	Urban	VOC-limited	Emission-based model	Tang et al. (2010)
	Beijing					
The whole	N/A	2000, Summer	Urban	VOC-limited	Emission-based model	Xu et al. (2008)
Beijing						
			Urban downwind area	NOx-limited		
Tianjin	Wu Qing	2009, Summer	Suburban	NO _x -limited	Observation-based model	Ran et al. (2011)
	Tieta	2010-2011, Summer	Urban	VOC-limited	Observation-based model	Wei et al. (2015)
Jinan	Yu Cheng	2013, Summer	Rural	Transition	Observation-based model	Zong et al. (2018)
The whole NCP	N/A	2015, Summer	Rural	NO _x -limited	Emission-based model	Han et al. (2018)
			Sub-urban	Transition		

234

235 **2.2** The YRD region

236 Compared to PRD and NCP, fewer studies were carried out in YRD. Nevertheless,

237 cities/areas under different O₃ formation regimes (i.e. VOC-limited and NO_x-limited

regime) were still reported by a few studies, which are summarized in Table 2. Briefly,

239 O₃ formation in most of the areas in YRD was under VOC-limited regimes. Shanghai

and Nanjing were the two popular cities for investigating the O₃ formation regime.

241 Previous studies indicated that Shanghai and its surrounding cities were basically in 242 VOC-limited regimes (Xu et al., 2017; An et al., 2015; Xue et al., 2014; Tang et al., 243 2008; Geng et al., 2008). For instance, it was reported that O₃ production at two urban 244 sites in Shanghai was situated in a non-methane organic compounds (NMOC)-limited 245 regime based on the ratios of VOCs/NO_x (Ran et al., 2009; Tang et al., 2008). Consistent 246 result was found by Li et al. (2012a) in urban Shanghai with the help of a CMAQ 247 modeling system with Carbon Bond 05 (CB05) chemical mechanism. Aside from urban 248 areas, a VOC-limited regime was also identified at a suburban site near Shanghai in 249 summer 2005 using a photochemical box model with master chemical mechanism 250 (PBM-MCM) (Xue et al., 2014). In addition to Shanghai, VOC-sensitive regimes 251 existed likewise in Nanjing. For instance, by analyzing the VOCs/NO_x ratios and RIR 252 values, An et al. (2015) proved that the O₃ formation in Pancheng town (a rural site) 253 was VOC-limited in the summer of 2013. Moreover, the same O₃ formation regime was 254 found at the station for Observation Regional Processes of the Earth System (SORPES) 255 in Nanjing (a suburban site) by two studies. One was analyzed through the OBM 256 method based on the data collected on National Day holiday in 2014 (Xu et al., 2017) 257 and the other was indicated by the correlations of CO-NO_y-O₃ using the data collected 258 in 2011 for one year (Ding et al., 2013).

Moreover, NO_x-sensitive regime and transition regime were barely found in YRD based on observation-based studies. Nevertheless, with the help of a CMAQ modeling system with Carbon Bond 05 (CB05) chemical mechanism, Li et al. (2012a) pointed out that NO_x-sensitive regime existed in rural areas of YRD in summer 2010, such as Jinshan district in Shanghai.

264

Table 2 Summary of the studies of O₃ formation regime in the YRD

City	Site/Area	Year & Season	Land-use	O ₃ formation	Method	Reference
			function	regime		
Shanghai	Tai Cang	2005, Summer	Suburban	VOC-limited	Observation-based model	Xue et al. (2014)
	Song Jiang	2006-2007, All seasons	Urban	VOC-limited	VOCs/ NOx ratios	Ran et al. (2009)
	Xu Jia Hui	2006, Summer to	Urban	VOC-limited	VOCs/ NOx ratios	Tang et al. (2008)
		Winter				

Nanjing	Pan Cheng	2013, Summer		Suburban	VOC-limited	Observation-based model	An et al. (2015)
	The Station for Observing	2011, Summer		Rural	VOC-limited	Correlation analysis	Ding et al. (2013)
	Regional Processes of the						
	Earth system						
	Xian Lin	2014,	Summer	Suburban	VOC-limited	Observation-based model	Xu et al. (2017)
		(National Day	y holidays)				
Urban Shanghai	N/A	2010, Summe	er	Urban	VOC-limited	Emission-based model	Li et al. (2012a)
Suburban Shanghai	-			Suburban	NO _x -limited	-	
(Jinshan)	-					-	
Nanjing	_			Urban	N/A	_	
Hangzhou				Urban	N/A		

265 **2.3** The PRD region

Numerous studies have investigated the O₃ formation regime in PRD during the high-O₃ seasons (i.e. summer and autumn) over the past 20 years, especially in Hong Kong and the inland PRD region. Summary of these studies is shown in Table 3. Basically, O₃ formation was controlled by the emission of VOCs in most of the areas of PRD, which was consistent with the result of previous studies (Wang et al., 2017a; Guo et al., 2017), whereas the other O₃ formation regimes (i.e. NO_x-limited and transition regime) were only found out of the densely populated areas/cities.

273 Different approaches used in previous studies have proved that most of the areas in 274 PRD were under VOC-limited regimes. In 2000, gaseous pollutants and VOCs samplers 275 were measured in the central of Guangzhou from summer to autumn. It was reported 276 that O₃ formation was generally limited by the concentrations of VOCs according to 277 the RIR values extracted from the OBM model (Shao et al., 2009b). In addition to urban 278 areas, several studies pointed out that VOC-limited regimes also existed in rural areas 279 of Guangzhou (Xue et al., 2014; Cheng et al., 2010; Zhang et al., 2008). Apart from 280 Guangzhou, areas under VOC-sensitive regimes were found in Hong Kong as well. 281 From 23 October to 01 December 2007, ambient O3 and its precursors were measured 282 at Tung Chung (TC), a suburban site in Hong Kong. Using the database, two studies 283 reported that O₃ production at TC was generally VOC-limited, which meant reducing 284 VOCs decreased the O₃ formation and reducing NO_x could increase O₃ level (Cheng et al., 2010; Guo et al., 2009). Moreover, from 6 September to 29 November 2010, a field 285

286 measurement of O₃ and its precursors was conducted at Tai Mo Shan (TMS) and Tsuen 287 Wan (TW) (a rural site and an urban site, respectively). The O_3 formation regimes at 288 two sites were revealed. At TMS, photochemical O₃ formation was mostly influenced 289 by VOCs with a measurable effect of NO_x according to the RIR analysis (Guo et al., 290 2013), while O₃ concentration was negatively correlated with NO_x at TW, implying that 291 O3 formation was primarily VOC-sensitive, further validated by the VOCs/NOx ratios 292 and RIR values (Ling and Guo, 2014; Lam et al., 2013). Aside from measurement-based 293 analyses, consistent results were obtained using the emission-based models. By using 294 a WRF/SMOKE-PRD/CMAQ modeling system to explore the photochemistry over the 295 entire PRD region in August and October 2010, Ou et al. (2016) suggested that intensive 296 controls of anthropogenic VOC were more efficient for short-term despiking of peak 297 O₃ levels in urban and port areas of PRD. The results were in line with another modeling 298 study, which reported that O₃ formation was VOC-limited in the central inland PRD, 299 PRE, and surrounding coastal areas in autumn 2004 (Wang et al., 2010). In addition, a 300 modeling study investigated the peculiarity of O₃ episode days in Hong Kong in 301 summer 2005 by a high-resolution air quality model (Pollutants in the Atmosphere and 302 Their Transport in Hong Kong (PATH)). It was pointed out that the chemical regime for 303 O₃ formation in Hong Kong seemed to be mainly limited by VOCs (Huang et al., 2005). 304 Furthermore, NOx-limited regime was only found in rural areas of PRD by few 305 modeling studies. Based on the anthropogenic emissions inventory and the biogenic 306 emissions inventory provided by HKEPD and inland PRD authority, Wang et al. (2010) 307 simulated O₃ pollution over the PRD region in October 2004. Results showed that O₃ 308 formation was generally NO_x-limited in rural southwestern PRD, where the air masses 309 were photochemically aged. Moreover, Ou et al. (2016) indicated that O₃ formation was 310 always NOx-limited at a rural site in PRD (Jiangmen) on the O3 episode days in August, 311 based on the O₃ isopleth profiles obtained from a WRF/SMOKE-PRD/CMAQ 312 modeling system.

314 studies in PRD, which indicated that O₃ formation was limited by both VOCs and NO_x. 315 For instance, the chemical sensitivity of O₃ formation was investigated at a remote 316 island site (Wan Shan Island) in 2013. Results found that O₃ production at the oceanic 317 site changed from transition regimes on non-O3 episode days to VOC-limited regimes 318 on O₃ episode days (Wang et al., 2018). Moreover, at a suburban site in Guangzhou (i.e. 319 Panyu), O₃ formation in summer and autumn was usually NO_x-limited at noon but 320 shifted to VOC-limited when O₃ concentrations became low in the morning and at night 321 according to the VOC/NO_x ratios (Zou et al., 2015). In addition to field studies, 322 transition regimes were also identified at a suburban site and a rural site in Guangdong 323 in the summer and autumn of 2010, respectively, with the help of the WRF/SMOKE-324 PRD/CMAQ modeling system (Ou et al., 2016).

- 325
- 326

Table 3 Summary of the studies of O₃ formation regime in the PRD

City	Site/Area	Year & Season	Land-use	O ₃ formation	Method	Reference
			function	regime		
Guangzhou	Guangzhou Research	2000, Summer - Autumn	Urban	VOC-limited	Observation-based model	Shao et al. (2009b)
	Institute of Environmental					
	Protection					
	Wan Qin Sha	2007, Autumn to Winter	Rural	VOC-limited	Observation-based model	Cheng et al. (2010)
		2004, Summer	-	VOC-limited	Observation-based model	Xue et al. (2014)
	Xin Ken	2004, Autumn	Rural	VOC-limited	Observation-based model	Zhang et al. (2008)
	Pan Yu	2011-2012, Summer &	Suburban	Transition	VOC/NOx ratios	Zou et al. (2015)
		Autumn				
Hong Kong	Tsuen Wan	2010, Summer to Autumn	Urban	VOC-limited	Observation-based model	Ling and Guo (2014),
						Lam et al. (2013)
	Tai Mo Shan	-	Rural	VOC-limited	Observation-based model	Guo et al. (2013)
	Wan Shan Island	2013, Summer to Autumn	Rural	Transition	Observation-based model	Wang et al. (2018)
	Tung Chung	2007, Autumn to Winter	Suburban	VOC-limited	Observation-based model	Cheng et al. (2010),
						Guo et al. (2009)
The whole	N/A	2004, Summer	N/A	VOC-limited	Emission-based model	Huang et al. (2005)
Hong Kong						
Guangzhou	N/A	2010, Summer	Urban	VOC-limited	Emission-based model	Ou et al. (2016)
		Autumn	-			
Dongguan	-	2010, Summer	Suburban	Transition		
		Autumn		VOC-limited	- 	

Nansha		2010, Summer	Suburban	VOC-limited		
		Autumn	-			
Jiangmen		2010, Summer	Rural	NO _x -limited	_	
		Autumn	•	Transition	-	
The whole	The central inland PRD and	2004, Autumn	Urban/Suburban	VOC-limited	Emission-based model	Wang et al. (2010)
PRD	costal area	_			_	
	The rural southwestern	-	Rural	NO _x -limited	-	
	PRD					

327

328 **2.4** Other regions

329 Apart from the three most developed regions above, the O₃ formation regimes were 330 also investigated in cities of other regions, as shown in Table 4. In Lanzhou, O₃ was 331 formed under a NO_x-sensitive regime at a suburban site while VOC-sensitive regime 332 was found in downtown area in summer 2013 according to the O₃-isopleth plots (Jia et 333 al., 2016). The result was consistent with the previous study of Xue et al. (2014), which 334 conducted a field measurement at other rural site in Lanzhou in 2006. Moreover, in 335 Wuhan, the central China, O₃ formation was mostly controlled by the emission of VOCs 336 (except July 2013) because of the great contribution of vehicle emission and coal 337 burning (Lyu et al., 2016). In southwestern China, Tan et al. (2018) investigated the O₃ 338 formation regime at four sites in Chengdu using an OBM model and found that 339 reduction of anthropogenic VOCs was the most efficient way to mitigate O₃ pollution 340 since most of the sampling sites were under the VOC-limited regimes. At this stage, 341 summary of O₃ formation regime in other regions besides NCP, YRD and PRD is 342 difficult to achieve due to the limited references. More intensive studies are expected 343 to fill the knowledge gap in the future.

344 Table 4 Summary of the studies of O₃ formation regime in other regions

City	Site/Area	Year & Season	Land-use function	O ₃ formation	Method	Reference
				regime		
Lanzhou	Lanzhou	2013, Summer	Urban	VOC-limited	Correlation analysis	Jia et al. (2016)
	Environmental					
	Monitoring Station					
	West suburban site	-	Suburban	NO _x -limited	-	
	Renshoushan Park	2006, Summer	Suburban	NO _x -limited	Observation-based model	Xue et al. (2014)

Wuhan	Hubei Provincial	2013-2014, All seasons	Urban	VOC-limited	Observation-based model	Lyu et al. (2016)
		,				•
	Environmental					
	Monitoring Center					
Chengdu	Peng Zhou	2016, Autumn	Suburban	Transition	Observation-based model	Tan et al. (2018)
	Pi Xian	_		VOC-limited	-	
	Shuang Liu	_				
	Cheng Zhong	_	Urban	-		

345

346 Overall, O₃ formation in the most areas of NCP, YRD, and PRD regions is likely in a 347 VOC-limited regime due to the vastly anthropogenic emissions of air pollutants. Out of 348 these metropolitan areas, O_3 formation in rural/remote areas is mainly limited by NO_x 349 levels. Such discrepancy of O₃ formation regime is mainly attributed to the disparity of 350 different O₃ precursors' levels in different land-use function areas. In general, NO_x 351 levels are high in metropolitan areas due to the vast emission of NO_x from human 352 activities (i.e. combustion and vehicle emission), and thus NO_x is saturated for O₃ 353 formation. However, NOx-limited regime dominates rural areas as VOCs are usually 354 sufficient for O₃ formation because of the abundance of biological VOCs emission from 355 plants and rare NO_x emission from human activities. Furthermore, more intensive 356 studies in other regions besides NCP, YRD and PRD are expected in the future.

357

358 3. Diurnal, seasonal and long-term patterns of O₃ formation regimes

Apart from the spatial distribution, it is pointed out that O₃ formation regimes in China have several temporal characteristics, including diurnal, seasonal and long-term variations (Wu et al., 2018; Jin and Holloway, 2015; Brown and Stutz, 2012; Liu et al., 2010).

363 **3.1** Diurnal variation of O₃ formation regimes

O₃ pollution basically occurs in the daytime since sunlight is the major driving force for the photochemical chemistry. Therefore, majority of researches conducted O₃ pollution investigation during daytime. It was not until 10 years ago, night-time chemistry in the troposphere began to be explored and thus the relationships between 368 O₃ and its precursors at night were revealed (Brown and Stutz, 2012). Generally, O₃ 369 level rises in the morning, peaks in the afternoon and then gradually declines at night 370 (Reddy et al., 2011; Xu et al., 2008). The increase of O₃ in daytime is caused by the O₃ 371 production sequence in the presence of sunlight, while O₃ concentration declines at 372 nighttime through the process of NO_x titration. In the night-time process of NO_x 373 titration, O_3 is firstly removed by its reaction with NO, which generates NO₂ and O₂. 374 This reaction also exists in the daytime. However, in the absence of the photolysis of 375 NO_2 to prompt O_3 formation at night, the result is net conversion of O_3 to NO_2 . After 376 that, the nitrate radical, NO₃, is generated through the reaction of NO₂ with O₃, which 377 further consumes O₃ and thus reduces O₃ level. Detailed mechanism of night-time 378 chemistry was summarized by a recent paper (Brown and Stutz, 2012). Overall, the O₃ 379 concentration at night is mainly controlled by the NO_x level.

380 Because of the typical O₃-precursor relationship at night, hourly O₃ levels show 381 different diurnal patterns in areas of different land-use function (e.g. urban and rural 382 areas). Generally, O₃ concentrations peak at around 14:00 and decrease significantly at 383 night in urban areas, while the peak values of O_3 usually appear several hours later and 384 do not drop instantaneously after sunset in rural/remote areas due to the lower emissions 385 of NO_x from human activities. For instance, according to a field measurement of O₃ at 386 an urban site and a downwind rural site around Beijing from June 2005 to September 387 2006, 90% of the O₃-episode events (hourly O₃ level exceeded the China's norm) took 388 place before 16:00 at the urban site, while more than 82% of those happened at night at 389 the rural site (Ma et al., 2011). Moreover, from another four-year measurements of O_3 390 and its precursors from 2005 to 2008 at an urban and a rural site in Beijing, peak O₃ 391 value appearing time in the rural area was delayed by 2-3 hours from the time in the 392 urban area (i.e. 14:00) (Xu et al., 2011). In addition to field measurements, Li et al. 393 (2012a) adopted the CMAQ model to simulate the O₃ levels over the YRD region 394 during the O₃ episode days in summer 2010. The O₃ concentration decreased rapidly 395 after sunset in urban areas due to the strong effect of NO titration, whereas O₃ could

396 still spread to rural areas and maintain high levels. Thus, O₃ pollution could be a notable

397 problem in rural areas at night.

398 **3.2** Seasonal variation of O₃ formation regimes

399 Previous review has revealed the seasonality of O₃ levels in the three regions (Wang et 400 al., 2017a). In NCP and YRD, higher O₃ level was generally observed in the 401 summertime. In PRD, O₃ levels were high in summer and autumn but it generally 402 reached maximum value in autumn. Though the seasonality of O₃ level had been clearly 403 discussed and summarized previously, the seasonal variation of O₃ formation regime 404 was still unknown. A few field measurements were conducted in different seasons to 405 solve the puzzle previously. Based on the observation-based studies, it seemed that in 406 urban and rural/remote areas, O₃ formation regime was consistent throughout the entire 407 year, whereas it became variable in suburban area in different seasons. For example, 408 based on the diurnal variations of O₃ and NO_x measured in central and rural areas of 409 Guangzhou from 2006 to 2007, the O₃ production in central Guangzhou was mostly 410 VOC-limited throughout the entire year, while O₃ production was limited by NO_x in the 411 rural area all the time (Zheng et al., 2010). Furthermore, in downtown Shanghai (i.e. 412 Xujiahui), Geng et al. (2008) reported that O₃ formation was mainly limited by VOCs 413 concentrations in both summer and winter, according to the ratios of CH_2O/NO_y and 414 the results of NCAR-MM model. In addition, after measuring O₃ and its precursors in 415 the center of Tianjin for one year, Liu et al. (2016) pointed out that the central Tianjin 416 belonged to the VOC-limited region during most seasons in view of the ratios of 417 VOC/NO_x. In contrast, at a suburban site in Guangzhou (i.e. Panyu), O_3 formation was 418 more likely to be VOC-limited in spring and winter while in summer and autumn, NO_x-419 limited regimes and VOC-limited regimes frequently shifted to each other in a day (Zou 420 et al., 2015).

However, due to the limits of resource and technique, site measurements are often
limited in time period and spatial extent (Jin and Holloway, 2015; Zhang et al., 2008).
To clearly explore the season pattern of O₃ formation regime over China, a few recent

424 studies have employed different kinds of indicators (i.e. P_{HNO3}/P_{H2O2}, H₂O₂/(O₃+NO₂), 425 O_3/NO_x , O_3/NO_y , HCHO/NO_y and HCHO/NO₂) to identify and analyze the sensitivity 426 of O₃ formation to VOCs and NO_x in different seasons over China (Jin and Holloway, 427 2015; Liu et al., 2010). These photochemical indicators were proposed and developed 428 by Sillman (1995), and were applied in previous studies (Zhang et al., 2009; Tonnesen 429 and Dennis, 2000). By comparing and validating the values of diverse indicators in 430 different months over China, Liu et al. (2010) proved that several megacities such as 431 Beijing, Shanghai, Tianjin, and some big cities in the YRD and PRD regions were 432 always under the VOC-limited conditions throughout the entire year due to large 433 amounts of traffic and industrial emissions of NO_x. Except these metropolitan areas, O₃ 434 formation over almost the entire China during summer was in a NO_x-limited regime. 435 However, in winter, the O₃ formation regime basically shifted to VOC-limited 436 chemistry over the eastern China, as well as some major cities in most of the provinces. 437 Furthermore, by analyzing the ratios of HCHO/NO₂ (FNR ratio) over the three most 438 developed regions (NCP, YRD, and PRD) and their surrounding areas, Jin and 439 Holloway (2015) indicated that in high-temperature seasons (defined as near-surface 440 air temperatures >20 °C in the early afternoon), VOC-limited regimes basically 441 dominated in the megacities (i.e. Beijing, Guangzhou and Shanghai) and cities with 442 high density of power plants (i.e. Tangshan, Shijiazhuang and Zibo), while a widespread 443 transitional regime was found in NCP, YRD and PRD, and NOx-limited regime was 444 dominant out of these regions. Similarly, O₃ formation regimes in the three regions were 445 all intended to shift to VOC-limited in winter according to the lower FNR ratios. In 446 addition to the usage of photochemical indicators, such a shift was also discovered by 447 Ou et al. (2016), using a WRF/SMOKE-PRD/CMAQ modeling system to investigate 448 the seasonal differences of O_3 formation regimes in the urban and port areas of PRD. 449 **3.3** Long-term variation of O₃ formation regimes 450 The elevated O₃ levels in China are mainly attributed to the great emission of

451 anthropogenic pollutants in the process of industrialization and urbanization over the

452 last 20 years. After the awareness of severe O₃ pollution in China, dramatic controls of 453 the emissions of VOCs and NO_x were implemented by the central government, 454 especially in the past decade. Previous studies have revealed the long-term variations 455 of the VOCs and NO_x levels before and after the implementation of control measures 456 (Diao et al., 2018; Wang et al., 2017a). Dramatic control of industrial NO_x was 457 implemented during the China's 12th-Five-Year-Plan in 2011. Since then, the total 458 emissions of NO_x reached its peak since it had increased in 1980s and began to decline. 459 However, compared with the successful control of NO_x, the reduction of VOCs 460 emission was delayed. No turning point of the emission of VOCs was observed up to 461 2014 since it had also increased in 1980s. Due to the variations of O₃ precursors' levels, 462 the sensitivity of O_3 formation to VOCs and NO_x in China varied over the past decades 463 as well.

464 Although the sensitivity of O₃ formation to VOCs and NO_x was investigated through 465 numerous emission-based and/or observation-based studies over the last 20 years, it is 466 still difficult to comprehensively reveal the long-term variation of O₃ formation regime 467 over China. Emission-based studies basically depend on emission inventories, 468 meteorological inputs, chemical processes, and boundary layer dynamics, all of which 469 have associated uncertainties, while long-term and large-scale field measurements are 470 very rare in China. Therefore, the photochemical indicators are very suited to analyze 471 the long-term variation of O₃ formation regime over China. A mass of continuous and 472 long-term data can be obtained from the satellite in given area and time period. For 473 example, using the satellite data of HCHO and NO₂ measured by NASA from 2005 to 474 2013, Jin and Holloway (2015) revealed the variations of HCHO and NO_2 levels over 475 China, and investigated the spatial-temporal variation of O₃ formation regime by 476 calculating the FNR ratios. A significant increasing trend in NO₂ and an insignificant 477 tendency in HCHO were observed in the three most developed regions (i.e. NCP, YRD 478 and PRD), resulting in a widespread decrease in FNR ratios. As such, the O₃ 479 photochemistry in China became more sensitive to VOCs, embodied in the spatial

480 expansion of VOC-limited and transitional regimes and the longer duration of transition 481 and VOC-limited regimes in a year. Moreover, the study pointed out that a VOC-limited 482 regime is likely to occur throughout eastern China as early as 2025, if no significant 483 change in the emissions of VOCs and NOx occurs and stable trends in FNR ratios 484 remain in the future. However, it should be noticed that the result of linear extrapolation 485 is not reliable to be regarded as prediction since the industry and environment policies 486 change rapidly in China. As mentioned, successful reduction of NO_x has been achieved 487 since the implementation of a series of policies in the 12th Five-Year-Plan. The ambient 488 concentration of NOx decreased by 10.1% from 2013 to 2016 monitored from 74 mega-489 cities in China (Zhu et al., 2017). However, the actions on reduction of VOCs were 490 delayed. Therefore, the shift to VOC-limited regimes will be slowed down or even some 491 regions will change to NOx-limited regimes (Wang et al., 2017a). The assumption was 492 supported by Wu et al. (2018), using the Ozone Monitoring Instrument (OMI) satellite 493 remote sensing data from NASA to analyze the O₃ formation regime in Beijing-Tianjin-494 Hebei (BTH) region from 2005 to 2016. Wu et al. (2018) demonstrated that the domain 495 of NO_x-limited regime in BTH region showed a trend of increase, mainly due to the effective control of NO_x emission during 12th Five-Year-Plan. 496

497 To sum up, literature review revealed that O_3 level at night was mainly controlled by 498 the amount of NO_x at a specific site. Since NO_x levels are usually low in rural areas due 499 to lack of human activities, O₃ pollution could be a notable problem in rural areas at 500 night. Except the metropolitan areas, which were dominated by VOC-limited regimes 501 throughout the entire year due to large amounts of traffic and industrial emissions of 502 NO_x , most of the areas of China intended to shift from other O₃ formation regimes 503 (transition or NOx-limited regimes) in summer to a VOC-limited regime in winter. In 504 addition, because of the dramatic increase of NO_x since the 1980s, O₃ formation in 505 China moved toward increasing sensitivity to VOC emissions. However, it is likely that 506 the shift will be slowed down or even some regions will change to NOx-limited regimes 507 owing to the delayed actions on VOCs controls and the successful reduction on NO_x

508 emission during the 12th-Five-Year-Plan. Hence, effective control measures of VOCs
509 emissions are supposed to be implemented in time.

510 In addition to variations of O₃ precursors' levels, changes in meteorological conditions 511 also influence the nonlinear O₃ formation chemistry. Pusede et al. (2015) 512 comprehensively investigated the relationship between temperature and the recent 513 trends of the surface O₃ in America and proved that the chemical terms driving produces 514 O_3 (PO₃) vary nonlinearly with temperature. Temperature affected the PO₃ through 515 influencing the reaction rates in photochemical reactions and levels of key components 516 in O_3 formation (i.e. VOCs, NO_x and highly reactive radicals). In a day, the reactivity 517 of HO_x radicals increases when the solar radiation and temperature go up at noon, which 518 leads to the rapid consumption of NO_x and thus the O₃ formation regime becomes more 519 NO_x-limited. In a year, depressed temperature and solar radiation in winter slow down 520 the consumption of NO_x through the subdued reactions with HO_x radicals and thus NO_x 521 level increases and the O₃ formation regime shifts to a more VOC-limited regime. In 522 decades, under the circumstance that global temperatures are projected to rise, the 523 lifetime of NO_x and peroxy nitrates (RO₂NO₂) decreases. NO_x levels in remote areas 524 may become lower as a result of less transportation of NO_x from urban areas, while the 525 abundance of NO_x may increase in populated cities due to the stronger decomposition 526 of RO₂NO₂ to NO_x. As such, O₃ formation regimes may become more VOC-limited in 527 urban areas and more NO_x-limited in remote areas driven by climate change. Overall, 528 changes in meteorological conditions along with future changes in O₃ precursor 529 emissions will alter PO₃ in ways that are predictable but complex.

530

531 **4.** Implications for the control of O₃ pollution

Since O_3 is a secondary pollutant, it cannot be controlled directly. Controls of O_3 pollution should focus on reductions of its precursors. A number of policies were implemented to control O_3 precursors in recent years. For NO_x , the emission of NO_x from industrial companies and coal-fired power plants had been controlled by the

central government since the 12th Five-Year-Plan. As for VOCs, Guo et al. (2017) 536 537 summarized 23 programs/plans for the control of VOCs in recent years in megacities 538 (or megacity clusters) in China such as Beijing, Shanghai, Guangdong, Zhejiang and 539 Jiangsu. The control measures mainly focused on cutting the emissions from vehicles, 540 vessels and industrial sectors. Although governments have put great efforts on 541 controlling O₃ pollution (i.e. controls of O₃ precursors), O₃ pollution is still a serious 542 problem in China and the development of an effective strategy for reducing O₃ pollution 543 is still problematic due to various characteristics of O₃ pollution (e.g. regionality, 544 seasonality and severity) and the nonlinear dependency of O₃ formation on NO_x and 545 VOCs (Zhu et al., 2017; Lu et al., 2018). After reviewing and summarizing the spatial-546 temporal variations of O₃ formation regimes over China, implications for the control of 547 O₃ pollution are proposed.

548 **4.1** Precise control of O₃ precursors

549 In view of the discussions in Sections 2 and 3, precise controls of O₃ precursors are 550 proposed. On one hand, control measures should vary in different regions/areas 551 according to the spatial variations of O_3 formation regime. To effectively reduce the O_3 552 levels in the three most developed regions (i.e. NCP, YRD and PRD) during the high-553 O₃ seasons (summer and autumn), intensive controls of VOCs or both precursors are 554 effective since most of the areas in these regions are likely VOC-sensitive or mixed-555 sensitive due to the vastly anthropogenic emission from populated cities. According to 556 our previous review on tropospheric VOCs in China (Guo et al., 2017), the dominant 557 sources of VOCs emissions in the populated cities of the three regions were summarized. 558 In brief, vehicular emissions and industrial emissions were the common VOC sources. 559 In addition, solvent usage made significant contribution to VOCs in PRD. Therefore, 560 by controlling these sources, VOCs emissions could be effectively reduced in the cities 561 of the three regions. However, in areas out of these metropolitan cities and/or in the 562 rural/remote areas in the three regions, O₃ production is mainly limited by NO_x and thus 563 reduction of NO_x emission is more helpful for alleviating O₃ pollution.

Figure 1 Spatial-temporal characteristics of O₃ formation regimes and the implications
for O₃ pollution control in China

585 **4.2** Joint prevention and control of regional air pollution

586 O₃, as a secondary pollutant with relatively long lifetime, caused not only an 587 autochthonous problem but also a regional transboundary problem. O3 attainment 588 cannot be simply achieved by the control of pollutant emissions only by local 589 governments as O₃ and its precursors can transport to the downwind areas with the help 590 of wind. Also, joint prevention and control of regional air pollution are indispensable 591 to achieve precise control of O₃ precursors mentioned above. Previous studies pointed 592 out that regional collaborations were important for developing effective strategies on 593 air quality improvement and/or sustained O₃ attainment (Jin et al., 2016; Wu et al., 2015; 594 Wang et al., 2014; Li et al., 2012b). By using the CMAQ model to simulate emission 595 reduction in BTH and YRD regions, Wang et al. (2014) found that reduction in a 596 specific province may not only benefit the improvement of local air quality inside the 597 province, but also has a considerable contribution to the improvement of the air quality 598 in nearby cities. For example, the 10% emission reduction of SO₂ and NO_x in Hebei 599 enhanced the reductions of different pollutants (i.e. NO₂, SO₄²⁻ and NO₃⁻) with 1%~4% 600 in Beijing and Tianjin. In addition, Xing et al. (2011) examined multiple emission 601 reduction options using the CMAQ model. It was found that reduction of local NO_x or 602 VOC emissions in Beijing was not sufficient to achieve O₃ attainment while 603 synchronous regional reductions in VOC and NOx by 60% to 80% were recommended 604 across the entire NCP region. Moreover, Wu et al. (2015) proved that joint regional air 605 pollution control in the BTH region will save the expense on air pollution control 606 compared to a locally-based pollution control strategy. Taking reduction of SO₂ as an 607 example, it was estimated that 3.6 billion CNY could be saved if joint regional air 608 pollution control was implemented in Beijing and its surrounding cities for reducing 6 609 ppbv of SO₂. Such strategy is applicable to reductions of other pollutants to save cost 610 (i.e. NO_x and VOCs).

613 region, the PRD region, the YRD region, central Liaoning region, Shandong Peninsula, 614 Western Taiwan Straits Metropolitan region, Cheng-Yu Metropolitan region, Wuhan 615 Metropolitan region, and Cheng-Zhu-Tan region have been designated as the pilot and 616 key regions by the State Council for the joint prevention and control of regional air 617 pollutants (i.e. SO₂, NO_x, PM and VOCs) in 2010 (Zhou and Elder, 2013). In addition, 618 the General Office of the State Council published a guideline on strengthening joint 619 prevention and control of atmospheric pollution to improve air quality on 11 May 2010 620 (http://www.gov.cn/gongbao/content/2010/ content 1612364.htm). In the Guideline, 621 "joint planning," "joint monitoring," "joint supervision," "joint assessment," and "joint 622 coordination" were proposed for regional air pollution management. In particular, a 623 number of measures were proposed, including 1) implementation of the discharge 624 permit system; 2) build-up of stronger environmental protection verification systems 625 for key industries; 3) development of a franchising system for the construction and 626 operation of pollution control facilities; 4) establishment of stronger environmental 627 information disclosure system, and 5) development of a system of compliance 628 management of urban air quality standards.

629 As a matter of fact, several regions/cities followed the guideline and implemented joint 630 control measures for regional pollution in recent years. For instance, in November 2017, 631 three cities, including Harbin, Daqing and Suihua, jointly signed a protocol on joint 632 prevention and control of regional air pollution, in which it required to build 633 environmental information sharing system, promote prohibition of straw burning and 634 utilization of straw, and establish coordination mechanism for heavy polluted events 635 (http://www.hlj.gov.cn/zwfb/system/2017/11/04/ 010853072.shtml). Moreover, to 636 efficiently improve the regional air quality in Beijing and its surrounding areas, the 637 Beijing Municipal Environmental Protection Bureau solicited public opinions in March 638 2014 in regard to the implementation of joint prevention and control of regional air 639 pollution in six cities, including Beijing, Tianjin, Hebei, Shanxi, Shandong and inner 640 Mongolia (http://www.bjepb.gov.cn/ bjhrb/hdjl/jyxc/lflkgzjzhzdcszqgzyj/index.html).

In addition to the above nine regions, a new and enhanced network was proposed and established in September 2014, named Guangdong-Hong Kong-Macao PRD Regional Air Quality Monitoring Network, aiming to 1) provide accurate data to help three Governments appraise the air quality in the PRD and formulate appropriate control measures; 2) evaluate the effectiveness of executed control measures through long-term monitoring; and 3) provide the detailed information of air quality to the public.

Although air pollution seems to be a persistent problem due to the on-going urbanization and industrialization, it is expected that the air quality would be gradually improved if there are monitoring stations monitoring air quality and appropriate control measures are implemented.

- 651 Acknowledgement:
- 652 This study is supported by the National Key R&D Program of China via grant No.

653 2017YFC0212001, the Research Grants Council of the Hong Kong Special

654 Administrative Region Government via grant PolyU 152052/16E and CRF/C5004-15E,

and the Hong Kong PhD Fellowship (Project Number: RULW).

656

657 **References:**

- An, J., Zou, J., Wang, J., Lin, X. & Zhu, B. 2015. Differences in ozone photochemical
 characteristics between the megacity Nanjing and its suburban surroundings,
 Yangtze River Delta, China. *Environmental Science and Pollution Research*, 22,
 19607-19617.
- Aneja, V. P., Brittig, J. S., Kim, D.-S. & Hanna, A. 2004. Ozone and other air qualityrelated variables affecting visibility in the Southeast United States. *Journal of the Air & Waste Management Association*, 54, 681-688.
- Altshuller, A. P. 1984. Assessment of the contribution of stratospheric ozone to ground-level ozone concentrations. *In Assessment of the contribution of stratospheric ozone to ground-level ozone concentrations*. EPA.
- Barker, J. R. 1995. *Progress and problems in atmospheric chemistry* (Vol. 3). World
 Scientific.
- 670 Bhatia, A., Tomer, R., Kumar, V., Singh, S. & Pathak, D. S. 2012. *Impact of* 671 *tropospheric ozone on crop growth and productivity-a review*.
- Brown, S. S. & Stutz, J. 2012. Nighttime radical observations and chemistry. *Chemical Society Reviews*, 41, 6405-6447.
- 674 Cheng, H., Guo, H., Wang, X., Saunders, S. M., Lam, S., Jiang, F., Wang, T., Ding, A.,

- 675 Lee, S. & Ho, K. 2010. On the relationship between ozone and its precursors in the 676 Pearl River Delta: application of an observation-based model (OBM). 677 Environmental Science and Pollution Research, 17, 547-560. 678 Chou, C. C.-K., Tsai, C.-Y., Shiu, C.-J., Liu, S. C. & Zhu, T. 2009. Measurement of 679 NOy during Campaign of Air Quality Research in Beijing 2006 (CAREBeijing-680 2006): Implications for the ozone production efficiency of NO_x. Journal of 681 Geophysical Research: Atmospheres, 114. 682 Diao, B., Ding, L., Su, P. & Cheng, J. 2018. The spatial-temporal characteristics and 683 influential factors of NO_x emissions in China: A spatial econometric analysis. 684 International journal of environmental research and public health, 15, 1405. 685 Ding, A., Fu, C., Yang, X., Sun, J., Zheng, L., Xie, Y., Herrmann, E., Nie, W., Petäjä, T. 686 & Kerminen, V.-M. 2013. Ozone and fine particle in the western Yangtze River Delta: 687 an overview of 1 yr data at the SORPES station. Atmospheric Chemistry and Physics, 688 13, 5813-5830. 689 Geng, F., Tie, X., Xu, J., Zhou, G., Peng, L., Gao, W., Tang, X. & Zhao, C. 2008. Characterizations of ozone, NOx, and VOCs measured in Shanghai, China. 690 691 Atmospheric Environment, 42, 6873-6883. 692 Guo, H., Jiang, F., Cheng, H., Simpson, I., Wang, X., Ding, A., Wang, T., Saunders, S., 693 Wang, T. & Lam, S. 2009. Concurrent observations of air pollutants at two sites in 694 the Pearl River Delta and the implication of regional transport. Atmospheric 695 Chemistry and Physics, 9, 7343-7360. 696 Guo, H., Ling, Z., Cheng, H., Simpson, I., Lvu, X., Wang, X., Shao, M., Lu, H., Ayoko, 697 G. & Zhang, Y. 2017. Tropospheric volatile organic compounds in China. Science of 698 the Total Environment, 574, 1021-1043. Guo, H., Ling, Z., Cheung, K., Jiang, F., Wang, D., Simpson, I., Barletta, B., Meinardi, 699 S., Wang, T. & Wang, X. 2013. Characterization of photochemical pollution at 700 701 different elevations in mountainous areas in Hong Kong. Atmospheric Chemistry 702 and Physics, 13, 3881-3898. 703 Goodman, J. E., Prueitt, R. L., Sax, S. N., Pizzurro, D. M., Lynch, H. N., Zu, K. & 704 Venditti, F. J. 2015. Ozone exposure and systemic biomarkers: Evaluation of 705 evidence for adverse cardiovascular health impacts. *Critical Reviews in Toxicology*, 706 45, 412-452. 707 Han, S., Zhang, M., Zhao, C., Lu, X., Ran, L., Han, M., Li, P.-Y. & Li, X.-J. 2013. 708 Differences in ozone photochemical characteristics between the megacity Tianjin 709 and its rural surroundings. Atmospheric environment, 79, 209-216. 710 Han, X., Zhu, L., Wang, S., Meng, X., Zhang, M. & Hu, J. 2018. Modeling study of 711 impacts on surface ozone of regional transport and emission reductions over North 712 China Plain in summer 2015. Atmospheric Chemistry and Physics Discussions, 1-713 32. 714 He, J., Wang, Y., Hao, J., Shen, L. & Wang, L. 2012. Variations of surface O3 in August 715 at a rural site near Shanghai: influences from the West Pacific subtropical high and 716 anthropogenic emissions. Environmental Science and Pollution Research, 19, 4016-
 - 27

717 4029.

- Huang, J. P., Fung, J. C., Lau, A. K. & Qin, Y. 2005. Numerical simulation and process
 analysis of typhoon-related ozone episodes in Hong Kong. *Journal of Geophysical Research: Atmospheres*, 110.
- Jenkin, M. E. & Clemitshaw, K. C. 2000. Ozone and other secondary photochemical
 pollutants: chemical processes governing their formation in the planetary boundary
 layer. *Atmospheric Environment*, 34, 2499-2527.
- Jia, C., Mao, X., Huang, T., Liang, X., Wang, Y., Shen, Y., Jiang, W., Wang, H., Bai, Z.
 & Ma, M. 2016. Non-methane hydrocarbons (NMHCs) and their contribution to
 ozone formation potential in a petrochemical industrialized city, Northwest China. *Atmospheric Research*, 169, 225-236.
- Jin, X. & Holloway, T. 2015. Spatial and temporal variability of ozone sensitivity over
 China observed from the Ozone Monitoring Instrument. *Journal of Geophysical Research: Atmospheres*, 120, 7229-7246.
- Jin, Y., Andersson, H. & Zhang, S. 2016. Air pollution control policies in China: A
 retrospective and prospects. *International journal of environmental research and public health*, 13, 1219.
- Lam, S., Saunders, S., Guo, H., Ling, Z., Jiang, F., Wang, X. & Wang, T. 2013.
 Modelling VOC source impacts on high ozone episode days observed at a mountain
 summit in Hong Kong under the influence of mountain-valley breezes. *Atmospheric environment*, 81, 166-176.
- Li, L., Chen, C., Huang, C., Huang, H., Zhang, G., Wang, Y., Wang, H., Lou, S., Qiao,
 L. & Zhou, M. 2012a. Process analysis of regional ozone formation over the Yangtze
 River Delta, China using the Community Multi-scale Air Quality modeling system. *Atmospheric Chemistry and Physics*, 12, 10971-10987.
- Li, Y., Lau, A. K.-H., Fung, J. C.-H., Zheng, J., Zhong, L. & Louie, P. K. K. 2012b.
 Ozone source apportionment (OSAT) to differentiate local regional and superregional source contributions in the Pearl River Delta region, China. *Journal of Geophysical Research: Atmospheres*, 117.
- Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q., & Bates, K. H. 2019. Anthropogenic
 drivers of 2013–2017 trends in summer surface ozone in China. *Proceedings of the National Academy of Sciences*, *116*(2), 422-427.
- Lin, W., Xu, X., Ge, B. & Zhang, X. 2009. Characteristics of gaseous pollutants at
 Gucheng, a rural site southwest of Beijing. *Journal of Geophysical Research: Atmospheres*, 114.
- Ling, Z. & Guo, H. 2014. Contribution of VOC sources to photochemical ozone
 formation and its control policy implication in Hong Kong. *Environmental science & policy*, 38, 180-191.
- Liu, B., Liang, D., Yang, J., Dai, Q., Bi, X., Feng, Y., Yuan, J., Xiao, Z., Zhang, Y. &
 Xu, H. 2016. Characterization and source apportionment of volatile organic
 compounds based on 1-year of observational data in Tianjin, China. *Environmental pollution*, 218, 757-769.

- Liu, X., Zhang, Y., Cheng, S., Xing, J., Zhang, Q., Streets, D. G., Jang, C., Wang, W. &
 Hao, J. 2010. Understanding of regional air pollution over China using CMAQ, part
 I performance evaluation and seasonal variation. *Atmospheric Environment*, 44, 2415-2426.
- Liu, Z., Wang, Y., Gu, D., Zhao, C., Huey, L., Stickel, R., Liao, J., Shao, M., Zhu, T. &
 Zeng, L. 2012. Summertime photochemistry during CAREBeijing-2007: RO_x
 budgets and O₃ formation. *Atmospheric Chemistry and Physics*, 12, 7737-7752.
- Lu, K., Zhang, Y., Su, H., Brauers, T., Chou, C. C., Hofzumahaus, A., Liu, S. C., Kita,
 K., Kondo, Y. & Shao, M. 2010. Oxidant (O₃+ NO₂) production processes and
 formation regimes in Beijing. *Journal of Geophysical Research: Atmospheres*, 115.
- Lu, X., Hong, J., Zhang, L., Cooper, O. R., Schultz, M. G., Xu, X., Wang, T., Gao, M.,
 Zhao, Y. & Zhang, Y. 2018. Severe surface ozone pollution in China: A global
 perspective. Environmental Science & Technology Letters, 5(8), 487-494.
- Lyu, X., Chen, N., Guo, H., Zhang, W., Wang, N., Wang, Y. & Liu, M. 2016. Ambient
 volatile organic compounds and their effect on ozone production in Wuhan, central
 China. *Science of the total environment*, 541, 200-209.
- Ma, Z., Wang, Y., Zhang, X. & Xu, J. 2011. Comparison of ozone between Beijing and
 downstream area. *Huanjing Kexue = Chinese Journal of Environmental Science*, 32,
 924-929.
- Ma, Z., Xu, J., Quan, W., Zhang, Z., Lin, W. & Xu, X. 2016. Significant increase of
 surface ozone at a rural site, north of eastern China. *Atmospheric Chemistry and Physics*, 16, 3969-3977.
- Ogundele, F. O., Omotayo, A. & Taiwo, I. 2011. The dilema of ozone layer depletion,
 global warming and climate change in tropical countries: A review. *Academic Research International*, 1, 474.
- Ou, J., Yuan, Z., Zheng, J., Huang, Z., Shao, M., Li, Z., Huang, X., Guo, H. & Louie,
 P. K. 2016. Ambient ozone control in a photochemically active region: short-term
 despiking or long-term attainment? *Environmental science & technology*, 50, 57205728.
- Pusede, S. E., Steiner, A. L., & Cohen, R. C. 2015. Temperature and recent trends in
 the chemistry of continental surface ozone. *Chemical reviews*, *115*(10), 3898-3918.
- Ran, L., Zhao, C., Geng, F., Tie, X., Tang, X., Peng, L., Zhou, G., Yu, Q., Xu, J. &
 Guenther, A. 2009. Ozone photochemical production in urban Shanghai, China:
 Analysis based on ground level observations. *Journal of Geophysical Research: Atmospheres*, 114.
- Ran, L., Zhao, C., Xu, W., Lu, X., Han, M., Lin, W., Yan, P., Xu, X., Deng, Z. & Ma,
 N. 2011. VOC reactivity and its effect on ozone production during the HaChi
 summer campaign. *Atmospheric Chemistry and Physics*, 11, 4657-4667.
- Reddy, B. S. K., Reddy, L. S. S., Cao, J. J., Kumar, K. R., Balakrishnaiah, G., Gopal,
 K. R., Reddy, R. R., Narasimhulu, K., LaI, S. & Ahammed, Y. N. 2011. Simultaneous
 measurements of surface ozone at two sites over the Southern Asia: a comparative
 study. *Aerosol and Air Quality Resarch*, *11*(7), 895-902.

- Russell, A., & Dennis, R. 2000. NARSTO critical review of photochemical models and
 modeling. *Atmospheric environment*, *34*(12-14), 2283-2324.
- Shao, M., Lu, S., Liu, Y., Xie, X., Chang, C., Huang, S. & Chen, Z. 2009a. Volatile
 organic compounds measured in summer in Beijing and their role in ground-level
 ozone formation. *Journal of Geophysical Research: Atmospheres*, 114.
- Shao, M., Zhang, Y., Zeng, L., Tang, X., Zhang, J., Zhong, L. & Wang, B. 2009b.
 Ground-level ozone in the Pearl River Delta and the roles of VOC and NO_x in its
 production. *Journal of Environmental Management*, 90, 512-518.
- Sillman, S. 1995. The use of NO_y, H₂O₂, and HNO₃ as indicators for ozone-NO_xhydrocarbon sensitivity in urban locations. *Journal of Geophysical Research: Atmospheres*, 100, 14175-14188.
- Sillman, S. 1999. The relation between ozone, NO_x and hydrocarbons in urban and
 polluted rural environments. *Atmospheric Environment*, 33, 1821-1845.
- Sousa, S. I., Alvim-Ferraz, M. C. & Martins, F. G. 2013. Health effects of ozone
 focusing on childhood asthma: what is now known--a review from an
 epidemiological point of view. *Chemosphere*, 90, 2051-8.
- Steinfeld, J. I. 1998. Atmospheric chemistry and physics: from air pollution to climate
 change. *Environment: Science and Policy for Sustainable Development*, 40, 26-26.
- Tan, Z., Lu, K., Jiang, M., Su, R., Dong, H., Zeng, L., Xie, S., Tan, Q. & Zhang, Y.
 2018. Exploring ozone pollution in Chengdu, southwestern China: A case study from
 radical chemistry to O₃-VOC-NO_x sensitivity. *Science of The Total Environment*,
 636, 775-786.
- Tang, W., Zhao, C., Geng, F., Peng, L., Zhou, G., Gao, W., Xu, J. & Tie, X. 2008. Study
 of ozone "weekend effect" in Shanghai. *Science in China Series D: Earth Sciences*,
 51, 1354-1360.
- Tang, X., Wang, Z., Zhu, J., Gbaguidi, A. E., Wu, Q., Li, J. & Zhu, T. 2010. Sensitivity
 of ozone to precursor emissions in urban Beijing with a Monte Carlo scheme. *Atmospheric Environment*, 44, 3833-3842.
- Tonnesen, G. S. & Dennis, R. L. 2000. Analysis of radical propagation efficiency to
 assess ozone sensitivity to hydrocarbons and NO_x: 1. Local indicators of
 instantaneous odd oxygen production sensitivity. *Journal of Geophysical Research: Atmospheres*, 105, 9213-9225.
- Tu, J., Xia, Z., Wang, H. & Li, W. 2007. Temporal variations in surface ozone and its
 precursors and meteorological effects at an urban site in China. *Atmospheric Research*, 85, 310-337.
- Wang, T., Ding, A., Gao, J. & Wu, W. S. 2006a. Strong ozone production in urban
 plumes from Beijing, China. *Geophysical Research Letters*, 33.
- Wang, H., Zhou, L. & Tang, X. 2006b. Ozone concentrations in rural regions of the
 Yangtze Delta in China. *Journal of Atmospheric chemistry*, 54, 255-265.
- Wang, S., Xing, J., Zhao, B., Jang, C. & Hao, J. 2014. Effectiveness of national air
 pollution control policies on the air quality in metropolitan areas of China. *Journal of Environmental Sciences*, 26, 13-22.

- Wang, T., Wei, X., Ding, A., Poon, S. C., Lam, K., Li, Y., Chan, L. & Anson, M. 2009.
 Increasing surface ozone concentrations in the background atmosphere of Southern
 China, 1994-2007. *Atmospheric Chemistry and Physics*.
- Wang, T., Xue, L., Brimblecombe, P., Lam, Y. F., Li, L. & Zhang, L. 2017a. Ozone
 pollution in China: A review of concentrations, meteorological influences, chemical
 precursors, and effects. *Science of the Total Environment*, 575, 1582-1596.
- Wang, W., Cheng, T., Gu, X., Chen, H., Guo, H., Wang, Y., Bao, F., Shi, S., Xu, B. &
 Zuo, X. 2017b. Assessing spatial and temporal patterns of observed ground-level
 ozone in China. *Scientific Reports*, 7, 3651.
- Wang, X., Zhang, Y., Hu, Y., Zhou, W., Lu, K., Zhong, L., Zeng, L., Shao, M., Hu, M.
 & Russell, A. 2010. Process analysis and sensitivity study of regional ozone
 formation over the Pearl River Delta, China, during the PRIDE-PRD2004 campaign
 using the Community Multiscale Air Quality modeling system. *Atmospheric Chemistry and Physics*, 10, 4423-4437.
- Wang, Y., Guo, H., Zou, S., Lyu, X., Ling, Z., Cheng, H. & Zeren, Y. 2018. Surface O₃
 photochemistry over the South China Sea: Application of a near-explicit chemical
 mechanism box model. *Environmental Pollution*, 234, 155-166.
- Wei, W., Cheng, S., Wang, L., Ji, D., Zhou, Y., Han, L. & Wang, L. 2015. Characterizing
 ozone pollution in a petrochemical industrial area in Beijing, China: a case study
 using a chemical reaction model. *Environmental monitoring and assessment*, 187,
 377.
- Wu, D., Xu, Y. & Zhang, S. 2015. Will joint regional air pollution control be more costeffective? An empirical study of China's Beijing-Tianjin-Hebei region. *Journal of environmental management*, 149, 27-36.
- Wu, R. & Xie, S. 2017. Spatial distribution of ozone formation in China derived from
 emissions of speciated volatile organic compounds. *Environmental science & technology*, 51, 2574-2583.
- Wu, W., Xue, W., Lei, Y. & Wang, J. 2018. Sensitivity analysis of ozone in BeijingTianjin-Hebei (BTH) and its surrounding area using OMI satellite remote sensing
 data. CHINA ENVIRONMENTAL SCIENCECE, 38, 1201-1208.
- Xing, J., Wang, S., Jang, C., ZHU, Y. & HAO, J. 2011. Nonlinear response of ozone to
 precursor emission changes in China: a modeling study using response surface
 methodology. Atmospheric Chemistry and Physics, 11, 5027-5044.
- Xu, J., Zhang, X., Xu, X., Zhao, X., Meng, W. & Pu, W. 2011. Measurement of surface
 ozone and its precursors in urban and rural sites in Beijing. *Procedia Earth and Planetary Science*, 2, 255-261.
- Xu, J., Zhang, Y., Fu, J. S., Zheng, S. & Wang, W. 2008. Process analysis of typical
 summertime ozone episodes over the Beijing area. *Science of the Total Environment*,
 399, 147-157.
- Xu, X., Lin, W., Wang, T., Yan, P., Tang, J., Meng, Z., & Wang, Y. 2008. Long-term
 trend of surface ozone at a regional background station in eastern China 1991–2006:
 enhanced variability. *Atmospheric Chemistry and Physics*, 8(10), 2595-2607.

- Xu, Z., Huang, X., Nie, W., Chi, X., Xu, Z., Zheng, L., Sun, P. & Ding, A. 2017.
 Influence of synoptic condition and holiday effects on VOCs and ozone production
 in the Yangtze River Delta region, China. *Atmospheric Environment*, 168, 112-124.
- Xue, L., Wang, T., Gao, J., Ding, A., Zhou, X., Blake, D., Wang, X., Saunders, S., Fan,
 S. & Zuo, H. 2014. Ground-level ozone in four Chinese cities: precursors, regional
 transport and heterogeneous processes. *Atmospheric Chemistry and Physics*, 14,
 13175-13188.
- Zhang, Q., Yuan, B., Shao, M., Wang, X., Lu, S., Lu, K., Wang, M., Chen, L., Chang,
 C.-C. & Liu, S. 2014. Variations of ground-level O 3 and its precursors in Beijing in
 summertime between 2005 and 2011. *Atmospheric Chemistry and Physics*, 14, 60896101.
- Zhang, Y., Su, H., Zhong, L., Cheng, Y., Zeng, L., Wang, X., Xiang, Y., Wang, J., Gao,
 D. & Shao, M. 2008. Regional ozone pollution and observation-based approach for
 analyzing ozone-precursor relationship during the PRIDE-PRD2004 campaign. *Atmospheric Environment*, 42, 6203-6218.
- Zhang, Y., Vijayaraghavan, K., Wen, X., Snell, H. & Jacobson, M. 2009. Probing into
 regional O3 and PM pollution in the US, Part I. A 1-year CMAQ simulation and
 evaluation using surface and satellite data. *Journal of Geophysical Research*, 114.
- Zheng, J., Zhong, L., Wang, T., Louie, P. K. & Li, Z. 2010. Ground-level ozone in the
 Pearl River Delta region: analysis of data from a recently established regional air
 quality monitoring network. *Atmospheric Environment*, 44, 814-823.
- 206 Zhou, X. & Elder, M. 2013. Regional air quality management in China: the 2010
 207 guideline on strengthening joint prevention and control of atmospheric pollution.
 208 International Journal of Sustainable Society, 5, 232-249.
- 209 Zhu, C., Zhang, N. & Shi, Y. 2017. Consideration on Features of Ozone Pollution and
 210 Countermeasure. *Huanjingbaohu*, 16, 64-66.
- 2011 Zong, R., Yang, X., Wen, L., Xu, C., Zhu, Y., Chen, T., Yao, L., Wang, L., Zhang, J. &
 2012 Yang, L. 2018. Strong ozone production at a rural site in the North China Plain:
 2013 Mixed effects of urban plumes and biogenic emissions. *Journal of Environmental*2014 Sciences.
- Zou, Y., Deng, X., Zhu, D., Gong, D., Wang, H., Li, F., Tan, H., Deng, T., Mai, B. &
 Liu, X. 2015. Characteristics of 1 year of observational data of VOCs, NO_x and O₃
 at a suburban site in Guangzhou, China. *Atmospheric Chemistry and Physics*, 15,
- 918 6625-6636.

919