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A review on dynamic substructuring methods for model 

updating and damage detection of large-scale structures 

 

Abstract 

Substructuring methods possess many merits in model updating and damage 

identification of large-scale structures. With substructuring methods, a global structure is 

divided into a number of independent substructures. Only the substructures are repeatedly 

analyzed and the re-analysis of the global structure is thereby avoided. This paper reviews 

widely-used dynamic substructuring methods for model updating and damage 

identification of large-scale structures. These methods can be categorized into forward 

and inverse substructuring approaches. The former is a conventional process that 

assembles the vibration properties of each substructure to obtain the vibration properties 

of the global structure. The latter, on the other hand, disassembles the vibration properties 

of the global structure into those of the substructures. In each category, both frequency 

and time domain methods have been developed and will be reviewed.  

 

Key words: substructuring method, model updating, vibration method, damage detection, 

large-scale structures. 
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1. INTRODUCTION 

 

Vibration-based structural health monitoring (SHM), including vibration response 

analysis, model updating and damage identification, has been investigated worldwide 

during the past decades (Ni et al., 2012; Xia et al., 2011; Mottershead et al., 2011; 

Brownjohn, 2007). Civil structures are often large-scale, and their finite element (FE) 

models consist of a large number of degrees-of-freedom (DOFs) and uncertain parameters. 

The response analysis, model updating and damage identification of large-scale structures 

are expensive in terms of computation time and computer memory because the analysis 

may need a number of iterations (Brownjohn et al., 2001; Bakir et al., 2007). For example, 

Xia et al. (2008) performed a model updating for the three-span Balla Balla Bridge in 

Western Australia and took 155 iterations and approximately 420 hours for convergence. 

Duan et al. (2011) constructed a fine FE model of the Tsing Ma Suspension Bridge which 

consists of about 300, 000 nodes, 450, 000 elements, and 1.2 million DOFs. About five 

hours were spent to obtain the first 100 eigensolutions using a 64-bit Itanium server with 

eight CPUs of 1.5 GHz each. In such a case, updating the FE model using the conventional 

approach is very difficult, even with a powerful computer. 

 

Dynamic substructuring methods have played a significant role in the field of structural 

dynamics. With the substructuring methods, a global structure is divided rationally into 

smaller substructures to be analyzed independently (Craig, 2000). Analyzing a structure 

component-wisely has several advantages over the global methods which handle the 

entire problem at once. First, independent substructures can be analyzed much easier and 
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quicker than the large-size global structure. Second, local behaviors/parameters can be 

identified more accurately than the entire system as a substructure contains considerably 

fewer uncertain parameters than the global structure. As such, the convergence of the 

optimization process is more rapid and ill-condition problems are alleviated. Third, 

substructuring methods allow sharing and combining substructures from different groups, 

or from numerical simulations and experimental measurements. This feature allows the 

combination of different substructures and parallel computation. Finally, if a local area 

of a structure is of interest, only the local area is required to be measured or calculated, 

and the testing or computation of the entire structure can be avoided. 

 

Substructuring methods can be carried out in two manners. In the conventional 

substructuring approaches, a global FE model is partitioned into independent 

substructural models. The vibration properties of the substructures are then assembled to 

recover the vibration properties of the global structure. Herein the vibration properties 

can be the frequency domain properties such as natural frequencies, mode shapes, 

frequency response functions (FRFs) and their variants or the time domain properties such 

as vibration responses, impulse response functions (IRFs) and their variants. The obtained 

vibration properties can be used for model updating or damage identification by 

comparing with the experimental counterparts of the global structure through a model 

updating process. This process is referred to as the forward substructuring method in the 

context. On the other hand, the inverse method disassembles the vibration properties of 

the global structure into those of substructures, which can be used to update the 
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independent substructures by treating them as independent structures. A main merit of 

this approach is that the damage identification can be more effectively performed since 

the vibration properties of the substructures are more sensitive to the local damage. On 

the basis of this classification, the forward and inverse substructuring methods will be 

introduced and reviewed in Sections 2 and 3, respectively. The methods in time and 

frequency domain will be presented. 

 

2. FORWARD SUBSTRUCTURING METHODS 

 

The forward substructuring methods have existed for a relatively long period (Kron, 1963; 

Craig, 2000; Hurty, 1965). A global complex structure is divided into substructures to 

increase the efficiency, and the solutions of the substructures are coupled to calculate the 

solutions of the global structure. If the global structure with N DOFs is divided into NS 

substructures, the equation of motion is coupled for the NS substructures and can be 

rewritten in a block-diagonal format as 

 { } { } { } { } { }p p p p p p p px x x f g+ + = +M C K   (1) 

with the compatibility condition and equilibrium condition 

 { }px =D 0 , { }T pg =L 0  (2) 

where { }px , { }px , and { }px  are the assembled global displacement, velocity and 

acceleration responses, respectively, Mp, Cp and Kp are the block-diagonal assembly of 

substructural mass matrices, damping matrices and stiffness matrices, respectively, 

matrix D includes constraints to guarantee the nodes at the interface identical 
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displacement, matrix L localizes the interface DOFs of the substructures in the global 

structure, { }pf  is the external forces, and { }pg  is the interface forces. Hereinafter, 

superscript p denotes the primitive assembly of all substructural variables. In particular, 

a primitive matrix is assembled by placing all substructural matrices in a block-diagonal 

form, and a primitive vector is assembled by including the substructural vectors one after 

another. The equation of motion (Eq. (1)) can be transformed and simplified in the 

frequency or time domain. In the former, the eigensolutions (eigenavlues and 

eigenvectors) and the associated eigensensitivities are calculated. In the latter, the time 

history responses and the associated sensitivities are sought. The methods in the two 

domains are described separately in the following sections. 

 

2.1 Substructuring methods for eigensolutions and eigensensitivity in frequency domain 

 

2.1.1 Eigensolutions by substructuring methods 

Common frequency domain substructuring methods include Kron’s substructuring 

method and component mode synthesis (CMS) method. Performing the translation of 

{ } { } ( ), , exp
TTx i tτ φ τ λ=  (i stands for the imaginary part) on Eq. (1), the eigensolutions 

of the global structure are recovered from the eigensolutions of Ns substructures (Simpson, 

1973; Sehmi, 1989) 

 
p

T

λ
τ

 − −    
=    −     

z 0Λ I Γ
0Γ 0

 (3) 

where 
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



   



, 
Tp =  Γ DΦ  (4) 

Λp is the block-diagonally assembled eigenvalues of all substructures, Φp is block-

diagonally assembled eigenvectors of all substructures, { }τ  represents the interface 

forces between the adjacent substructures, {z} indicates the participation factor of 

substructural modes in frequency domain, and λ  denotes eigenvalues of the global 

structure to be determined. The mode shapes of the global structure can be recovered by 

{ }p=Φ Φ z . 

 

1) Eigensolutions by Kron’s substructuring method 

 

Kron first proposed a dynamic substructuring method in Diakoptics (Kron, 1963) to 

obtain eigensolutions of a system with numerous variables in a piece-wise manner. The 

independent substructures are constrained by imposing displacement constraints at the 

interface coordinates of the adjacent substructures via the Lagrange multiplier technique 

and virtual work theorem. Simpson and Tabarrok (1968) initiated Kron’s complicated 

electrical notation into the receptance form of a structure and searched the eigenvalues 

via the bisection scanning and sign count algorithms. Simpson (1973, 1982) replaced the 

receptance form with a transcendental dynamic stiffness matrix. The Newtonian process 

was utilized to accelerate the computational speed. Williams and Kennedy (1991) 

proposed a multiple-determinant parabolic interpolation method to ensure the successful 
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convergence on the required eigenvalues in all circumstances. Sehmi (1986, 1989) solved 

Kron’s receptance matrix by the subspace iteration method and Lanczos method. 

 

In the Kron’s receptance matrix, the substructural eigenvalues and eigenvectors are 

calculated from the stiffness and mass matrices of substructures directly without 

constraining on the substructural boundaries. It renders the substructural eigensolutions 

calculated in its original boundary condition. Consequently, the Kron’s substructuring 

method has distinct advantages in handling large-scale systems due to its high accuracy 

under complicated interface conditions.  

 

In the Kron’s substructuring method, all modes of each substructure are calculated to 

form Λp and Φp. Calculation of all substructural modes is often inefficient and unworthy 

because SHM generally needs the first several modes of the entire structure only. Weng 

et al. (2009) constructed the eigenequation of the global structure by the first few master 

modes of each substructure, and the residual slave modes are compensated by the residual 

flexibility. The eigenequation (Eq. (3)) is then rewritten in accordance with the master 

modes and residual flexibility as (Weng et al., 2009) 

 ( ) { }1p T
m m m mλ ζ − − + = Λ I Γ Γ z 0  (5) 

where 
Tp

m m =  Γ DΦ , and subscripts m and s represent “master” and “slave” 

eigensolutions, respectively. The master substructural eigenmodes are diagonally 

assembled as 

 ( ) ( ) ( )1 2, ,..., sNp
m m m mDiag  =  Λ Λ Λ Λ , ( ) ( ) ( )1 2, ,..., sNp

m m m mDiag  =  Φ Φ Φ Φ  (6) 
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The contribution of the slave modes is compensated by the first-order residual flexibility 

( ) 1T p
s s sζ

−
= Γ Λ Γ , which is calculated from the master modes as 

( ) ( )

( )

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

1 1

1 11 1 1 1

1

1 1
s s s s

TT p p p p T
s s s s s s

T

m m m
Tp p p

s s s
TN N N N

m m m

− −

− −

−

− −

 =  

  −   
   =   
  −   

Γ Λ Γ DΦ Λ Φ D

K Φ Λ Φ

Φ Λ Φ

K Φ Λ Φ



 

 

(7) 

The size of the simplified eigenequation (Eq. (5)) is equal to the number of all master 

modes, which is considerably smaller than the original one in Eq. (3). The computational 

load is thus considerably reduced. 

 

On the basis of this concept of modal truncation and the compensation of the residual 

flexibility, Weng et al. (2009) proposed a more accurate substructuring method by 

including the second-order residual flexibility. In addition, Weng et al. (2011a) included 

the inertia effect of the slave modes by the high-order residual flexibility through an 

iterative procedure. After several iterations, the eigensolutions converge to the exact 

values using few master modes only. 

 

2) Eigensolutions by Component Mode Synthesis (CMS) 

 

Although the CMS technique also calculates the eigensolutions from the substructural 

eigenmodes, it constrains independent substructures through four kinds substructural 

modes such as the normal modes, rigid body modes, constraint modes and attachment 
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modes (Craig, 2000; Hurty, 1965; MacNeal, 1971; Rubin, 1975). Two or more kinds of 

substructural modes are required to be calculated in advance, which makes the CMS 

method more accurate. However, the method cannot be used when one or more kinds of 

substructural modes are not available under complicated interface conditions. 

 

The normal modes are obtained using the general eigenequation for both the fixed 

boundary condition and free boundary condition. Usually, only a few normal modes are 

retained for improving the computational efficiency while the other modes are discarded. 

The rigid body modes (RBMs) describe the rigid body movement of a free-free 

substructure. For a two-dimensional structure having N nodes, the three independent 

RBMs are the x translation (Rx = 1, Ry = 0), the y translation (Rx = 0, Ry = 1) and the z 

rotation (Rx = -y, Ry = x), i.e., 

 

1 1 2

1 0 0 1 0 0
0 1 0 0 1 0

1 1

T

Ny x y x

 
 =  
 − − 

R






 (8) 

A constraint mode is defined as the force to generate a unit displacement to one constraint 

coordinate, while the remaining constraint coordinates are restrained and the remaining 

DOFs of the structure are free. The force equilibrium satisfies 

 II IO IO

OI OO OO OOf
     

=     
     

K K Φ 0
K K I

 (9) 

The constraint mode matrix is given by 

 
1

b

IO II IO

OO OON N
c

−

×

 − 
= =   
   

Φ K K
I I

Φ  (10) 

where subscript I represents the inner DOFs and the subscript O represents the interface 

DOFs. Nb is the number of constraint modes and equal to the number of the inner DOFs. 
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An attachment mode is regarded as the displacement vector due to a single unit force 

applied at one of the given coordinates, which is therefore acquired by 

 II IO IO

OI OO OO OO

     
=     

     

K K Φ 0
K K Φ I

 (11) 

Based on the above four groups of mode components, CMS methods are mainly classified 

into the fixed interface, free interface and hybrid interface (or mixed interface) CMS 

methods. 

 

The fixed interface CMS method was first proposed by Hurty (1965), in which the global 

eigensolutions are expressed by the fixed normal modes and constraint modes. Craig and 

Bampton (1968) simplified this method without partitioning the interface forces into 

statically determinate and indeterminate ones. Their simplified method is successful and 

widely known for its brevity, accuracy and robustness. Suarez and Singh (1992) 

considered the effect of truncated normal modes with the mode superposition method to 

improve the computational precision. Shyu et al. (1997) accounted for the higher-order 

terms of the static constraint modes to improve the accuracy. Quasi-static modes rather 

than static constraint modes are used to compensate for the inertial effect of truncated 

modes. Takewaki and Uetani (2000) extended the fixed interface CMS method to the 

damped system. Rixen (2004) proposed an efficient dual Craig-Bampton method, in 

which the substructures are assembled dually with interface forces and a transformation 

matrix is defined to reduce the size of the primitive global system. Kim and Lee (2015) 

developed an enhanced Craig-Bampton method to improve the accuracy subsequently. 

This method derives an enhanced transformation matrix to account for the higher-order 
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effect of substructural modes with the residual flexibility. Bennighof and Lehoucq (2004) 

introduced an automatically multi-level substructuring method for the fast eigenanalysis 

of linear elastodynamics, which is accomplished via recursive partitioning and reordering 

process. Kim et al. (2015) derived a new transformation matrix to improve the accuracy 

of this multi-level substructuring method by considering the effect of residual modes. 

Koutsovasilis et al. (2010) and Kim et al. (2017) combined the fixed interface CMS 

method with the condensation method to reduce the dimension of the eigenequation 

further. 

 

The major limitation of the fixed interface CMS methods is its inability to obtain 

constraint modes from experiments conveniently. Conducting a modal test on a free-free 

structure is considerably more convenient than on one with fixed constraints. To 

overcome this limitation, the free interface CMS method was first proposed by MacNeal 

(1971) for structures with flexible boundary conditions, in which the substructural 

displacements are represented by free interface normal modes, attachment modes and 

rigid body modes. Rubin (1975) later extended MacNeal’s method to consider the inertial 

effect of truncated modes with a second-order Maclaurin-series expansion. Arora and 

Nuyen (1980) combined the free interface CMS method with the subspace iteration 

method to calculate the structural eigensolutions. Tournour et al. (2001) took a deep 

insight into the validation, performance and convergence of the free interface CMS 

method, and provided a simple and effective convergence criterion for the selection of 

retained substructural modes. Rixen (2004) used the Lagrange multipliers along the 

interface for assembling substructures, and effectively reduced the the assembled model 
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into a form of quasi-diagonal matrices. Kim et al. (2018) improved the free interface CMS 

method by considering the higher-order effect of the residual substructural modes, and 

the computational efficiency is improved through the system equivalent reduction 

expansion process. Several researchers have improved the computational efficiency of 

the free interface CMS methods by combining with efficient methods such as dynamic 

condensation approaches (Liu et al., 2011) and parallel computation techniques (Yang et 

al., 2012). 

 

The free interface CMS method is not as accurate as the fixed interface CMS method, as 

the free interface constraint is weaker than the fixed interface. However, the free interface 

method is considerably more efficient in handling complicated substructural interfaces 

(Liew et al., 1996). The complete eigenmodes of the substructures with changed interface 

have to be recomputed in the fixed interface method (Voormeeren et al., 2012). As such, 

researchers have developed the hybrid interface (mixed interface) CMS method to make 

full use of the advantages of the fixed and free interface CMS methods. 

 

Liew et al. (1996) proposed a hybrid CMS method to investigate the dynamic properties 

of a plate by using mixed normal modes. The accuracy and feasibility of this method are 

verified using several plate structures. Qiu et al. (2003) proposed a hybrid CMS method 

to express the higher free interface vibration modes with several lower hybrid modes. 

They developed an accurate substructuring method to calculate displacements precisely. 

Shanmugam and Padmanabhan (2006) introduced an accurate and efficient hybrid 

interface CMS method for rotor dynamic analysis, in which the free/fixed interface CMS 



14 
 

method is used in each substructure depending on the number of interface and inner 

DOFs. Voormeeren et al. (2010) developed a hybrid substructuring method to divide the 

substructural DOFs into a series of internal DOFs, free interface DOFs and fixed interface 

DOFs. The free or fixed boundary conditions of each substructure are selected by 

comparing the diagonal of the stiffness matrix of different substructures. 

 

Apart from the substructuring method developed on substructural eigenmodes (normal 

modes, rigid body modes, constraint modes and attachment modes), Meirovitch and 

Kwak (1990), Morales (2000), and Johnson (2003) proposed the substructure-based 

Rayleigh-Ritz method, where each substructure is approximated by a series of admissible 

trial vectors with an iterative process. Craig and Hale (1988), Bai (2002), Salimbahrami 

and Lohmann (2006) converted the equation of motion into a state space. The 

computational time is saved by projecting the higher-order space into the lower-order 

space using Krylov subspaces/vectors. 

 

3) Eigenmode selection by substructuring method 

 

The substructuring method attempts to retain a small number of substructural modes to 

recover the dominant dynamic properties of the global system. An important topic is to 

determine which modes to be retained in each substructure. One commonly used scheme 

is determined from the aspect of energy. Generally, lower modes contribute more energy 

and are often retained in the substructuring method (Weng et al., 2009; Craig, 2000). 

However, this concept is not always correct. A number of mode selection methods have 
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been developed. Kammer and Triller (1996) constructed an effective interface mass (EIM) 

matrix to indicate the mode contribution at the substructural interfaces. Liao et al. (2007) 

proposed the moment-matching principle to form a coupling matrix for estimating the 

substructural mode contribution (CMSχ method). Park et al. (2012) derived an equivalent 

modal contributor (EMC) method for mode selection. It relates the modes of a global 

system and subsystems to a vector, whose norm is then used to evaluate the contribution 

of each substructure. Kim et al. (2016) compared the EIM method, CMSχ method and 

EMC method in terms of computational accuracy and efficiency. 

 

2.1.2 Eigensensitivity by substructuring method 

 

Eigensensitivity is the derivative of eigensolution to a specific elemental parameter, 

indicating the effect of parameter variation on the eigensolutions. Eigensensitivity 

provides the searching direction in sensitivity-based model updating or optimization 

process. Since the eigensensitivity is usually calculated element by element in model 

updating or optimization, it dominates the computational time. Following the 

substructuring method for eigensolutions, Xia et al. (2010) extended the Kron’s method 

to derive the eigensensitivity formulae. The eigensensitivity of the ith (i = 1, 2, …, N) 

mode with respect to an elemental parameter α is derived by differentiating Eq. (5) with 

regard to the parameter as 

 ( ) { } ( )
{ } { }

1
1

p T
m i m mip T

m i m m i

λ ζ
λ ζ

α α

−

−
 ∂ − +∂   − + + =  ∂ ∂

Λ I Γ Γz
Λ I Γ Γ z 0  (12) 
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By pre-multiplying { }T
iz  on both sides of Eq. (12) and noting 

( ) { }1p T
m m m mλ ζ − − + = Λ I Γ Γ z 0  in Eq. (5), the ith eigenvalue derivative with respect to 

α is 

 { } ( ) { }
1 Tp

T m mi m
i i

ζλ
α α α

− ∂∂ ∂
 = +

∂ ∂ ∂  

Γ ΓΛz z  (13) 

where 

 
( )1

1 1 1 1
T T

m m T Tm m
m m m m

ζ ζζ ζ ζ ζ
α α α α

−
− − − −

∂ ∂ ∂∂
= − +

∂ ∂ ∂ ∂

Γ Γ Γ ΓΓ Γ Γ Γ  (14) 

p
m

α
∂
∂
Λ

 and m

α
∂
∂
Γ  are the eigenvalue derivatives and eigenvector derivatives of the 

substructures, respectively, and 
( )( )1T p

s s sζ
α α

−
∂∂

=
∂ ∂

Γ Λ Γ
 denotes the derivative of the 

residual flexibility of the substructures. Since the substructures are independent and 

unrelated, these derivative matrices are calculated only within the jth substructure 

containing the parameter α, and those in other substructures are zero matrices, i.e., 

 
( ) ( )

,
j jp T p

m m m m m

α α α α α

   
   

∂ ∂ ∂ ∂ ∂   = = = ×   ∂ ∂ ∂ ∂ ∂
   
      

0 0 0 0 0 0

Λ Λ Γ Φ Φ0 0 D D 0 0

0 0 0 0 0 0

 (15) 

( )( ) ( )( ) ( ) ( )( ) ( )( )
11 1 1 TT p j j j j

s s s m m m
Tζ

α α α

−− − −

 
  ∂   ∂ −   ∂    = × ×
 ∂ ∂ ∂
 
 
  

0 0 0

Γ Λ Γ K Φ Λ Φ
D 0 0 D

0 0 0

=
 

where 
( )j
m

α
∂
∂
Λ  and 

( )j
m

α
∂
∂
Φ  can be calculated conveniently by treating the jth 

substructure as an independent structure (Nelson, 1976). 
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The eigenvector derivative is computed by rewriting i

α
∂ 

 ∂ 

z  in terms of a residual vector 

{ }iϕ  and the vector {zi} as 

 { } { }i
i i icϕ

α
∂  = + ∂ 

z z  (16) 

where ci is the participation factor of vector {zi} and { }iϕ  represents a residual vector. 

Substituting Eq. (16) into Eq. (12), the residual vector { }iϕ  is solved from equation 

 { } { }
1

1
p T
m m m ip T

m m m i i i

ζ λ
ζ λ ϕ

α

−
−

 ∂ + −  + − = −  ∂

Λ Γ Γ I
Λ Γ Γ I z  (17) 

Vector {zi} satisfies the orthogonal condition of { } { } 1T
i i =z z , which is differentiated 

with respect to α as 

 
{ } { } { } { } 0

T
Ti i

i iα α
∂ ∂

+ =
∂ ∂
z z

z z  (18) 

Substituting Eq. (16) into Eq. (18), the participation factor ci is thus obtained as 

 { } { } { } { }( )1
2

T T
i i i i ic ϕ ϕ= − +z z  (19) 

Finally, the ith eigenvector derivative with regard to the parameter α is calculated by  

 { } { } { } { } { } { }( ){ }1
2

p
T Tpi m

i m i i i i i iϕ ϕ ϕ
α α

∂ ∂  = + − + ∂ ∂  

Φ Φ z Φ z z z  (20) 

 

In Eq. (20), only the derivative matrix of the substructure containing parameter α is 

computed to recover the eigensensitivity of the global structure. Since the size of a 

substructure is considerably smaller than that of the global structure, the substructuring 

method is efficient in calculating the eigensensitivity. Lallemand (1999) derived the 

eigensensitivity matrix of the fixed interface CMS method. To ensure the computational 

precision and enhance the computational efficiency of this substructuring method 
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simultaneously, Weng et al. (2011a) proposed an iterative substructuring method for 

determining the exact eigensensitivity using a few master modes. In addition, Weng et al. 

(2013b) developed the substructuring method for deriving the higher-order 

eigensensitivity of structures with close or repeated eigenfrequencies. 

 

2.1.3 FRF by substructuring method 

 

Apart from substructuring methods for eigensolutions, substructure-based FRFs are 

widely studied in the literature. D’Ambrogio and Sestieri (2004) proposed the FRF-based 

substructuring method (FBS) to derive the global FRFs through the primal assembly of 

substructural FRFs. Performing a Fourier transform on Eq. (1) and Eq. (2) gives the 

governing equations for FRFs (Gordis et al., 1991). 

 

( ) ( ){ } ( ){ } ( ){ }
( ){ }
( ){ }

0

0

p p p p

p

T p

x f g

x

g

ω ω ω ω

ω

ω

 = +
 =


=

H

D

L
 (21) 

where ( ){ }px ω  , ( ){ }pf ω  , ( ){ }pg ω   represent the amplitude of the harmonic 

response, external forces and interface forces, and Hp is a block-diagonal matrix of the 

substructural FRFs. 

 

Klerk et al. (2006, 2008) summarized and classified the FBS methods into three groups: 

impedance coupling method (D’Ambrogio and Sestieri, 2004), admittance coupling 

method (Jetmundsen et al., 1988; Gordis et al., 1991), and Lagrange multiplier coupling 

method (Crowley et al., 1984). Lim and Li (2000) used the least squares method and 
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truncated singular value decomposition in the FBS method to improve its accuracy. Lee 

and Eun (2014) introduced an FBS method for local damage detection using a limited set 

of measurement data only. The substructure-based FRFs were used to calculate the 

constraint forces, which were then utilized for damage detection. Law and Ihlenfeldt 

(2015) developed an FBS method to model the position-dependent dynamic behaviors on 

the basis of the coupling substructure analysis of the multiple-point receptance. 

 

2.2 Substructuring methods for dynamic responses and response sensitivity in time 

domain 

 

The substructuring method is initially developed for the fast calculation of eigensolutions, 

where the global eigenmodes are calculated by superposition of a few substructural 

eigenmodes. By decoupling the global eigenmodes onto the space of substructural 

eigenmodes, the eigenequation of the large structure is reduced significantly. The 

substructuring concept can also be generalized to calculate dynamic responses in time 

domain, by reconstructing the dynamic response from the substructural eigenmodes. As 

the calculation of dynamic reponse includes a large number of time steps, the 

substructuring method can considerably improves the computational efficiency. 

 

1) Dynamic responses and response sensitivity by substructuring method 

 

If the responses of the structure in Eq. (1) is expressed by the sum of the substructural 

eigenvectors as { } { }p p
m mx q=Φ  , { } { }p p

m mx q=Φ    and { } { }p p
m mx q=Φ   , the equation of 
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motion of the global structure can be written in terms of substructural master modes as 

(Zhu et al., 2019) 

 { } ( ){ } { } { } { }1
1 2

Tp p T p p
m m m m m m m m mq a a q q q fζ −  + + + + =  I Λ Λ Γ Γ Φ   (22) 

where { }mq , { }mq  and { }mq  represents the participation factors of the master modes 

in time domain, a1 and a2 are damping coefficients, and the residue item { }1 T
m m mqζ −Γ Γ  

serves to compensate the effect of the slave modes. The participation factors can be solved 

using the classical Newmark method (Newmark, 1959). The size of Eq. (22) is equal to 

the number of retained master modes, which is considerably smaller than the original 

equation of motion of the global structure (Eq. (1)). This condition leads to the fast 

computation of the dynamic responses. The displacement, velocity, and acceleration of 

the global structure are then obtained from { } { }p p
m mx q=Φ , { } { }p p

m mx q=Φ   and 

{ } { }p p
m mx q=Φ  . Gruber and Rixen (2018) extended this substructuring method to 

nonclassically damped linear systems in the state-space representation. 

 

Zhu et al. (2019) derived the first derivative of the structural responses. Differentiating 

Eq. (22) with respect to parameter α leads to 

{ } ( ) { } ( ) { }1
1 2

m m mp p T
m m m m

q q q
a a ζ

α α α
−∂ ∂ ∂

+ + + + =
∂ ∂ ∂

I Λ Λ Γ Γ
 

 

{ } ( )
{ } { }

1
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Tp p p T
m mp m m m

m m

a a
f q q

ζ
α α α α

− ∂ ∂ +  ∂ ∂  − − + ∂ ∂ ∂ ∂ 

Φ I Λ Λ Γ Γ
  (23) 

where /p
m α∂ ∂Λ , /p

m α∂ ∂Φ , and /ζ α∂ ∂  can be calculated by treating the 

substructures as independent ones like Eq. (15). As previously stated, only the derivative 

matrix of the substructure containing parameter α is required, and those of remaining 
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substructures are zeros. { }mq
α

∂
∂

 , { }mq
α

∂
∂

  and { }mq
α

∂
∂

 can be solved from Eq. (23) through 

the Newmark method. The response sensitivity is then calculated by 

 
{ } { } { }p p

mpm
m m

x q
q

α α α

∂ ∂∂
= +

∂ ∂ ∂
Φ Φ  (24) 
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x q
q

α α α

∂ ∂∂
= +

∂ ∂ ∂
Φ Φ

 
  (26) 

Similar to Eq. (22), the size of the sensitivity equation (Eq. (23)) is reduced greatly. Thus, 

calculating the response sensitivity using the substructuring method is computationally 

efficient. 

 

2) IRF by substructuring method 

 

The substructuring methods are also found in time domain for calculation of IRFs. 

Impulse-based substructuring (IBS) method is the counterpart of the FBS method in time 

domain, where the structural responses are assembled from the substructural IRFs. This 

method is effective when the excitation is a transient impact or shock-like load. The 

structural responses are calculated from those of substructures through Duhamel integral 

and mode superposition, where the interface compatibility is enforced at each time step. 

Gordis (1995), and Gordis and Radwick (1999) improved the computational efficiency of 

the IBS method by deriving an integral equation for structural transient analysis, and 

extended the IBS method to local nonlinear system. To improve the computational 

efficiency further, Gordis (2001) adopted the recursive block convolution to solve the 
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governing integral equation. The IBS method is also applied to structures with rigid-

elastic hybrid joints or hybrid rigid and nonlinear-elastic joints (Dong, 2015; Zhou, 2016). 

 

2.3 Substructuring method for FE model updating 

 

Accurate FE models are frequently required in a large number of applications, such as 

optimization design, damage identification, structural control, and SHM (Brownjohn, 

2007). Due to the uncertainties in geometry, material properties, and boundary conditions, 

the dynamic responses of a structure predicted from a highly idealized numerical model 

usually differ from the measurements obtained from the as-built structures. Therefore, an 

effective model updating is necessary to obtain a more accurate FE model for various 

applications. Many types of measurement data, such as frequencies, mode shapes, FRFs, 

and time domain responses can be employed for model updating (Mottershead and 

Friswell, 1993; Brownjohn et al., 2001; Bakira et al., 2007; Zivanovic et al., 2007; 

Brownjohn, 2007; Farrar and Worden, 2007; Friswell et al., 2007). 

 

The iterative model updating modifies the elemental parameters of an FE model 

repeatedly to minimize an objective function, which is expressed as the residue of the 

dynamic properties of the FE model and experimental counterparts (Bakira et al., 2007; 

Zivanovic et al., 2007; Weng et al., 2011b) 

 ( ) ( ){ } { }( ) ( ){ } { }( ) { } { }( )0 2

TA E A EJ α χ α χ χ α χ γ α α= − − + −W  (27) 

where { }Aχ  is the dynamic properties (for example, frequencies, model shapes and 

dynamic responses) obtained from the FE model, { }Eχ  represents the experimental 
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dynamic properties, W  denotes the weighting matrix of different dynamic properties, 

and γ  stands for the regularization parameter. The objective function is minimized by 

adjusting the elemental parameters α starting from its initial values α0 in an optimal 

manner. Newton’s methods (Bakira et al., 2007) can be used to solve the nonlinear 

optimization problem. 

 

The conventional model updating approaches calculate the dynamic properties using the 

global FE model. The global method is very expensive in terms of computation time and 

computer memory, especially for large-scale structures. First, the global FE model 

contains large system matrices (stiffness and mass matrices), which takes up a large 

amount of storage space and computational time to analyze. Second, extracting dynamic 

properties from large system matrices is a time-consuming process, and calculating 

sensitivity matrices consumes significantly more computational resources. Third, many 

uncertain parameters need to be adjusted in a large-scale FE model. It takes a long time 

to calculate sensitivity matrices with respect to the large number of updating parameters 

that the model contains. Moreover, the large number of parameters are likely to result in 

the divergence of the large-scale optimization problem, thus leading to erroneous 

sensitivities. 

 

The substructuring method is efficient to calculate the dynamic properties and sensitivity 

matrices of the global structure, as the substructures are analyzed easier and quicker than 

the global structure. During the model updating process, some specific substructures can 

be re-analyzed and assembled with other unchanged substructures to recover the solutions 
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of the global structure, thereby avoiding repeated computation of the global structural 

properties. This will benefit the model updating process, where the dynamic properties 

and sensitivity matrices are iteratively required to match the experimental global 

properties in an optimal way. In addition, the substructures contain much fewer uncertain 

parameters than the global structure. This assists in accelerating the convergency of large-

scale optimization problems. 

 

The forward substructure-based model updating is illustrated in Figure 1. In each 

iteration, the vibration properties are calculated from substructures and then assembled 

by the interface displacement constraints to calculate the global properties. These global 

solutions are compared with the experimental counterparts to construct the objective 

function. The substructure-based sensitivity matrices with respect to an elemental 

parameter are calculated from one substructure that contains the elemental parameter, to 

indicate the searching direction in each step. The objective function is minimized by 

iteratively adjusting the elemental parameters α in accordance with the sensitivity 

matrices. The most advantageous feature of this substructure-based model updating 

method is that one substructure is handled independently without repeatedly analyzing 

the large-size matrices of the global structure when this substructure is changed. 
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Figure 1. Forward substructuring method for model updating 

Weng et al. (2011b) adopted the substructuring method to the model updating of a 

practical bridge. When a structure is damaged in a local area, only one or several 

substructures are repeatedly analyzed and the other substructures are unchanged. Yu et 

al. (2016) derived the eigensensitivity using the fixed interface CMS method and applied 

it to model updating process as well. Xu et al. (2018) proposed a multi-level damage 

identification of a bridge structure. The CMS method is used to condense the large-scale 

model, and model updating is applied along with the response reconstruction technique 

to identify the local damage. 
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3. INVERSE SUBSTRUCTURING METHOD 

 

The majority of substructuring methods belong to the above forward substructuring 

method for the fast calculation of dynamic properties of the global structure. The forward 

substructure-based model updating requires the repeated assembly of the vibration 

properties (e.g., eigensolutions) of the substructural FE models into global vibration 

properties, and the assembled properties are then compared with the measurements on 

global structure. Although this assembly of substructural vibration properties is realized 

by a small-size equation (Eq. (5)), the repeated computation on the small-size equation is 

a heavy work as the model updating usually requires many iterations to converge. 

 

Substructuring method can also be developed in an inverse manner, where the global 

dynamic properties are disassembled into substructural properties. Afterwards, a 

substructure can be used for model updating, optimization design, static/dynamic analysis, 

and vibration control by treating it as an independent structure (Weng et al., 2012). This 

approach, obtaining substructural properties from the global data, is in opposite direction 

of the conventional process and thus is referred to as the inverse substructuring method. 

 

The inverse substructuring method involves the identification of substructural properties. 

When it is utilized in model updating, the global measurements are disassembled into the 

vibration properties of the substructures. Subsequently, the substructural vibration 

properties are used as references for updating the corresponding substructural FE models 

via the conventional model updating procedure. The objective function and sensitivity 
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analyisis are constructed directly on the independent substructures, without requiring the 

assembly procedure. In SHM, the change of global properties caused by damage (e.g., 

stiffness loss in the local area) is sometimes undetectable. Substructural properties are 

considerably more sensitive to local change than the global properties. It is promising to 

investigate the change of the substructural properties for model updating and damage 

identification. The FE models of independent substructures can also be updated in parallel 

to reproduce the substructural properties disassembled from the measurement of the 

global structure. 

 

The inverse substructuring method can be further divided into frequency domain and time 

domain methods, according to the vibration properties disassembled. 

 

3.1 Extracting frequency domain properties of substructures 

 

In frequency domain, the challenging issue is to find the relation between the 

substructural properties and the global ones, and then extract the substructural properties 

from the global measurements. Doebling et al. (1998) extracted the substructural stiffness 

matrix through a disassembly procedure from the global stiffness and flexibility matrices 

on the basis of the presumed connectivity and strain energy distribution in substructures. 

The substructural modes are estimated based on the shape functions and geometry, and 

the substructural eigenvalues are solved from the well-determined linear least squares 

solution. Gordis (1997) and Felippa and Park (1997) proposed a force method to extract 

the substructural flexibility from the global flexibility by using the load transformation 
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matrix, which is limited to statically determinate beam-like structures. For a continuum 

structure, calculation of the transformation matrices is computationally demanding. Alvin 

and Park (1999) extended this method via a numerical algorithm without using the load 

transformation matrix. This method can be used for complicated structures. Park and 

Reich (1998) summarized three methods in extracting the substructural flexibility from 

the global measured data, namely, a free-free substructural flexibility method, a 

deformation-based flexibility method, and a strain-basis flexibility method. Hou et al. 

(2015) proposed a substructure isolation method on the basis of the virtual distortion 

method. They used force distortions for modeling the interfaces to isolate the target 

substructure from the influences of the remaining structure. 

 

Weng et al. (2012) constructed the compatibility and equilibrium equations to extract the 

substructural flexibility from the experimental modal data of the global structure. An 

orthogonal projector is proposed to remove the rigid body modes of free-free 

substructures (Weng et al., 2016). The extracted substructural flexibility is then regarded 

as the reference for updating the substructural FE model at the substructural level. The 

substructural eigenvalues and eigenvectors decomposed from the substructural flexibility 

are utilized as indicators for damage detection (Weng et al., 2013a). These substructural 

properties are more sensitive to damage than the global ones because the damage often 

exists in the local area. 

 

The inverse substructuring method is started by finding the displacement and force of a 

target substructure after it is isolated from the global structure. To be treated as an 
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independent structure, the displacement of a substructure is constituted by its 

deformational motion and rigid body motion (Weng et al., 2013a) 

 { } { } { }p p p p px f β= +F R  (28) 

 ( ) ( ) ( ) ( )1 1,..., , ,...,s sN Np pDiag Diag   
   F = F F R = R R  (29) 

where pF  is the primitive matrix of the substructural flexibility, pR  represents the 

primitive matrix of orthogonal rigid body modes of substructures, and { }pβ  refers to 

the participation factors of rigid body modes. 

 

The substructural displacements and forces in the primitive form are related to the global 

counterparts as 

 { } { } { } { }= ,
Tp p p p

g gx x f f  = L L  (30) 

where {xg} and {fg} stand for the nodal displacement and external force vectors of the 

global structure, respectively, and Lp is a Boolean matrix composed of 1 and 0 values 

relating the DOFs of the substructures and global structure. 

 

As an independent structure, a substructure is loaded by the external force and interface 

forces from the adjacent substructures, which is 

 { } ( ) { } { } { } { }Tp p T T
g gf f fτ τ

+

 = + = + L D D  (31) 

Following the forward substructuring method, { }τ  denotes the interface forces from the 

adjacent substructures, and matrix D implicitly defines the connections between the 

adjacent substructures. 
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By substituting Eq. (31) into Eq. (28) and Eq. (30), the global flexibility and substructural 

flexibility are related to the displacement as 

 { } { } { } { }( ) { } { }T Tp p p p T p p p
g g g gx x f fτ β

+
    = = + + =     L L F D L R F   (32) 

Eq. (32) indicates that the primitive substructural flexibility matrix ( pF ) can be calculated 

from the global flexibility matrix (Fg) when { }τ  and { }pβ  are given. The latter two 

variables are solved from the following force and displacement compatibility conditions: 

1) The primitive substructural rigid body modes and forces satisfy the force equilibrium 

compatibility as 

 { } { }Tp pf  = R 0  and { } { }( ) { }Tp T
gf τ  + = R D 0  (33) 

2) From the physical point of view, matrix D constraints the displacement compatibility 

as 

 { } { }px =D 0  and { } { }( ) { }p p p pf β+ =D F R 0  (34) 

 

After { }τ  and { }pβ  are solved from Eqs. (33)-(34), the global flexibility matrix is 

related to the substructural flexibility matrix as (Weng et al., 2013a) 

 
Tp p p p p p p

g C R R C R  = − − − + L F L F F K F F K F F HF F  (35) 

where ( ) 1T Tp p p p
R C

−

   =    F R R K R R , 1T
C C

−=K D F D , p T
C =F DF D ,

C C R C= −H K K F K . Consequently, the substructural flexibility matrix Fp can be 

extracted from Fg. The extracted substructural flexibility is generally not normalized. An 

orthogonal projector has been developed such that the extracted substructural flexibility 

is mass-normalized (Weng et al., 2016). The substructural frequencies and model shapes 
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are decomposed from the substructural flexibility as indicators for damage detection 

(Weng et al., 2013a). 

 

Figure 2. The inverse substructuring method for model updating 

 

The substructural flexibility, frequencies and mode shaps extracted from the experimental 

global modal data can be used for updating the substructures, as illustrated in Figure 2. 

The FE model of one substructure is treated as an independent structure. The objective 

function is constructed from the residuals between the vibration properties (flexibility, 

frequencies and mode shaps) of the substructural FE model and the extracted data. In each 

iteration, the substructural vibration properties at the measured DOFs and sensitivity 

matrices are computed. The elemental parameters in the concerned substructure are 

updated by minimizing the objective function. 
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This inverse substructuring method has been applied to the model updating of Canton 

Tower (Weng et al., 2012; Weng et al., 2013a). The relative change of substructural 

eigensolutions caused by a local damage is about 1.84%, while relative change of gobal 

eigensolutions caused by the same local damage is only 0.01% (Weng et al., 2013a). The 

substructural eigensolutions are more sensitive to the local damage than the global 

structure. In the inverse substructuring method, only one substructure concerned instead 

of the whole global structure is updated in each iteration. The size of the system matrices 

is reduced from 21,690×21,690 to 2,736×2,736. The computation time of the 

substructure-based model updating is less than 10% of the traditional global model 

updating (Weng et al., 2012). The computational efficiency is improved significantly. 

 

3.2 Identification of substructural parameters and interface forces in time domain 

 

In time domain, the concerned substructure is isolated from the remainder of the structure 

by accounting for the interaction forces at the interfaces. By treating the interface forces 

as the input, the equation of motion of an independent substructure is written as (Koh et 

al., 1991) 

 { } { } { } { } { } { } { }( )II I II I II I I IO I IO I IO Ix x x f x x x+ + = − + +M C K M C K     (36) 

where subscripts I and O represent the interior and interface DOFs of the target 

substructure, respectively; { }Ix  , { }Ix   and { }Ix   are the dynamic displacement, 

velocity, and acceleration of the interior DOFs, respectively. The right-hand-side of Eq. 

(36) comprises two parts: { }If  refers to the external force applied on the interior DOFs 

of the substructure, and the reminder denotes the interface forces from the adjacent 
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substructures. 

 

The inverse substructural identification inherently requires the measured responses of 

interface nodes. The influences of the remaining part of the structure can be expressed as 

these measured interface responses. Koh et al. (1991) firstly used the substructuring 

method to identify structural parameters in time domain. The displacement, velocity, and 

acceleration of every interface node are needed to measure. The identification of 

substructual properties is performed on the independent substructure by extended Kalman 

filter. To enhance above method’s noise robustness, auto-regressive and moving average 

with stochastic input (ARMAX) model is derived for the substructure by Yun and Lee 

(1997) to process the measurement data with noise. The sequential prediction error 

method is then used to identify the substructural properties. A back propagation neural 

network is combined for estimating the substructural parameters of a complex structural 

system (Yun and Bahng, 2000). Xing and Mita (2012), Su et al. (2012), and Mei et al. 

(2016) fitted ARMAX model to extract substructural vibration properties for damage 

detection. 

 

It is usually impossible to measure all interface responses in practical engineering. Some 

research attempts to elimilate the unmeasured interface by mathematical transformation 

on the equation of motion. In consequence, complete measurement of interface responses 

is not required. Koh and Shankar (2003) utilized a receptance function to relate the 

response at one point to the excitation at the other point. They eliminated the interface 

forces by using different sets of measurement in the focused substructure under the same 
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excitation condition. Tee et al. (2009) incorporated a condensed model identification and 

recovery method into the substructural context to estimate substructural properties from 

incomplete measurements. Zhang and Johnson (2012, 2014) formulated a substructure 

identification method for shear structures and plane frame building structures. The cross 

power spectral densities between the floor accelerations and reference response are used 

to estimate the structural parameters without requiring measurement on interfaces. Hou 

et al. (2011, 2015) proposed a substructure isolation method on the basis of the virtual 

distortion method. They used force distortions for modeling the interfaces to isolate the 

considered substructure from the influences of the remaining structure. Hou et al. (2018) 

isolated a substructure through additional virtual mass for damage identification, and the 

probability distribution of damage factor is quantified via the Bayesian method. 

 

In the right-hand-side of Eq. (36), if the external force and the interface force from the 

adjacent substructures are regarded as the equivalent external forces on the substructure, 

the equivalent external force and substructural parameters can be identified 

simultaneously. In consequence, another kind of substructuring method treats the 

incomplete measurement of interface responses as unknown paramters. The interface 

forces and substructural parameters are identified simultaneously via a model 

updating/system identification technique. Lei et al. (2015) presented substructural 

damage detection methods based on the sequential application of an extended Kalman 

estimator. The structural parameters and interface forces are identified simultaneously by 

the Kalman estimator. Li et al. (2012) and Li and Law (2012) combined the reconstruction 

technique and transmissibility function for identifying the concerned substructure. 
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Sensitivity-based model updating is applied to identify the structural damage and 

interface forces simultanously. Zhu et al. (2013) developed the substructural identification 

method for the system identification of the subway tunnel subject to moving train loads. 

The moving loads and interface forces are expressed by the Chebyshev polynomials. The 

dynamic response sensitivity with respect to the structural elemental parameters and the 

Chebyshev factors are derived in the state space domain. Sensitivity-based model 

updating and response reconstruction technique are used to identify the structural damage, 

external moving force and interface forces of adjacent substructures simultaneously. The 

equation of motion of an independent substructure subjected to moving loads is expressed 

as 

 { } { } { } ( ) { } { } { }( )II I II I II I I IO I IO I IO Ix x x f l vt x x xδ+ + = − − + +M C K M C K     (37) 

where ( ) ( )If t l vtδ −  is the moving force with the speed of v at location l. The moving 

force and the interface force from the adjacent substructures can be represented by 

Chebyshev polynomials T. The equation of motion of the target substructures is thus 

rewritten as 

 { } { } { } ( )
1 2

1
1 1

N N

II I II I II I j j N j j
j j

x x x b T l vt b Tδ +
= =

+ + = − +∑ ∑M C K   (38) 

In Eq. (38), ( )
1 2

1
1 1

N N

j j N j j
j j

b T l vt b Tδ +
= =

− +∑ ∑  is the Chebyshev polynomials that describe the 

moving force and interface force. b and T represent the orthogonal factors and orthogonal 

vectors of the equivalent external force, respectively. N1 denotes the order of the 

Chebyshev polynomials for the moving force, and N2 denotes the order of the Chebyshev 

polynomials for the interface force. As such, the substructural parameters and Chebyshev 

factors are updated to identify the structural damage and interface forces via sensitivity-
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based model updating. 

 

4. DISCUSSIONS ON FUTURE RESEARCH 

 

Since the 1960s, the dynamic substructuring methods have been comprehensively 

developed in many aspects, including improving the accuracy and efficiency, extending 

to the sensitivity analysis and model updating, generalizing to time and frequency 

domains, and covering the forward and inverse manners. These studies exhibit the 

advantages of the substructuring methods in model updating and damage identification 

of large-scale structures over traditional global methods. Due to the inherent challenges 

and difficulties of civil engineering structures, the following two issues deserve further 

research to make the model updating and damage identification viable and practical. 

 

For civil engineering structures, nonlinearity often exists in the local area, which may be 

introduced by connections or damage. The local nonlinearity will render the whole 

structure to be a nonlinear system. The conventional numerical approaches are global 

based and very computationally demanding for analyzing large-scale nonlinear structures. 

In this regard, the substructuring method has great potential by treating the nonlinear parts 

as independent substructures while the remainder as linear. The research on substructure-

based nonlinear analysis and model updating method will significantly improve the 

efficiency of the nonlinear analysis for large-scale structures. 

 

In addition, the model updating and damage identification of civil engineering structures 
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inevitably contain uncertainties or errors, such as the modeling error and measurement 

noise. Statistical analyses are often time consuming for civil structures with large system 

matrices and numerous updating parameters. The benefit of using the substructuring 

methods for the statistical analysis is that only the substructures involving large 

uncertainties need to be analyzed independently. The substructures with different 

uncertainties can be analyzed separately. As such, the substructuring methods deserve to 

be integrated into the uncertainty propagation for alleviating the computational burden. 

 

5. CONCLUSIONS 

 

The substructuring methods analyze the entire structure in a piecewise manner, and 

exhibit many advantages when applied to health monitoring of large-scale structures. This 

paper outlines the framework of dynamic substructuring methods for model updating, 

damage detection and related applications. A forward substructuring method in 

assembling the substructural solutions to achieve a fast calculation of the global solutions 

and an inverse substructuring method in disassembling the global properties to obtain the 

local properties are elaborated. Those substructuring methods in both frequency and time 

domains are presented. The substructuring methods significantly reduce the 

computational burden associated with the model updating and damage identification of 

large-size structures. 
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