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Abstract This study focuses on structural systems, which are particularly attractive for
bridge design. Specifically, it investigates the seismic performance of single-column bridges,
which are either conventionally designed, with the column monolithically connected with
the ground (i.e. fixed-base), or designed with the column-footing system able to uplift and
exhibit planar rocking motion during an earthquake. Although various researchers have stud-
ied the examined structures in terms of their seismic fragility, their seismic losses, post-
earthquake functionality and resilience have received less attention. This paper redirects our
attention to the main benefits of rocking design over the conventional (fixed-base) design
in the aftermath of severe seismic hazard scenarios. The analysis reveals the considerably
mitigated (short-term and long-term) seismic losses of the rocking structure compared to
the pertinent losses of the fixed-base structure. In addition, the results show the remarkable
functionality and resilience of the rocking structure after all the examined seismic hazard
scenarios. Importantly, this work unveils that the post-earthquake financial benefits of the
rocking structure can be further increased when the structure is carefully designed. In par-
ticular, even a small modification of its slenderness can lead to a substantial enhancement of
its post-earthquake performance. The above findings illustrate the potential of the rocking
structural system as an alternative seismic design paradigm for bridges and serve as the ba-
sis for a more rational and holistic seismic assessment framework of single-column rocking
bridges.

Keywords rocking · analytical dynamics · fragility · seismic loss · post-earthquake
functionality · resilience

1 Introduction

Conventional bridge seismic design provides the necessary strength and ductility to the
structure to withstand seismic forces and avoid collapse. Such a design concept, though,
accepts the “prize” of sustainable seismic damage and subsequently residual displacements
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after severe earthquakes. Seismic damage is an important measure of post-earthquake func-
tionality that often determines whether or not a bridge remains operational following a seis-
mic event [55,58]. Rocking design, on the other hand, as an alternative seismic isolation
technique, aims to relieve the structure from seismic damage by allowing structural com-
ponents to uplift and pivot during an earthquake [61]. The seminal work of Housner [50]
first revealed the benefits of rocking design over the conventional (fixed-base) design after
the Chilean earthquake in 1960. That study triggered the analytical [34,33,29,35,3,92,91,
27,12,81], numerical [93,94,32] and experimental [88,4,21,10] investigation of the bene-
fits of rocking isolation on various structural applications, e.g. classical monuments [30,80],
critical contents [56,31], buildings [54,11,77] and bridges [62,36,46,67].

The mechanical configuration of Fig. 1(a), where the column is monolithically con-
nected with the ground (i.e. fixed-base), is particularly attractive for bridge design. One way
to implement rocking isolation is by designing the column to be monolithically connected
with the footing (or base), while the column-base system can detach from the (assumed
rigid) ground when subjected to a ground motion. Hence, the rocking structural system of
e.g. Fig. 1(b) is gaining momentum as an alternative bridge design paradigm, since it com-
bines the benefits of rocking isolation with the merits of the Accelerated Bridge Construction
(ABC) method [64,86,85]. To illustrate its superior behavior, various studies investigated its
seismic performance in comparison to its fixed-base counterpart through either advanced nu-
merical (finite element) models [74,7,5] or experimental tests [66,51,87,75,98,82]. Those
studies highlighted, among others: (i) the mitigated seismic forces that are transmitted to the
column of the rocking structure; and (ii) the negligible seismic damage and small residual
displacements of the rocking structure compared to the substantial inelastic deformations
and damage of the fixed-base structure (e.g. 0.4% versus 6.8% residual drift ratio, respec-
tively, while both structures sustain almost the same peak drift ratio).

On the other hand, the analytical studies that compare the structures of Fig. 1 still re-
main scarce. Modelling the structural systems of Fig. 1(a) and Figs 1(b), 1(c) as a single and
a two degree-of-freedom oscillator, respectively, Chopra and Yim [23] and Psycharis [79]
were (probably) the first that made such a comparison assuming small rocking rotations for
the uplifted structure. Those studies showed that, based on the structural characteristics, the
uplifted structure can sustain smaller deformations (i.e. drifts) than the fixed-base structure,
verifying preliminary results from Meek [68]. More recently, Oliveto et al. [72] verified the
conclusions of [23,79] assuming large rotations (i.e. considering overturning of the rocking
structure). In this context, Vassiliou et al. [95] highlighted that more flexible rocking struc-
tures exhibit smaller deformations than fixed-base structures (with the same stiffness). On
the contrary, stiffer rocking structures tend to oscillate strongly after each impact, thus, larger
deformations occur. Xie et al. [99] compared the structural systems of Fig. 1 in terms of their
seismic fragility and unveiled an optimal range of slenderness (i.e. π/15 < α < π/10) that
significantly reduces both the overturning tendency and the damage probability of the rock-
ing structure compared to its fixed-base counterpart.

This study is motivated by the lack of analytical studies that thoroughly evaluate the per-
formance of the structural systems of Fig. 1 after severe seismic events. In particular, most
analytical studies compare the examined structures solely in terms of their seismic fragility.
However, due to their inherently different structural characteristics, a comparison only via
fragility analysis would be unfair and incomplete. Hence, this work extends recent studies
[99] by conducting a comparative analysis of the structural systems of Fig. 1 in terms of
their: (i) (short-term) seismic (repair) losses adopting the performance-based earthquake en-
gineering framework; (ii) long-term seismic losses; (iii) post-earthquake functionality; and
(iv) resilience adopting a more holistic resilience-based earthquake engineering framework.
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In this context, the analysis herein provides an insight on the seismic performance of rocking
bridges by investigating the influence of design parameters (i.e. slenderness) on the seismic
losses, post-earthquake functionality and resilience, and it examines whether or not rocking
design can be an economically feasible solution for future bridge engineering applications.
Therefore, this research study: (i) redirects our attention to the main benefits of rocking de-
sign over the conventional (fixed-base) design (e.g. seismic losses, post-earthquake function-
ality, resilience); and (ii) paves the way for a more holistic seismic assessment framework
of single-column rocking bridges.

2 Analytical Modelling of Single-Column Rocking Bridges

2.1 Equations of Motion

Fig. 1 illustrates the examined single-column structural systems. Fig. 1(a) shows the conven-
tional (fixed-base) design, while Figs 1(b), 1(c) illustrate the rocking column-base system
that is designed for bridges. Assuming rigid ground conditions and no sliding at the rock-
ing interface allow the structures of Figs 1(b), 1(c) to uplift and pivot during an earthquake
exhibiting planar rocking motion. This is a simplification of the present study. However,
the design method of the rocking structures justifies these assumptions. Specifically, the
piles used to facilitate the monolithic connection of the fixed-base structure with the ground
(Fig. 1(a)) are also installed at the ground where the rocking structures lay (Figs 1(b), 1(c)).
In this context, the piles can serve both as shear keys to prevent sliding at the rocking inter-
face [7] and as ground reinforcement to support the assumption of rigid ground conditions
[76].

When the rocking structures of Figs 1(b), 1(c) remain in full contact with the ground,
from a dynamics perspective, they behave as a single degree-of-freedom system (i.e. similar
to the fixed-base structure of Fig. 1(a)). Thus, their motion is captured by the deformation of
the column u. After rocking commences, the motion of the rocking structures is captured
by both the deformation of the column u and the rocking rotation φ of the base (see e.g.
Fig. 1(b)). Hence, the structural systems of Fig. 1 can be modelled as either a single degree-
of-freedom oscillator fixed on the ground (Fig. 1(a)) or a two degree-of-freedom oscillator
able to uplift and rock (Figs 1(b), 1(c)) [1,2,45,95].

Consider the rocking oscillator of e.g. Fig. 1(b) with a concentrated mass m at height
h. The column has a total mass of mc and elastic stiffness of EI uniformly distributed
along its length. The rigid base has mass mb and width 2b, while its height is considered
negligible compared to its width. For simplicity, assume the lumped mass m creates no
moment of inertia [21,100,99] (see e.g. [41] for a more detailed structural modelling of
a single-column rocking bridge). The rigid base creates moment of inertia with respect to
its center of mass equal to Imb = (1/3)mbb

2. The shape function that describes the
deformation of the column is [22,95,45]:

ψ (ξ) =
3ξ2

2h2
− ξ3

2h3
(1)

where ξ is the distance measured from the base of the column (see e.g. Fig. 1(b)). The
deformation of any arbitrary point along the column is defined as uξ (ξ, t) = u (t) · ψ (ξ).
Recall that, before rocking initiates, the oscillator behaves as a single degree-of-freedom
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Fig. 1 Single-column bridge: (a) designed conventionally with the column monolithically connected with the
ground (i.e. fixed-base); and (b), (c) designed to uplift and pivot during an earthquake with the column-base
system isolated from the ground (i.e. rocking with slenderness α = 0.18 rad, α = 0.28 rad, respectively)

system with generalized mass and stiffness respectively [95,45]:

m̃ = m+
h∫
0

mc

h (ψ (ξ))2dξ = m+ 33
140mc

k̃ =
h∫
0

EI
(
ψ′′ (ξ)

)2
dξ = 3EI

h3

(2)

At an arbitrary time-instant after the initiation of rocking, the position of the lumped
mass (Xm, Ym), any point along the column (Xmc , Ymc ) and the midpoint of the rigid base
(Xmb , Ymb ) can be expressed as:{

Xm = ug(t)− sgn (φ) b cosφ+ h sinφ+ u cosφ
Ym = sgn (φ) b sinφ+ h cosφ− u sinφ{
Xmc = ug(t)− sgn (φ) b cosφ+ ξ sinφ+ uψ cosφ
Ymc = sgn (φ) b sinφ+ ξ cosφ− uψ sinφ{
Xmb = ug(t)− sgn (φ) b cosφ
Ymb = sgn (φ) b sinφ

(3)

where ug (t) denotes the ground displacement measured from a reference point on the
ground and sgn (φ) is the signum function of the rocking rotation φ.

The equations of motion of the rocking oscillator of Figs 1(b), 1(c) can be derived using
the general form of the Lagrange’s equation:

d

dt

(
∂L

∂u̇

)
− ∂L

∂u
= Q (4)
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d

dt

(
∂L

∂φ̇

)
− ∂L

∂φ
= 0 (5)

where L = T − V , with T the kinetic energy, V the potential energy and Q the
generalized force. In particular, the kinetic energy of the rocking structure is expressed as:

T = 1
2m

(
h2φ̇2 + 2hφ̇u̇+ u̇2 + u2φ̇2 + b2φ̇2 − sgn (φ) 2buφ̇2

+u̇2g + sgn (φ) 2u̇gb sinφφ̇+ 2u̇gh cosφφ̇+ 2u̇gu̇ cosφ− 2u̇gu sinφφ̇

)
+ 1

2Imb φ̇
2 + 1

2mb

(
u̇2g + sgn (φ) 2u̇gb sinφφ̇+ b2φ̇2

)
+ 1

2mc

(
h2

3 φ̇
2 + 33

140 u̇
2 + 33

140u
2φ̇2 + 11

20hu̇φ̇+ b2φ̇2 − sgn (φ) 3
4buφ̇

2

+u̇2g + sgn (φ) 2u̇gb sinφφ̇+ hu̇g cosφφ̇+ 3
4 u̇gu̇ cosφ−

3
4 u̇gu sinφφ̇

)
(6)

where u̇, φ̇ and u̇g denote the flexural, angular and ground velocity, respectively. The
potential energy due to the gravitational forces and the strain energy of the rocking structure
becomes:

V = 3EI
2h3 u

2 +mg (sgn (φ) b sinφ+ h cosφ− u sinφ)
+ sgn (φ)mbgb sinφ+mcg

(
sgn (φ) b sinφ+ h

2 cosφ− 3
8u sinφ

) (7)

Further, the work done by the non-conservative forces gives the generalized force Q:

δWnc = Qδu = −Cu̇δu (8)

where C is the damping coefficient responsible for the energy dissipation while the struc-
ture vibrates. After substituting Eqs (6), (7), (8) into Eqs (4), (5), the equations that describe
the motion of the rocking oscillator of Figs 1(b), 1(c) become:(

m+ 33
140mc

)
ü+

(
m+ 11

40mc

)
hφ̈ =

−Cu̇− 3EI
h3 u+

[(
m+ 33

140mc

)
u− sgn (φ)

(
m+ 3

8mc

)
b
]
φ̇2

−üg
(
m+ 3

8mc

)
cosφ+ g

(
m+ 3

8mc

)
sinφ

(9)

(
m+ 11

40mc

)
hü+

[ (
Imb +mbb

2
)
+m

(
h2 + b2

)
+mu2 − sgn (φ) 2mbu

+mc

(
1
3h

2 + b2
)
+ 33

140mcu
2 − sgn (φ) 3

4mcbu

]
φ̈ =

−
(
2m+ 33

70mc

)
uu̇φ̇+ sgn (φ)

(
2m+ 3

4mc

)
bu̇φ̇

+ üg

[
−sgn (φ) (m+mb +mc) b sinφ
−
(
m+ 1

2mc

)
h cosφ+

(
m+ 3

8mc

)
u sinφ

]
+ g

[
−sgn (φ) (m+mb +mc) b cosφ
+
(
m+ 1

2mc

)
h sinφ+

(
m+ 3

8mc

)
u cosφ

]
(10)

in agreement with [95]. ü and φ̈ denote the flexural and angular acceleration, while üg and
g are the ground and gravitational acceleration, respectively.

Before rocking commences, the motion of both the fixed-base structure of Fig. 1(a) and
the rocking structures of Figs 1(b), 1(c) can be captured solely by the flexural deformation
of the column u. Hence, assuming φ = 0, φ̇ = 0 and φ̈ = 0, Eq. (9) yields the equation
of motion of the fixed-base oscillator of Fig. 1(a) and the rocking oscillator of Figs 1(b),
1(c) when it is in full contact with the ground.(

m+
33

140
mc

)
ü = −Cu̇− 3EI

h3
u− üg

(
m+

3

8
mc

)
(11)
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2.2 Rocking Initiation

Rocking initiates when the overturning moment MOT due to the external forces exceeds the
restoring moment MR of the structural system. Eq. (10) represents the moment equilibrium
of the rocking oscillator of e.g. Fig. 1(b) with respect to its pivot points including all the
forces that act on the body (e.g. seismic, gravitational, elastic, etc.). Recall that the rate of
change of the angular momentum about a point (e.g. the pivot point) is equal to the sum
of the moments (i.e. M = MOT + MR) of forces acting on the body about that point.
Therefore, Eq. (10) can be re-written as:[ (

Imb +mbb
2
)
+m

(
h2 + b2

)
+mu2 − 2mbu

+mc

(
1
3h

2 + b2
)
+ 33

140mcu
2 − 3

4mcbu

]
φ̈ =

−
(
m+

11

40
mc

)
hü− üg

(
m+

1

2
mc

)
h︸ ︷︷ ︸

MOT

− g
[
(m+mb +mc) b−

(
m+

3

8
mc

)
u
]

︸ ︷︷ ︸
MR

(12)
for clockwise (positive) rotations, and[ (

Imb +mbb
2
)
+m

(
h2 + b2

)
+mu2 + 2mbu

+mc

(
1
3h

2 + b2
)
+ 33

140mcu
2 + 3

4mcbu

]
φ̈ =

−
(
m+

11

40
mc

)
hü− üg

(
m+

1

2
mc

)
h︸ ︷︷ ︸

MOT

− g
[
− (m+mb +mc) b−

(
m+

3

8
mc

)
u
]

︸ ︷︷ ︸
MR

(13)
for counter-clockwise (negative) rotations assuming φ = 0 and φ̇ = 0. Uplift occurs when
M > 0 for clockwise (positive) rotations and M < 0 for counter-clockwise (negative)
rotations. Therefore, Eqs (12), (13) give:

∓
(
m+

11

40
mc

)
hü∓ üg

(
m+

1

2
mc

)
h− g

[
(m+mb +mc) b
∓
(
m+ 3

8mc

)
u

]
> 0 (14)

where the upper sign denotes clockwise (positive) rotations and the lower sign counter-
clockwise (negative) rotations. With the aid of Eq. (11), the uplift condition becomes:

±h
m+ 11

40mc

m+ 33
140mc

[
Cu̇+ 3EI

h3 u
+üg

(
m+ 3

8mc

) ]∓üg (m+
1

2
mc

)
h−g

[
(m+mb +mc) b
∓
(
m+ 3

8mc

)
u

]
> 0

(15)
in agreement with [95].

2.3 Impact Mechanism

During rocking, the smooth motion of the structure is interrupted by nonsmooth events (i.e.
impacts) when φ = 0, and energy is lost. The work of Housner [50] was one of the first
to treat the impact phenomenon of a rigid rocking block. That study assumed impact as an
instantaneous event. To capture the energy loss at impact, Housner [50] applied the conser-
vation of angular momentum and introduced a coefficient of restitution that connects the
pre-impact with the post-impact angular velocity.

After Housner’s seminal work [50], various analytical methodologies have been pro-
posed to capture the impact phenomenon of both rigid and flexurally deformable rocking
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structures. Focusing on flexurally deformable rocking oscillators (e.g. Fig. 1(b)), Acikgoz
and DeJong [1] assumed that the post-impact state is either immediate rocking or full contact
with the ground, with the state of less total energy to govern. Vassiliou et al. [95] extended
the model of Chopra and Yim [23] to large rocking rotations and assumed that the kinetic en-
ergy associated with the vertical components of the flexural velocity is lost at impact. Later,
Acikgoz and DeJong [2] revisited the impact problem and simulated the impact behavior
with impulsive Dirac-delta forces extending the model initially proposed in [78] for rigid
bodies. Giouvanidis and Dimitrakopoulos [45] proposed a nonsmooth dynamics methodol-
ogy to capture all physically feasible post-impact states (i.e. full contact, immediate rocking,
bouncing and/or simultaneous detachment of all contact points). That study showed that the
post-impact state of a rocking oscillator is response-dependent. However, recall that imme-
diate rocking becomes feasible only when the rocking oscillator is either very slender (i.e.
h/b > 10) or it sustains excessive flexural deformations (i.e. |umax| /b > 1) [45], which
is not the case herein (as shown in Section 3.2 and Figs 5(e), 6(e), respectively, later on).
Further, small-scale experiments have shown no immediate rocking as a post-impact state
for a rocking oscillator [88]. In this context, Zhang et al. [100] assumed that after impact
the rocking oscillator remains in full contact with the ground. That impact model showed
satisfactory results in terms of the energy lost at each impact when compared to previous
analytical models [1,95].

Thus, following [100], this work assumes that after each impact the rocking oscillator
of Figs 1(b), 1(c) remains in full contact with the ground and uplifts when the condition of
Eq. (15) is met. Note that the impact behavior of a small-scale rocking oscillator might not
necessarily be the same with the impact behavior of a large-scale rocking bridge column.
This is a limitation of the present study. However, whether a different impact model might
significantly affect the rocking response merits further investigation, which is beyond the
scope of the present study. Under these assumptions, due to the instantaneous duration of
impact u+ = u− = u. Further, since impact occurs φ+ = φ− = 0, and since the
oscillator remains in full contact with the ground after impact φ̇+ = 0. Therefore, the sole
post-impact unknown is the flexural velocity u̇+. Conservation of angular momentum gives
[95]:

u̇+ = u̇−+
Imb −mbb

2 +mc

(
−b2 + 1

3h
2 + 33

140u
2
)
+m

(
−b2 + h2 + u2

)(
m+ 11

40mc

)
h

φ̇− (16)

where u̇− and φ̇− denote the pre-impact flexural and angular velocity, respectively.
Assuming mb = 0 and mc = 0, Eq. (16) verifies the pertinent equation in [100].

3 Performance-Based Earthquake Engineering Assessment of Single-Column
Rocking Bridges

To evaluate the seismic performance of a structural system, the Pacific Earthquake Engi-
neering Research (PEER) Center proposed the performance-based earthquake engineering
(PBEE) framework [40,69]. The PBEE analysis allows for a quantitative assessement of the
seismic performance of a structural system in terms of engineering parameters, such as the
expected seismic losses accumulated in the aftermath of an earthquake. The PBEE frame-
work encompasses four steps: (i) hazard analysis; (ii) structural analysis; (iii) damage anal-
ysis; and (iv) loss analysis. Fig. 2 illustrates the PBEE framework. Specifically, given a site
location of the structure, the probabilistic seismic hazard analysis (PSHA) determines the
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Fig. 2 Performance-based earthquake engineering framework

intensity measure(s) (IM(s)) extracted from the earthquake ground motions that are probable
to occur in that area. Then, given the adopted IM(s), the structural analysis performs sim-
ulations to determine the engineering demand parameter(s) (EDP(s)) that is (are) regarded
as measure(s) of the structural response. Given the adopted EDP(s), the damage analysis
calculates the probability that the examined structural system will experience a certain level
of damage quantified via damage limit states/measures. Finally, given the levels of damage
that the structure sustains, the loss analysis connects the damage limit states/measures with
decision variables, which are expressed in monetary values and can be easily assessed by
the decision makers.

3.1 Hazard Analysis

To perform the PSHA, this section adopts the methodology proposed in [17,14]. Assume
that the examined structural systems of Fig. 1 are located in California laying on a strike-
slip fault. The minimum and maximum moment magnitudes Mw are taken as 5.5 and 8,
respectively, while the shear wave velocity averaged over the top 30 m Vs,30 is 480 m/s.
The Joyner-Boore distance RJB that characterizes the shortest distance between the site
and the surface projection of the fault plane is taken as 5 km. The IM considered herein is the
peak ground velocity (PGV ) as it was shown to be the most critical for overturning various
rocking configurations [37,47]. The PSHA provides a sample of 1,000,000 PGV values
of ground excitations that are probable to appear in the area of focus. Fig. 3(a) illustrates the
distribution of the earthquake intensities expressed via the PGV sample with mean value
0.28 m/s and standard deviation 0.26 m/s.
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Fig. 3 (a) Probability density function of the generated PGV sample and (b) hazard curve (in logarithmic
scale) for the area of focus after conducting the probabilistic seismic hazard analysis

To connect the earthquake events that are likely to appear in the examined area (i.e.
California) with their annual frequency of exceedance, the Gutenberg-Richter recurrence
law is adopted [48]:

log10λM = A−B ·M (17)

where λM is the frequency of the earthquakes with magnitudes greater than M , while
A and B are constants equal to 3.94 and 0.89, respectively [89]. Fig. 3(b) plots the
hazard curve (in logarithmic scale) that provides the mean annual frequency of exceedance
λM of every earthquake that is likely to occur in the area of focus characterized by the
adopted PGV sample of Fig. 3(a).

3.2 Structural Analysis

This section investigates the seismic response of the single-column structural systems of
Fig. 1. Each structure is considered to be part of a two-span box-girder bridge of total length
L = 60 m and width W = 10 m. Assume that the total mass of the column mc is 25% of
the total lumped mass m for all structural systems of Fig. 1, while the total mass of the base
mb is 15% of the total lumped mass m for the structure of Fig. 1(b) and 17% of the total
lumped mass m for the structure of Fig. 1(c), respectively. The lumped mass m is located
at height h = 8 m. The rocking structure of Fig. 1(b) has base-width 2b = 3 m [100,99] and
slenderness α = 0.18 rad = π/17 (i.e. α < π/15 as reported in [99]), while the rocking
structure of Fig. 1(c) has base-width 2b = 4.6 m and slenderness α = 0.28 rad = π/11 (i.e.
π/15 < α < π/10 as reported in [99]). For consistency, the examined structural systems
have identical natural frequency ωn = 8p, where p =

√
g/Rm is the frequency parameter

of the rocking oscillator with Rm being the diagonal distance of the lumped mass from the
pivot point (see e.g. Fig. 1(b)). The damping ratio ζ is taken equal to 5% for the fixed-base
oscillator of Fig. 1(a). For the rocking oscillator of Figs 1(b), 1(c), after rocking commences,
the damping ratio, in theory, is increased compared to the pertinent damping ratio when the
rocking oscillator is in full contact with the ground [23,79,72,1,95]. Due to the lack of large-
scale experiments that propose appropriate damping values for rocking bridge columns, this
study follows [95,45] and assumes a constant damping ratio of 5% during rocking and a
reduced damping ratio value during full contact (see e.g. [95] for further details).

To connect the IM created during the PSHA (Section 3.1), appropriate EDPs for both
structural configurations need first to be defined. Based on Section 2, the two EDPs used in
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this study are: (i) the absolute peak flexural deformation |umax| normalized with respect
to the height h (Eq. (18)); and (ii) the absolute peak rocking rotation |φmax| normalized
with respect to the slenderness α (Eq. (19)).

EDP1 =
|umax|
h

(18)

EDP2 =
|φmax|
α

(19)

The two EDPs of Eqs (18), (19) describe completely the motion of the structural systems of
Fig. 1. Specifically, when rocking motion is allowed, the structures of Figs 1(b), 1(c) might
initiate rocking (i.e. rocking simulations |φmax|/α > 0) or not (i.e. nonrocking simulations
|φmax|/α = 0). In case the structures do not commence rocking (i.e. nonrocking simula-
tions), from a dynamics perspective, they behave as a single degree-of-freedom oscillator
(i.e. as the fixed-base structure of Fig. 1(a)). Thus, their motion is completely captured by
the flexural deformation |umax|/h. On the other hand, when rocking commences, a percent-
age of the rocking cases end with overturning (i.e. rocking overturning simulations), where
|φmax|/α attains, in theory, an arbitrarily large value. The remaining rocking cases termi-
nate without overturning (i.e. safe rocking simulations) and they yield in-between (nonzero)
values of |φmax|/α.

Each of the structural systems of Fig. 1 is subjected to a series of strong ground mo-
tions adopted from the Pacific Earthquake Engineering Research (PEER) Center database
(i.e. Tables A1, A2, A3, A4 in [15]). The database covers a wide range of both pulse-type
and nonpulse-type ground motions with magnitudes 6 ≤ Mw ≤ 8 and distance from
the fault Rrup ≤ 50 km. The adopted ground motions consist of two horizontal compo-
nents and one vertical. Both horizontal components are used separately, while the vertical
component is ignored. To induce higher levels of demand, a scale factor of 1, 1.25 and
1.5 is, respectively, assigned to the accelerograms of the adopted database [90]. To pre-
serve the kinematic features of the ground motions, larger scale factors have not been used.
Therefore, 960 response-history analyses are conducted for each of the examined structural
systems of Fig. 1.

Figs 4, 5, 6 illustrate the seismic response of the fixed-base structure (Fig. 4) and the
rocking structures with slenderness α = 0.18 rad (Fig. 5) and α = 0.28 rad (Fig. 6) with
respect to the adopted ground motion intensity measure. As a first approach, comparison
of Figs 4, 5(b) reveals that rocking motion considerably reduces the structural deformation

0 1 2 3

0

0.02

0.04

0.06

Fig. 4 Seismic response analysis of the conventionally designed (fixed-base) structure of Fig. 1(a)
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Fig. 5 Seismic response analysis of the rocking structure of Fig. 1(b) (i.e. α = 0.18 rad)

|umax|/h and therefore damage at the column. In addition, Figs 5, 6 unveil that increas-
ing the slenderness of the structure mitigates the rocking response |φmax|/α. However,
Figs 5(c), 6(c) show that increase of the slenderness leads also to slight increase of the struc-
tural deformation |umax|/h and subsequently potentially higher levels of damage. Further,
Figs 5(c), 6(c) show that after a certain limit of rotation (i.e. |φmax|/α = 0.4−0.5) no
considerable increase on the structural deformation occurs. Finally, both Figs 5, 6 illustrate
that when the rotation |φmax|/α exceeds the critical rotation φcr/α [95], the structure
becomes dynamically unstable and overturns. To be more conservative and capture cases
beyond the present analysis, though, this study assumes that rocking angle |φmax|/α larger
than 1.5 times the critical rotation φcr/α leads to overturning of the structure.
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Fig. 6 Seismic response analysis of the rocking structure of Fig. 1(c) (i.e. α = 0.28 rad)

3.3 Damage Analysis

The seismic response of e.g. the conventionally designed (fixed-base) structural system of
Fig. 1(a), investigated in Section 3.2, is related to the damage occurred at the structure
through appropriate damage measures. When excessive damage occurs, the structure col-
lapses and subsequently the whole bridge needs to be reconstructed. This work assumes that
damage is occurred only at the column of the structure due to seismic forces [57]; all other
kinds of damage (e.g. when impact with the ground occurs after collapse of the structure,
etc.) are ignored. The results from the structural analysis of Fig. 4 are utilized to predict
the levels of the expected damage of the fixed-base structure of Fig. 1(a). To quantify the
seismic damage, this section adopts the damage limit states (or limit values of column dam-
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Table 1 Damage limit states of the conventionally designed (fixed-base) structure of Fig. 1(a).

Damage
limit
state

Capacity limit [52] Damage description [49,16,44,57]

LS1 |umax|
h

= 0.005 Slight concrete cracking and spalling at the column. Onset of yield-
ing of the reinforcing bars. Column in operational condition (damage
requires no more than cosmetic repair)

LS2 |umax|
h

= 0.010 Moderate concrete cracking and spalling at the column. Damage to the
exposed reinforcing bars. Minimal residual displacements. Column is
still operational (column is structurally sound, damage is repairable)

LS3 |umax|
h

= 0.020 Extensive flexural damage at the column in the form of buckling and/or
fracture of the longitudinal reinforcing bars, transverse steel loss, etc.
Considerable residual displacements. Column is not operational (col-
umn is structurally unsafe, damage is considerable and repairs are im-
mediate)

LS4 |umax|
h

= 0.025 Complete damage and collapse of the column (column and the whole
bridge need to be reconstructed)

age) proposed by HAZUS [49]. According to HAZUS [49], the damage is categorized into
four levels/states, i.e. slight, moderate, extensive and complete (Table 1). Jeon et al. [52]
proposed drift ratios that quantify each damage limit state of a two-span single-column box-
girder bridge constructed in California (e.g. Fig. 1(a)). Specifically, the median column drift
ratio limits are 0.5%, 1%, 2% and 2.5% to reach the slight, moderate, extensive and com-
plete damage limit state, respectively. Similar drift ratio limits have also been proposed by
[43,70,9]. The first damage limit state of 0.5% drift ratio, when exceeded, corresponds to
slight cover concrete cracking and spalling at the column end, and it denotes the onset of
yielding of the reinforcing bars. However, the column remains in operational condition and
the damage requires no more than cosmetic repairs. At the second damage limit state (i.e.
1% drift ratio), damage is described as moderate with the presence of minor residual dis-
placements. The column is still operational and the damage is repairable. Extensive damage
occurs when buckling and/or fracture of the reinforcing bars occurs (i.e. at 2% drift ratio).
At that damage limit state, the column is structurally unsafe with substantial residual dis-
placements. When the response of the fixed-base structure exceeds the value of 2.5% drift
ratio, complete damage and collapse of the column occurs with the reconstruction of the
whole bridge to be required.

On the other hand, Figs 5, 6 illustrate that the seismic response of the rocking struc-
tural systems of Figs 1(b), 1(c), respectively, can be adequately described by three damage
limit states (Table 2). The first damage limit state coincides with rocking initiation and oc-
curs when the flexural deformation |umax| /h becomes equal to the critical deformation
ucr/h [95] (i.e. when the condition of Eq. (15) is met). Till that damage limit state, the
rocking structures remain in full contact with the ground and, from a dynamics perspec-
tive, they behave as single degree-of-freedom (fixed-base) structures. Note that, the limit
value of ucr/h of the examined rocking structures is approximately equal to the per-
tinent limit value of 0.5% drift ratio of the fixed-base structure (see e.g. Fig. 4 versus
Fig. 5(c) versus Fig. 6(c)). For this reason and due to the lack of large-scale experiments
that quantify the damage accumulated on rocking bridge columns after seismic events, Ta-
ble 2 assumes that the damage associated with the examined structural systems can be re-
garded as equivalent when similar drift levels are reached. Subsequently, after rocking com-
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Table 2 Damage limit states of the rocking structures of Figs 1(b), 1(c).

Damage
limit
state

Capacity limit Response
mode

Damage description

LS1 |umax|
h

= ucr
h

Rocking ini-
tiation

Slight concrete cracking and spalling at the col-
umn. Onset of yielding of the reinforcing bars.
Column in operational condition (damage requires
no more than cosmetic repair)

LS2 |φmax|
α

= 0.35 Safe rocking Moderate concrete cracking and spalling at the
column. Damage to the exposed reinforcing bars.
Minimal residual displacements. Damage at the
pivot points and the abutments due to rocking mo-
tion. Column is still operational (column is struc-
turally sound, damage is repairable)

LS3 |φmax|
α

= 1.5
(
φcr
α

)
Rocking
overturning

Moderate concrete cracking and spalling at the
column. Damage to the exposed reinforcing bars.
Minimal residual displacements. Damage at the
pivot points and the abutments due to rocking mo-
tion. Column is still operational (column is struc-
turally sound, damage is repairable, the column-
base system can be reused after the applied re-
pair methods, the whole bridge needs to be recon-
structed)

mences, slight cover concrete cracking and spalling occur at the rocking column with the
damage being minor that requires no more than cosmetic repairs. Further, Figs 5, 6 show
that, when the rotation |φmax| /α exceeds a limit value of 0.3−0.4, the flexural deforma-
tion |umax| /h of the column increases rapidly with no particular trend. Hence, the limit
value of |φmax| /α = 0.35 is considered as the second damage limit state. The threshold
value of the second damage limit state is based on engineering judgment and it is selected to
be relatively small to express the level of safe rocking action that is targeted in rocking ap-
plications. Note from Fig. 5(c) that when the limit value of |φmax| /α = 0.35 is exceeded,
the structural deformation |umax| /h of the rocking column approximately reaches the
pertinent deformation of the fixed-base column that corresponds to 1% lateral drift ratio.
Therefore, at that damage limit state, this work assumes that, on average, both rocking struc-
tures of Figs 1(b), 1(c) experience equivalent levels of damage with the fixed-base structure
of Fig. 1(a), which is characterized by moderate cover concrete cracking and spalling, dam-
age at the reinforcing bars and minor residual displacements. However, the rocking columns
of Figs 1(b), 1(c) are still structurally sound and the damage is repairable. Note that, during
rocking motion, damage is also concentrated at the pivot points and the abutments. This kind
of damage, though, is considered as local and it is not taken into account during the damage
analysis of the rocking structures. In addition, recent studies proposed construction method-
ologies which aim to minimize the damage at the pivot points (e.g. [26] among others). The
last damage limit state (i.e. LS3) corresponds to overturning of the rocking columns due to
excessive rocking rotation. Recall from Section 3.2 and Figs 5, 6 that, when |φmax| /α >
1.5(φcr/α), the rocking oscillator becomes dynamically unstable and the restoring moment
is unable to re-center the structure, thus, overturning occurs. In that case, overturning of the
rocking columns lead to overturning of the rocking bridges. Importantly, Figs 5, 6 reveal
that, even though overturning occurs and both rocking bridges need to be reconstructed,
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the structural deformation (i.e. drift) of the rocking columns remain low (i.e. |umax| /h <
1.8%) compared to the pertinent deformation that corresponds to the extensive (i.e. 2%)
and/or complete (i.e. 2.5%) damage limit state of the fixed-base column. Hence, even when
overturning occurs, due to the low structural deformation and thus minimal seismic damage,
both rocking columns can be considered as structurally sound with the damage being charac-
terized as moderate and repairable — one of the main benefits of rocking design. Therefore,
the analysis herein assumes that, after the applied repair methods, the rocking column-base
systems can be reused reducing considerably the repair cost of the structures — a distinct
characteristic of the ABC method.

Based on the description of the damage limit states in Tables 1, 2 and the seismic re-
sponse of the examined structural systems in Figs 4, 5, 6, this section employs the fragility
function fitting method [13] to calculate the probability of exceeding the certain limit values
that correspond to each damage limit state. The fitting methodology to calculate the proba-
bility of exceedance can be estimated following the maximum likelihood estimation (MLE)
approach [13]. Note that there are alternative methods to calculate the exceedance probabil-
ity, e.g. the logistic regression, which is commonly used to predict binary outcomes [71].
However, the logistic regression is consistent with maximum likelihood principles and gives
(almost) identical results with the MLE methodology [13]. In general, the MLE method cal-
culates the fragility function parameters (µ̂, β̂) for which the assumed lognormal distribution
(with mean µ and standard deviation β) [42] attains the highest likelihood of producing
the observed data. Following [83,42], the likelihood function becomes:

Lf =

n∏
i=1

(
PLSi|IM

)zi · (1− PLSi|IM)1−zi (20)

where n denotes the number of damage limit states for each structure and zi is the
binomially distributed variable that equals unity when the pertinent damage limit state is
reached and null otherwise.PLSi|IM is the probability of reaching or exceeding the damage
limit state i given an IM = X and, in general, is equal to [83,42]:

P (demand ≥ LS|X) = Φ

(
lnX − µ

β

)
=

1

2

(
1 + erf

(
lnX − µ
β
√
2

))
(21)

where erf is the error function and Φ () is the standard normal cumulative distribution
function. Hence, the likelihood function takes the following form:

Lf =

n∏
i=1

Φ

(
lnXi − µ

β

)zi
·
(
1− Φ

(
lnXi − µ

β

))1−zi
(22)

where numerical optimization returns the parameters µ̂, β̂ that maximize the likelihood
function [13]:{

µ̂, β̂
}
= max

µ,β

n∏
i=1

Φ

(
lnXi − µ

β

)zi
·
(
1− Φ

(
lnXi − µ

β

))1−zi
(23)

Fig. 7 plots the fragility curves of the examined structural systems of Fig. 1. Note from
Fig. 7 that, even though rocking motion considerably reduces structural deformation and
therefore damage at the column (see e.g. Fig. 4 versus Fig. 5), it makes the structure vul-
nerable to excessive rocking rotations and thus overturning. Recall from Section 3.2 that, to
avoid biased conclusions, the rocking structure of Fig. 1(b) is intentionally designed with its
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Fig. 7 Fragility curves of (a) the fixed-base structure of Fig. 1(a); and (b), (c) the rocking structures of
Figs 1(b), 1(c) with respect to the adopted intensity measure

slenderness outside the optimal range defined in [99], which makes the rocking structure of
Fig. 1(b) more fragile with respect to the probability of overturning compared to the prob-
ability of collapse of its fixed-base counterpart. On the other hand, the slenderness of the
rocking structure of Fig. 1(c) lies within the optimal range, improving considerably its prob-
ability of overturning (as Fig. 7(c) shows). Nevertheless, a comparison of the structural sys-
tems of Fig. 1 solely in terms of their seismic fragility would be unfair and incomplete due
to their different structural characteristics and the different nature of the pertinent damage
limit states that describe their seismic performance/fragility. For a more holistic approach,
more metrics need to be considered. Therefore, this study extends recent studies [99] that
focused on the fragility analysis of the structural systems of Fig. 1 and quantifies also their
seismic losses expected after severe seismic events.

3.4 Loss Analysis

From the hazard (Section 3.1), structural (Section 3.2) and damage analysis (Section 3.3),
the seismic performance of the structural systems of Fig. 1 has been evaluated in terms of
response parameters of interest to structural engineers (e.g. rocking rotation and/or flexural
deformation). The structural damage, though, investigated in Section 3.3, is related to the
seismic losses through decision variables. These decision variables allow engineers, and in
general any decision makers, to compare and assess structures in terms of metrics that are
comprehensible to all parties. The decision variables considered as the most applicable to
bridges are: (i) the (short-term) seismic (repair) losses for the damaged components or the
whole bridge [60]; (ii) downtime, i.e. the time that is required for the bridge to restore its
functionality through either repair methods or reconstruction of the entire bridge [60,57];
and (iii) resilience, i.e. the ability of the bridge to sustain a level of functionality for over a
period of time (determined by the decision makers) [18,19,24,28]. This section translates
the seismic response of the examined structural systems investigated in Sections 3.1, 3.2, 3.3
into understandable terms to non-engineers and compares the structures of Fig. 1 in terms of
their expected (short-term) seismic losses (see Fig. 8 later on) and their expected long-term
seismic losses (see Figs 9, 10 later on) in the aftermath of various seismic hazard scenarios.

Given the fragility curves of Fig. 7, the probability of each structural system to be in the
different damage limit states can be computed. Based on the total probability theorem, the
seismic losses are defined as the sum of the seismic consequences (e.g. damage and subse-
quently repair cost) weighted with their probability of occurrence. Therefore, the expected
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Table 3 Repair cost ratio and downtime values for each damage limit state of the conventionally designed
(fixed-base) structure of Fig. 1(a).

Damage
limit
state

Repair cost
ratio [49] Repair methods description [44,57]

Downtime (days)
[49]
Mean Standard

deviation
LS1 0.03 Repair slight concrete cracking/spalling at the column

(epoxy injection, patch with concrete, etc.)
0.6 0.6

LS2 0.08 Repair moderate concrete cracking/spalling at the col-
umn, repair damaged reiforcing bars (patch with con-
crete, reinforce and recast, etc.)

2.5 2.7

LS3 0.25 Repair extensive concrete cracking/spalling at the col-
umn, replace/repair longitudinal/transverse reinforcing
bars (reinforce and recast, potential replacement of the
column)

75 42

LS4 1 Demolition and reconstruction of the column and the
whole bridge

230 110

seismic losses under the given IM can be expressed as [39]:

E (l) =

n∑
i=1

Ci · PLSi|IM (24)

where Ci represents the seismic consequences, e.g. the repair cost associated with the
given damage limit state i, and PLSi|IM is the conditional probability of the structure
to be at the given damage limit state. The consequences of a seismic event Ci are quan-
tified in monetary values and expressed as the summation of the direct and indirect costs
accumulated after an earthquake. Direct costs are usually associated with the reconstruction
expenses and are directly related to the level of structural damage. Indirect costs account for
the losses caused by additional travel time and distance (e.g. when the bridge is partially or
fully closed) [84,59,28]. This work considers only the direct costs. Therefore, the seismic
consequences (i.e. direct costs) associated with the given damage limit states are assumed
proportional to the reconstruction cost of the bridge [84,63,28,39]:

Ci = RCRi · crec ·W · L (25)

where W and L are the bridge width and length, respectively. crec is the reconstruction
cost, which for the fixed-base structure of Fig. 1(a) is translated into 2,306 $/m2 in present
monetary values [101]. RCRi is the repair cost ratio that corresponds to each damage limit
state. The repair cost ratios are expressed as a percentage of the reconstruction cost of the
entire bridge [49], and they differ from damage limit state to damage limit state since the
repair methods vary depending on the magnitude of damage. In particular, low levels of
damage (i.e. 0.5% drift ratio in Table 1) cause cover concrete cracking and spalling, which
can be repaired using concrete patching, epoxy crack sealing, etc. (Table 3). Higher levels of
damage (i.e. 1% drift ratio in Table 1) require replacement of the buckled reinforcing bars,
steel jacketing or even replacement of the column in case it is considered as structurally
unsafe (i.e. 2% drift ratio in Table 1). Hence, the more severe the damage, the larger the
repair cost ratio. HAZUS [49] proposed repair cost ratio values for conventionally designed
(fixed-base) bridges (Table 3). Note in Table 3 that, in case of bridge collapse (i.e. when LS4
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Table 4 Repair cost ratio and downtime values for each damage limit state of the rocking structures of
Figs 1(b), 1(c).

Damage
limit
state

Repair cost
ratio [49] Repair methods description

Downtime (days)
[49,64]
Mean Standard

deviation
LS1 0.03 Repair slight concrete cracking/spalling at the column

(epoxy injection, patch with concrete, etc.)
0.6 0.6

LS2 0.08 Repair moderate concrete cracking/spalling at the col-
umn, repair damaged reiforcing bars (patch with con-
crete, reinforce and recast, etc.). Repair damage at the
pivot points and the abutments

2.5 2.7

LS3 1 Repair moderate concrete cracking/spalling at the col-
umn, repair damaged reiforcing bars (patch with con-
crete, reinforce and recast, etc.). Repair damage at the
pivot points and the abutments. Reuse the column-base
system after the applied repair methods. Reconstruction
of the whole bridge

46 22

in Table 1 is exceeded), the repair cost equals the reconstruction cost of the bridge, thus, the
repair cost ratio becomes unity.

Similarly, Table 4 presents the pertinent repair cost ratio values for each damage limit
state of the rocking structures of Figs 1(b), 1(c). Importantly, recall that, uplift considerably
reduces structural deformation (i.e. drift) and therefore the accumulated (on the column)
seismic damage (see e.g. Fig. 4 versus Fig. 5). In addition, even when overturning occurs,
the rocking columns, due to low drift levels, are still structurally sound and the damage is
moderate and repairable. Hence, the rocking column-base systems after the applied repair
methods can be reused, reducing considerably the repair costs of the structures (see e.g.
Section 3.3). To capture the decrease on the repair cost of a rocking structure, Marriott et al.
[65] assigned lower values of repair cost ratios to each damage limit state of the examined
rocking bridges compared to the pertinent values of the fixed-base bridge. In contrast, due to
the lack of adequate large-scale experiments that focus on the accumulated seismic damage
on rocking bridge columns, this work introduces the coefficient r to quantify the decrease
on the repair cost in the aftermath of seismic events. In particular, since the seismic damage
accumulated on the column of the rocking structures is less severe than the pertinent damage
on the column of the fixed-base structure (see e.g. Fig. 4 versus Fig. 5), 0 < r < 1. For
instance, r = 0.5 implies that the seismic consequences on the rocking structure are half
of the pertinent consequences on the fixed-base structure. However, this does not mean that
the corresponding seismic losses are similarly half, since the expected seismic losses are
also related to the probability of occurrence of the pertinent seismic consequences (see e.g.
Eq. (24)). Subsequently, for the case of the rocking structures of Figs 1(b), 1(c), Eq. (25)
can be re-written as:

Ci = RCRi · r · crec ·W · L (26)

To assess the expected seismic losses of the examined structures, this study considers
nine different seismic hazard scenarios. These scenarios correspond to seismic events with
TR = 40, 72, 125, 225, 475, 975, 1,485, 2,475 and 4,975-year return period, which translate
into a probability of 71%, 50%, 33%, 20%, 10%, 5%, 3%, 2% and 1%, respectively, that
at least one such event will occur in the next 50 years in the area of focus. Note that this
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Fig. 8 Expected (short-term) seismic losses normalized with respect to the construction cost of the fixed-base
structure of Fig. 1(a) in the aftermath of various seismic hazard scenarios

work assumes that these seismic events are independent of each other. The hazard curve of
Fig. 3(b) provides the intensities in terms of PGV values that correspond to the adopted
seismic hazard scenarios, i.e. 0.37, 0.51, 0.65, 0.83, 1.08, 1.36, 1.53, 1.76 and 2.11 m/s,
respectively. Therefore, given the fragility curves (Fig. 7) and the repair cost ratios for each
damage limit state (Tables 3, 4), the expected seismic losses can be computed.

Fig. 8 presents a comparison of the examined structural systems in terms of the expected
seismic losses accumulated after the considered seismic hazard scenarios. To generalize the
results, Fig. 8 is presented in dimensionless terms normalized with respect to the construc-
tion cost of the fixed-base structure of Fig. 1(a) (i.e. 2,306 $/m2 [101]), which is the same as
the construction cost of the rocking structure of Fig. 1(b) since both structures have identical
geometry and are made of the same material. Observe that, due to the larger base-width, the
geometry of the rocking structure of Fig. 1(c) is slightly different from the geometry of e.g.
the rocking structure of Fig. 1(b). Fig. 8 illustrates the effect of the difference in geometry of
the examined structural systems on the seismic losses assuming that the construction cost of
the rocking structure of Fig. 1(c) either remains the same as e.g. the construction cost of the
fixed-base structure of Fig. 1(a), or, due to its larger base-width, is 5% or 10% increased.
Note that the difference in the geometry of the structure of Fig. 1(c) is small, thus, the in-
crease of its construction cost can be adequately captured by either the 5% or (even) the 10%
increase. As a first approach, Fig. 8 shows that the difference in the geometry of the struc-
ture of Fig. 1(c) has minimal effect on its seismic losses. In addition, Fig. 8 reveals that, for
almost all of the examined seismic hazard scenarios, the rocking structure of Fig. 1(b) pro-
vides a significant post-earthquake financial benefit compared to its fixed-base counterpart.
Observe that, only after extreme seismic events with TR = 2,475 and 4,975-year return
period and only when r = 0.8, which practically means that the repair cost of the rocking
structure of Fig. 1(b) is 80% of the repair cost of the fixed-base structure of Fig. 1(a), the
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rocking structure returns equivalent seismic losses compared to the fixed-base structure. The
occurrence rate of such seismic events, though, is only 2% and 1%, respectively, in the
next 50 years. For more frequent seismic events, the rocking structure outweighs the fixed-
base structure with considerably lower seismic losses regardless of the cost for the repairs
(i.e. the exact value of r). Importantly, note from Fig. 8 that when the rocking structure is
carefully designed (i.e. Fig. 1(c)), its seismic losses are substantially mitigated. In particular,
even after a severe seismic event (i.e. with TR = 4,975-year return period) and even when
r = 0.8, the rocking structure of Fig. 1(c) yields seismic losses which correspond to less
than 50% of the construction cost of the bridge. After less severe seismic events (i.e. with
TR = 40, 72, 125, 225, 475, 975, 1,485 and 2,475-year return period), regardless of the
cost for the repairs (i.e. the exact value of r), its seismic losses are consistently lower than
25% of the construction cost of the bridge — a considerable post-earthquake financial ben-
efit. A further decrease on the expected seismic losses of the rocking structures of Figs 1(b),
1(c) can be achieved by enhancing their seismic performance, thus, reducing their seismic
fragility (Fig. 7) through the use of e.g. additional re-centering and/or energy dissipation
capacity, increasing in that way, though, their construction cost. However, such an analysis
merits further investigation, which is beyond the scope of the present study.

Assuming the earthquake occurrence as a Poisson process with an occurrence rate of
λM , the expected long-term seismic losses can be expressed as [96,97]:

E (LLC) =
λM · E (l)

γ

(
1− e−γtint

)
(27)

where tint is the investigated time-interval (in years) and γ is the monetary discount rate
equal to 0.02. Fig. 9 plots the expected long-term seismic losses normalized with respect to
the construction cost of the fixed-base structure of Fig. 1(a). For brevity, Fig. 9 considers two
seismic hazard scenarios: (i) a design earthquake (i.e. with TR = 475-year return period
and 10% probability of occurrence in the next 50 years) (Fig. 9(a)); and (ii) a maximum
considered earthquake (i.e. with TR = 2,475-year return period and 2% probability of
occurrence in the next 50 years) (Fig. 9(b)). As a first approach, Fig. 9 verifies the results of
Fig. 8. Specifically, Fig. 9 shows that, after a design earthquake, both rocking structures of
Figs 1(b), 1(c) yield lower long-term seismic losses than the fixed-base structure of Fig. 1(a)
regardless of the cost for the repairs (i.e. the exact value of r). Further, after a maximum
considered earthquake, the long-term seismic losses of the rocking structure of Fig. 1(b)
become equivalent with the pertinent losses of the fixed-base structure of Fig. 1(a) only
when the repair cost of the rocking structure is 80% of the repair cost of the fixed-base
structure (i.e. when r = 0.8) (see also Fig. 8). On the contrary, the rocking structure of
Fig. 1(c) consistently outweighs both the fixed-base structure of Fig. 1(a) and the rocking
structure of Fig. 1(b), which verifies that a rocking bridge when it is carefully designed
provides a significant post-earthquake financial benefit. In addition, note in Fig. 9 that a
higher intensity earthquake (i.e. with TR = 2,475-year return period) yields lower long-
term seismic losses than a lower intensity earthquake (i.e. with TR = 475-year return
period). This counter-intuitive conclusion is due to the lower rate of occurrence (i.e. λM in
Eq. (27)) of higher intensity earthquakes compared to the corresponding rate of occurrence
of lower intensity earthquakes.

In the same context, Fig. 10 presents the (cumulative) long-term losses of all nine seis-
mic hazard scenarios with TR = 40, 72, 125, 225, 475, 975, 1,485, 2,475 and 4,975-year
return period weighted with their probability of occurrence. Comparison of Figs 9, 10 veri-
fies that increasing the number of the seismic events that would occur in the area of focus, the
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Fig. 9 Expected long-term seismic losses normalized with respect to the construction cost of the fixed-base
structure of Fig. 1(a) of (a) a design earthquake (i.e. with TR = 475-year return period and 10% probability
of occurrence in the next 50 years); and (b) a maximum considered earthquake (i.e. with TR = 2,475-year
return period and 2% probability of occurrence in the next 50 years)

(cumulative) long-term seismic losses would increase. However, further increase of the con-
sidered seismic events would jeopardize the assumption of their independence among each
other. Hence, such an analysis is ignored. Further, Fig. 10 reveals the substantially lower
long-term seismic losses of both rocking structures compared to their fixed-base counter-
part regardless of the cost for the repairs (i.e. the exact value of r). In addition, Fig. 10(c)
highlights how cost-efficient a rocking structure can be in the long-term when it is carefully
designed.
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Fig. 10 Expected (cumulative) long-term seismic losses normalized with respect to the construction cost of
the fixed-base structure of Fig. 1(a) of nine seismic hazard scenarios (i.e. with TR = 40, 72, 125, 225,
475, 975, 1,485, 2,475 and 4,975-year return period and 71%, 50%, 33%, 20%, 10%, 5%, 3%, 2% and
1% probability of occurrence in the next 50 years, respectively)
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In sum, Figs 8, 9, 10 reveal the considerable post-earthquake financial benefits that
a rocking structure provides, illustrating its dominance over the conventionally designed
(fixed-base) structure. In addition, Figs 8, 9, 10 highlight that a more careful design of a
rocking structure can further decrease its (short-term and long-term) seismic losses. In ad-
dition, Section 3.4 also underlines the need for large-scale experiments that quantify the
damage accumulated at the column of the structure during rocking motion and propose per-
tinent repair cost ratios for each damage limit state.

4 From Performance-Based to Resilience-Based Earthquake Engineering Assessment
of Single-Column Rocking Bridges

The performance-based earthquake engineering (PBEE) framework, adopted in Section 3,
evaluates the seismic performance of a structural system in terms of target demands (e.g.
peak drift and/or peak rotation). However, the PBEE approach does not incorporate the post-
earthquake functionality and resilience of the structure, which are also important indicators
of its seismic performance. On the other hand, the resilience-based earthquake engineering
(RBEE) framework focuses on mitigating the earthquake-induced risks to enable rapid re-
covery of the structure in the aftermath of severe earthquakes. Therefore, the RBEE appears
to be a more holistic approach and it is considered as an extension of the PBEE in the design
process (see e.g. [6,25] for a more detailed analysis).

Resilience represents the ability of the structure to recover from a damaged condition to
the pre-damaged functionality level. Specifically, as a performance indicator, it quantifies the
recovery (or restoration) functions of a structural system following a seismic event. These
recovery functions depend on the associated damage limit states. For instance, a bridge com-
pletely damaged needs more time to restore its functionality compared to a slightly damaged
bridge. In general, after an earthquake, repair methods are applied to the damaged structure
and its functionality starts to increase (with respect to time) up to a desirable level [59].
Various analytical models have been proposed to capture the restoration process using e.g.
linear, stepwise [73], exponential [53], trigonometric [20] or cumulative distribution func-
tions [8,49]. This study models the functionality restoration (FR) process of each structure
of Fig. 1 as a normal cumulative distribution function corresponding to each damage limit
state i [8,49]:

FRi (t) =
1

2

[
1 + erf

(
t− µdi√

2σdi

)]
(28)

where µdi and σdi represent the mean and standard deviation of the time during which
the bridge is under restoration (i.e. downtime). HAZUS [49] proposed appropriate mean and
standard deviation values of downtime (in days) depending on the level of damage and thus
the appropriate repair methods. Table 3 presents these values for the fixed-base structure
of Fig. 1(a). To estimate the corresponding downtime values for a rocking structure (e.g.
Figs 1(b), 1(c)), Mantawy et al. [64] experimentally compared the seismic performance of
a rocking versus a conventionally designed (fixed-base) bridge. That study showed, among
others, that the construction time of the rocking bridge is, on average, 5 times lower than
the construction time of the fixed-base bridge. In other words, when the fixed-base and the
rocking structures of Fig. 1 need to be reconstructed (i.e. when LS4 in Table 3 and LS3
in Table 4 are exceeded), the downtime of the rocking structures is considered as 1/5 of
the downtime of the fixed-base structure. Table 4 presents the pertinent mean and standard
deviation values of downtime for the rocking structures of Figs 1(b), 1(c). Note that the
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Fig. 11 Expected functionality of the examined structures in the aftermath of (a) a design earthquake (i.e. with
TR = 475-year return period and 10% probability of occurrence in the next 50 years); and (b) a maximum
considered earthquake (i.e. with TR = 2,475-year return period and 2% probability of occurrence in the
next 50 years)

remaining downtime values are identical among the structures of Fig. 1 (see Table 3 versus
Table 4) since damage is considered equivalent (see “damage description” in Tables 1, 2).

Based on the functionality restoration models applied to the structure after a seismic
event (e.g. Eq. (28)), its functionality can be quantified by mapping each damage limit state
to a value between null and unity. For instance, functionality equals to unity indicates that
the structure is completely functional, whereas functionality equals to null denotes a com-
pletely damaged structure. Therefore, the expected (dimensionless) time-variant functional-
ity Q (t) can be expressed as [73,38]:

Q (t) =

n∑
i=1

FRi (t) · PLSi|IM (29)

Fig. 11 plots the expected functionality of the examined structural systems in the after-
math of a design earthquake (i.e. with TR = 475-year return period and 10% probability
of occurrence in the next 50 years) (Fig. 11(a)) and a maximum considered earthquake (i.e.
with TR = 2,475-year return period and 2% probability of occurrence in the next 50
years) (Fig. 11(b)). In Fig. 11, time = t0 = 0 (days) denotes the time-instant the seismic
event occurs. Fig. 11 reveals the remarkable post-earthquake functionality of both rocking
structures compared to the fixed-base structure. Observe that, after a maximum considered
earthquake (Fig. 11(b)), both rocking structures restore their functionality in less than 1/3 of
the time needed for their fixed-base counterpart to reach equivalent levels of functionality.
After a design earthquake (Fig. 11(a)), a rocking structure restores its functionality almost
immediately when it is carefully designed. Importantly, the dominance of the rocking struc-
tures is consistent under all the remaining seismic hazard scenarios examined herein (i.e.
with TR = 40, 72, 125, 225, 975, 1,485 and 4,975-year return period). For brevity, though,
those results are omitted.

Given the time-variant post-earthquake functionality of Eq. (29), the resilience of the
structural systems of Fig. 1 can be quantified under the investigated time-interval (i.e. ∆t =
365 days). Specifically, the resilience can be expressed as [18,19,24]:

R =
1

∆t

t0+∆t∫
t0

Q (t) dt (30)
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Fig. 12 Resilience of the examined structures in the aftermath of various seismic hazard scenarios under the
investigated time-interval of ∆t = 365 days

where t0 indicates the time-instant the seismic event occurs. Similarly, the resilience is a
dimensionless parameter that is quantified with values between null and unity; the closer to
unity, the more resilient the structure. Fig. 12 illustrates the dominance of the rocking struc-
tures over the conventionally designed (fixed-base) structure after all the examined seismic
hazard scenarios. Note that the resilience of the rocking structure of Fig. 1(b) starts dete-
riorating only when a design earthquake occurs (i.e. with TR = 475-year return period).
Importantly, the resilience of the rocking structure of Fig. 1(c) starts decreasing only when a
maximum considered earthquake occurs (i.e. with TR = 2,475-year return period). On the
contrary, the resilience of the fixed-base structure of Fig. 1(a) is impaired even when a low
intensity earthquake occurs (i.e. with TR = 72-year return period).

In sum, Figs 11, 12 reveal the remarkable post-earthquake functionality and resilience
of the examined rocking structures in the aftermath of severe seismic hazard scenarios. Fur-
ther, both Figs 11, 12 underline the importance of a careful design of a rocking structure
highlighting that even a small modification of its slenderness can lead to substantial post-
earthquake financial benefits.

5 Conclusions

This work investigates the seismic performance of structural systems, which are particu-
larly attractive for bridge design. It focuses on single-column bridges either monolithically
connected with the ground (i.e. fixed-base) or able to uplift and exhibit planar rocking mo-
tion during an earthquake. It employs the well-established performance-based earthquake
engineering (PBEE) framework to compare the examined structural systems in terms of
their seismic fragility and the accumulated seismic losses in the aftermath of severe seis-
mic hazard scenarios. In addition, the present study extends the PBEE approach to evaluate
the post-earthquake functionality and resilience of the examined structures adopting a more
holistic resilience-based earthquake engineering framework.

The analysis reveals the considerably mitigated (short-term and long-term) seismic losses
of the examined rocking structures compared to the pertinent losses of the fixed-base struc-
ture, illustrating their potential as an economically feasible design solution. In particular,
even for a rocking structure, which is intentionally designed to be more fragile with respect
to the probability of overturning compared to the probability of collapse of its fixed-base
counterpart, only after extreme seismic events (i.e. with TR = 2,475 and 4,975-year return
period, which translate into 2% and 1% probability of occurrence in the next 50 years,
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respectively) and only when the repair cost of the rocking structure is 80% of the the re-
pair cost of the fixed-base structure, the rocking structure returns equivalent seismic losses
compared to the pertinent losses of the fixed-base structure. In all the remaining seismic
hazard scenarios examined herein, the rocking structure outweighs the fixed-base structure
(in terms of seismic losses) regardless of the cost for the repairs of the structural systems.
Importantly, the results show that even a small modification of the slenderness of the rocking
structure can yield substantially lower seismic losses compared to its fixed-base counterpart
regardless of the considered seismic event and/or the cost for the repairs — highlighting the
importance of a careful design.

Further, this paper also unveils the remarkable post-earthquake functionality and re-
silience of the examined rocking structures after various seismic hazard scenarios. Specif-
ically, after a maximum considered earthquake (i.e. with TR = 2,475-year return period
and 2% probability of occurrence in the next 50 years), both rocking structures restore
their functionality in less than 1/3 of the time needed for their fixed-base counterpart to
reach equivalent levels of functionality. Note that after a design earthquake (i.e. with TR =
475-year return period and 10% probability of occurrence in the next 50 years), the func-
tionality of the rocking structure is substantially enhanced when it is carefully designed. In
addition, the results show that a rocking structure sustains its resilience at the highest level
till a design earthquake occurs (i.e. with TR = 475-year return period and 10% probability
of occurrence in the next 50 years). Importantly, even a small modification of its slenderness
can yield a rocking structure that sustains its resilience at the highest level till a maximum
considered earthquake occurs (i.e. with TR = 2,475-year return period and 2% probability
of occurrence in the next 50 years). On the contrary, the resilience of the fixed-base structure
is deteriorated even when a low intensity earthquake occurs (i.e. with TR = 72-year return
period and 50% probability of occurrence in the next 50 years). The above findings redirect
our attention to the main post-earthquake financial benefits of rocking design when used as
a seismic isolation technique for bridges and pave the way for a more rational and holistic
seismic assessment framework of single-column rocking bridges.
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16. Basöz, N.I., Kiremidjian, A.S., King, S.A., Law, K.H.: Statistical analysis of bridge damage data from
the 1994 Northridge, CA, earthquake. Earthquake Spectra 15(1), 25–54 (1999)

17. Boore, D.M., Stewart, J.P., Seyhan, E., Atkinson, G.M.: NGA-WEST2 equations for predicting PGA,
PGV, and 5% damped PSA for shallow crustal earthquakes. Earthquake Spectra 30(3), 1057–1085
(2014)

18. Bruneau, M., Chang, S.E., Eguchi, R.T., Lee, G.C., O’Rourke, T.D., Reinhorn, A.M., Shinozuka, M.,
Tierney, K., Wallace, W.A., Von Winterfeldt, D.: A framework to quantitatively assess and enhance the
seismic resilience of communities. Earthquake Spectra 19(4), 733–752 (2003)

19. Bruneau, M., Reinhorn, A.: Exploring the concept of seismic resilience for acute care facilities. Earth-
quake Spectra 23(1), 41–62 (2007)

20. Chang, S.E., Shinozuka, M.: Measuring improvements in the disaster resilience of communities. Earth-
quake Spectra 20(3), 739–755 (2004)

21. Chen, Y., Larkin, T., Chouw, N.: Experimental assessment of contact forces on a rigid base following
footing uplift. Earthquake Engineering & Structural Dynamics 46(11), 1835–1854 (2017)

22. Chopra, A.K.: Dynamics of structures, vol. 3. Prentice Hall New Jersey (1995)
23. Chopra, A.K., Yim, S.C.S.: Simplified earthquake analysis of structures with foundation uplift. Journal

of Structural Engineering 111(4), 906–930 (1985)
24. Cimellaro, G.P., Reinhorn, A.M., Bruneau, M.: Framework for analytical quantification of disaster re-

silience. Engineering Structures 32(11), 3639–3649 (2010)
25. Cimellaro, G.P., Renschler, C., Bruneau, M.: Introduction to resilience-based design (RBD). In: Com-

putational Methods, Seismic Protection, Hybrid Testing and Resilience in Earthquake Engineering, pp.
151–183. Springer (2015)

26. Cui, H., Wu, G., Zhang, J., Xu, J.: Experimental study on damage-controllable rocking walls with
resilient corners. ICE Magazine of Concrete Research pp. 1–17 (2019)

27. Dar, A., Konstantinidis, D., El-Dakhakhni, W.: Seismic response of rocking frames with top support
eccentricity. Earthquake Engineering & Structural Dynamics 47(12), 2496–2518 (2018)
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