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ABSTRACT:  China has large anthropogenic chlorine emissions from agricultural fires, residential 20 

biofuel, waste incineration, coal combustion, and industrial processes. Here we quantify the effects 21 

of chlorine on fine particulate matter (PM2.5) and ozone air quality across China by using the 22 

GEOS-Chem chemical transport model with comprehensive anthropogenic emissions and detailed 23 

representation of gas-phase and heterogeneous chlorine chemistry. Comparison of the model to 24 

observed ClNO2, HCl, and particulate Cl- concentrations shows that reactive chlorine in China is 25 

mainly anthropogenic, unlike in other continental regions where it is mostly of marine origin. The 26 

model is successful in reproducing observed concentrations and their distributions, lending 27 

confidence in the anthropogenic chlorine emission estimates and the resulting chemistry. We find 28 

that anthropogenic chlorine emissions increase total inorganic PM2.5 by as much as 3.2 μg m-3 on 29 

an annual mean basis through the formation of ammonium chloride, partly compensated by a 30 

decrease of nitrate because ClNO2 formation competes with N2O5 hydrolysis. Annual mean MDA8 31 

surface ozone increases by up to 1.9 ppb, mainly from ClNO2 chemistry, while reactivities of 32 

volatile organic compounds increase (by up to 48% for ethane). We find that a sufficient 33 

representation of chlorine chemistry in air quality models can be obtained from consideration of 34 

HCl/Cl- thermodynamics and ClNO2 chemistry, because other more complicated aspects of 35 

chlorine chemistry have a relatively minor effect.  36 

1. Introduction 37 

Chlorine is emitted to the atmosphere as particulate chloride (Cl-) from sea-salt, as hydrogen 38 

chloride (HCl) from volcanoes, as HCl/Cl- from combustion and industry, and as chlorocarbons 39 
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from the biosphere, fires, and industrial processes1, 2 . Subsequent atmospheric reactions can lead 40 

to the production of chlorine radicals3, with a broad range of implications for global tropospheric 41 

chemistry and air quality. We recently presented a general analysis of the role of chlorine in global 42 

tropospheric chemistry using the GEOS-Chem chemical transport model with a detailed gas-phase 43 

and heterogeneous chlorine mechanism3. Here we examine the more specific implications for 44 

China air quality through the effects of chlorine chemistry on ground level ozone and PM2.5 45 

(particulate matter smaller than 2.5 μm diameter). 46 

A unique feature of China air pollution is the magnitude of the anthropogenic chlorine source. 47 

The global tropospheric chlorine budget is dominated by marine sources, mainly through 48 

mobilization of chloride from sea salt aerosols (SSA)3. Most of the chlorine in continental regions 49 

of North America and Europe is dominated by long-range transport of this marine source.3, 4 In 50 

contrast, atmospheric measurements suggest that chlorine in China is mostly anthropogenic.5, 6 51 

Anthropogenic sources in China include coal combustion, waste incineration, industrial processes, 52 

and biomass burning, totaling more than 800 Gg Cl a-1 in recent estimates.7, 8 For comparison, 53 

anthropogenic chlorine emission in the US is estimated to be < 100 Gg Cl a-1 in the 2014 National 54 

Emissions Inventory of the Environmental Protection Agency.9  55 

In polluted environments, nighttime formation of nitryl chloride (ClNO2) followed by photolysis 56 

in the daytime returns Cl atoms and nitrogen oxide radicals (NOx) to stimulate ozone production.10-57 

13 Sarwar et al.14 applied a hemispheric-scale model to assess the effect of ClNO2 chemistry on air 58 

quality and found significant increases of ozone and decreases of nitrate PM2.5 in China, but they 59 

did not include anthropogenic sources of chlorine (which as we will see are dominant), and they 60 

showed no model evaluation for China due to lack of ClNO2 measurements in China prior to 2010. 61 

In the recent decade, a number of measurements of ClNO2 and Cl- concentrations were conducted 62 
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in China6, 13, 15-19. A number of China-focused model studies incorporated anthropogenic chlorine 63 

emissions and chlorine chemistry with varying degrees of complexity and found that ClNO2 64 

chemistry increases ozone in polluted regions of China by 2-7 ppb20-25
. Most of these studies 65 

mainly have focused on ClNO2 chemistry and its impacts on the atmospheric oxidative capacity 66 

and ozone concentrations. The effects of anthropogenic chlorine on PM2.5 have not been 67 

investigated in the previous studies. 68 

Here, we use the GEOS-Chem model in a full-year high-resolution simulation over China and 69 

the adjacent ocean, including best estimates of anthropogenic and natural chlorine emissions 70 

combined with detailed representation of chlorine chemistry. We evaluate the model with the 71 

ensemble of atmospheric chlorine observations available for China, verifying the emission 72 

inventory. From there we quantify the effect of anthropogenic chlorine on both PM2.5 and ozone 73 

air quality in China. Our work extends previous studies in its comprehensive treatment of chlorine 74 

chemistry, full accounting of both anthropogenic and natural chlorine emissions, and detailed 75 

comparisons with observations.  76 

2. Materials and Methods 77 

2.1 GEOS-Chem model 78 

We use the GEOS-Chem model version 11-02d (http://www.geos-chem.org), which includes a 79 

detailed representation of coupled ozone–NOx– volatile organic compound (VOC)–PM–halogen 80 

chemistry26, and to which we have included an updated comprehensive treatment of chlorine 81 

chemistry3. GEOS-Chem is driven by MERRA2 (the Modern-Era Retrospective analysis for 82 

Research and Applications, Version 2) assimilated meteorological fields from the NASA Global 83 

Modeling and Assimilation office (GMAO) with native horizontal resolution of 0.5°×0.625° and 84 
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72 vertical levels from the surface to the mesosphere. Our simulation is conducted at that native 85 

resolution over East Asia (60°–150°E, 10°S–55°N), with dynamical boundary conditions from a 86 

global simulation with 4°×5° resolution. The Multi-resolution Emission Inventory for China 87 

(MEIC)27 including seasonal, weekly, and diurnal variations for 2014 is used for Chinese 88 

anthropogenic emissions other than chlorine. Chlorine emissions are described in Section 2.2. 89 

Results presented here are from a 1-year simulation for 2014 after a 3-month model spin up.  90 

GEOS-Chem has previously been used in a number of model studies of PM2.5 and ozone air 91 

quality in China, showing that the model provides in general a credible representation of 92 

observations28, 29. However, none of these studies included comprehensive representation of 93 

chlorine chemistry. Here we added to the model the detailed chlorine chemistry mechanism (fully 94 

coupled with bromine and iodine) of Wang et al.3. The model includes 12 gas-phase inorganic 95 

chlorine species: Cl, Cl2, Cl2O2, ClNO2, ClNO3, ClO, ClOO, OClO, BrCl, ICl, HOCl, HCl, and 96 

two size ranges for aerosol Cl- (fine mode <1 μm diameter and coarse mode >1 μm diameter). Gas-97 

aerosol equilibrium of HCl and Cl- is calculated with ISORROPIA II 30 as part of the H2SO4-HCl-98 

HNO3-NH3-NVCs thermodynamic system, where NVCs  stands for non-volatile cations and is 99 

treated in ISORROPIA II using Na+ as proxy. The most important heterogeneous reactions include 100 

N2O5 + Cl- producing ClNO2, HOBr + Cl- producing BrCl, HOI + Cl- producing ICl, HOCl + Cl- 101 

producing Cl2, OH + Cl- producing Cl2 (two-step process), and ClNO2 + Cl- producing Cl2.  ClNO2, 102 

BrCl, ICl, and Cl2 all go on to photolyze to produce Cl atoms. 103 

We added some updates to the Wang et al.9 mechanism including Cl oxidation of toluene, 104 

monoterpenes, limonene, and methyl ethyl ketone, as given in Table S1. We updated the 105 

parameterization of ClNO2  formation from nighttime heterogeneous reaction of N2O5 with Cl- in 106 

the aerosol aqueous phase to include the effect of organic coating, as described by McDuffie et 107 
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al.31  We added the reaction between HOCl and dissolved SO2 (S(IV) ≡ HSO3
- + SO3

2-) to form 108 

SO4
2- aerosol.32, 33 We also now include in the model the reactive uptake of HCl on natural dust, 109 

limited by dust alkalinity34. Details of these updates are described in Supporting Information A1.  110 

Cl-initiated VOCs oxidation can contribute to the formation of secondary organic aerosol 111 

(SOA),35, 36 but this is not considered in the model because of the large uncertainties involved. 112 

Instead, our simulation uses a simple SOA scheme which takes a fixed-yield approach to SOA 113 

formation and displays good skill in capturing observations.37, 38  114 

2.2. Anthropogenic Chlorine Emissions 115 

We include anthropogenic chlorine emissions from the China inventory of Fu et al.7 This 116 

inventory was developed for 2014 with a horizontal resolution of 0.1°×0.1°. It gives total 117 

anthropogenic (HCl + fine mode Cl-) emissions in China of 254 Gg Cl a-1 from agricultural fires, 118 

253 Gg Cl a-1 from residential biofuel, 251 Gg Cl a-1 from waste incineration, 109 Gg Cl a-1 from 119 

coal combustion, and 65 Gg Cl a-1 from industrial processes, for a total source of 932 Gg Cl a-1. 120 

The inventory separates HCl (458 Gg Cl a-1) and particulate Cl- (486 Gg Cl a-1) emissions, but the 121 

cations associated with Cl- emissions are not identified. We assume in our standard simulation that 122 

all emissions are as HCl but also conduct a sensitivity simulation where particulate Cl- is emitted 123 

as such with accompanying NVCs. There is negligible difference in results, as discussed below. 124 

We apply monthly, weekly, and diurnal scaling factors for coal combustion and industrial sources 125 

based on the MEIC inventory,27 and national mean monthly scaling factors for agricultural fires, 126 

residential biofuels, and waste incineration based on Fu et al.7  127 

We do not include any anthropogenic chlorine emissions from other countries in East Asia. The 128 

only global emission inventory is that of McCulloch et al.39, built for the 1990s and found to be 129 
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considerably biased high relative to present-day observations and regional emission estimates.3, 7, 130 

8 The effect of these emissions on China air quality would be small compared to the effect of SSA 131 

chloride from the neighboring ocean.  132 

Dichloromethane (CH2Cl2) and chloroform (CHCl3) are emitted from industrial activities and 133 

produce Cl atoms in GEOS-Chem through photolysis and oxidation3. Anthropogenic CH2Cl2 134 

emission in China was estimated to be 318 Gg a-1 in 2016 in a bottom-up study by Feng et al.,40. 135 

The total CHCl3 emission in China was estimated to be 88 Gg a-1 in 2015 based on a Bayesian 136 

inversion of surface measurements.41 We include anthropogenic CH2Cl2 and CHCl3 emission 137 

using these national numbers with a spatial distribution the same as anthropogenic HCl. Since both 138 

CH2Cl2 and CHCl3 have long lifetimes (> 250 days), they have negligible effect on Chinese air 139 

quality and will not be discussed further. 140 

Dust is an additional source of particulate chloride but most of this would be present in coarse 141 

particles (>2.5 μm diameter) and not contribute to PM2.5. Natural PM2.5 dust in GEOS-Chem42 has 142 

an emission of 3300 Gg a-1 in China in 2014; assuming 0.15% Cl by mass based on US data,43 this 143 

yields a Cl- source of  4.9 Gg Cl-  a-1. Previous studies44, 45 have suggested that anthropogenic dust 144 

may contribute to PM2.5 Cl- concentrations in urban environments. We include these emissions 145 

using the AFCID inventory46, again assuming that the dust is 0.15% Cl by mass. The resulting 146 

emission in China is 7.9 Gg Cl a-1. These dust emissions are very small compared to the 147 

anthropogenic chlorine emission from combustion. 148 

Figure 1 shows the annual HCl + Cl- emissions from Chinese anthropogenic sources and Cl- 149 

emissions from sea salt aerosol (SSA) as implemented in GEOS-Chem. There are two areas of 150 

high anthropogenic emissions, in the North China Plain (NCP) due to waste incineration and 151 

residential biofuel, and in Northeast China due to agricultural fires and residential biofuel. The 152 
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SSA source over the ocean is much larger than the anthropogenic source over land (note difference 153 

in scales in Figure 1), and can contribute to PM2.5 Cl- over land both by direct transport and (for 154 

coarse SSA) by displacement to HCl and subsequent re-condensation to PM2.5 
3. However, the 155 

SSA influence over land is also limited by rapid deposition during transport. The GEOS-Chem 156 

simulation allows quantification of these effects. 157 

3. Results and Discussion  158 

3.1. Anthropogenic chlorine over China 159 

Figure 2 shows our simulated annual mean distributions of HCl and PM2.5 Cl- concentrations in 160 

surface air. Concentrations over China are mainly from anthropogenic chlorine emissions, despite 161 

the much larger SSA emissions off-shore. Natural dust contributes 3-10% of PM2.5 Cl- in North 162 

China in spring, and less in other regions and seasons. Annual mean HCl mixing ratios range from 163 

100 to 400 ppt over most of eastern China. In the H2SO4-HCl-HNO3-NH3-NVC thermodynamic 164 

system, HCl partitions into the aqueous particulate phase through: 165 

HCl(g) + NH3(g) ⇄ NH4
+ + Cl−    (R1) 166 

and  167 

HCl(g) + NO3
− ⇄ Cl− + HNO3(g)    (R2) 168 

Since NH3 is generally in large excess in China,47 equilibrium (R1) is driven to the right and uptake 169 

of HCl mostly takes place without displacement of NO3
-.  Figure S1 shows the HCl/(HCl + PM2.5 170 

Cl-) molar ratio over China in different seasons. On average, 66% of the emitted HCl is partitioned 171 

into the particulate phase. That fraction is larger in winter and lower in summer, mainly reflecting 172 

temperature differences.   173 
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Even without considering anthropogenic chlorine emissions, anthropogenic HCl can be formed 174 

through acid displacement of SSA Cl- by H2SO4 and HNO3 produced from anthropogenic 175 

emissions of. SO2 and NOx. This acid displacement involves (R2) and: 176 

Cl− + H2SO4 → HCl(g) + HSO4
−   (R3) 177 

H2SO4 has a much lower vapor pressure than HCl so that (R3) fully displaces Cl- if  H2SO4 is 178 

present.48 To investigate this effect we conducted two sensitivity model simulations, one without 179 

anthropogenic chlorine emissions but with anthropogenic non-chlorine emissions, and the other 180 

without any anthropogenic emissions. The difference between the two isolates the chlorine 181 

displaced from SSA Cl- by non-chlorine anthropogenic emissions, and this is shown in the right 182 

panel of Figure 2. Acid displacement requires a deficit of ammonia and thus mainly takes place 183 

offshore. The resulting HCl can then be transported back onshore and contribute to PM2.5 Cl- and 184 

chlorine chemistry inland. We find that the effect is relatively small and mainly limited to 185 

southeastern coastal China. We examined the sensitivity of our results to the speciation of 186 

anthropogenic (HCl + Cl-) emission by conducting a sensitivity simulation in which emission of 187 

Cl- is with NVCs as associated cations (instead of HCl in the standard simulation). On average, 188 

adding the NVCs emission changes the simulated annual mean HCl and Cl- concentrations by -2% 189 

and +1% respectively. 190 

Figure 2 also shows the annual mean value of the nighttime maximum ClNO2 mixing ratio in 191 

surface air, and the contributions from anthropogenic chlorine and other (mainly NOx) emissions. 192 

We use the mean nighttime maximum mixing ratio as concentration metric for ClNO2, following 193 

standard practice3, 14, because of the large diurnal variation and near-zero mixing ratios in the 194 

daytime. Again, most of ClNO2 over China is driven by anthropogenic chlorine emissions. Values 195 
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exceed 1000 ppt in inland urban areas of China, much higher than corresponding values in the US 196 

and Europe.3, 14  197 

We compared the model simulation for 2014 to observations collected in China for neighboring 198 

years (2012-2017), and assuming interannual differences to be a minor factor in model error. 199 

Continuous 2012-2013 observations of PM2.5 Cl- are available from 11 sites as part of the CARE-200 

China  network49. The annual mean observed values are shown as circles in the middle-left panel 201 

of Figure 2. The model captures the spatial distribution of observed Cl- with a correlation 202 

coefficient (R) of 0.78 and a normalized mean bias (NMB) of -12%. PM2.5 Cl- concentrations in 203 

inland China are much higher than the corresponding concentrations in the US (mostly < 0.1 µg 204 

m-3).3, 44  205 

Figure 3 shows absolute maximum and mean nighttime maximum ClNO2 mixing ratios from 206 

several field studies, and compares to the modeled values during the measurement months. 207 

Measurement locations are indicated in Figure 2. The model successfully simulates the surface 208 

ClNO2 observations for the three sites in the Beijing-Tianjin-Hebei area (Changping, Beijing, and 209 

Wangdu) and the mountain site (Mt. Tai) in NCP during their respective measurement periods. 210 

Ignoring the anthropogenic chlorine emissions would result in underestimates by more than a 211 

factor of 10 at these sites. In contrast, anthropogenic chlorine is relatively minor at the mountain 212 

site in Hong Kong (Mt. Tai Mo Shan), both in the model and observations, because SSA provides 213 

the dominant source of Cl- at that site. The model overestimates anthropogenic influence at Ji’nan, 214 

for reasons that are not clear. The observations are much lower than for other surface sites in the 215 

North China Plain. 216 

Continuous measurements of HCl, PM1 Cl- (in particles less than 1 μm diameter), and ClNO2 217 

concentrations were made at the semi-rural surface site of Changping (40 km northwest of Beijing 218 
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urban area) during May-June 2016 by Le Breton et al.6 Back-trajectory analyses showed no 219 

significant marine influence in the data13,60. Figure 4 compares the diurnal cycle of the observations 220 

to the model.  Model concentrations at the site are almost exclusively from anthropogenic chlorine 221 

emissions. The model is consistent with the overall magnitudes observed. HCl is low at night 222 

because of dry deposition. Cl- is low in the daytime because of ventilation.  The observed nighttime 223 

peak of ClNO2 is at 23 local time, whereas ClNO2 in the model keeps on accumulating over the 224 

course of the night consistent with other observations in polluted areas, including another site near 225 

Beijing.3, 12, 18, 50, 51 The cause of the post-midnight decrease in the Changping ClNO2 data is not 226 

clear. Here and elsewhere in China, we find the ClNO2 + Cl- heterogeneous sink of ClNO2 to be 227 

unimportant because it requires aerosol pH < 2 52 which generally does not occur because of the 228 

excess of NH3. 229 

In summary, the model shows general consistency with observations of Cl-, ClNO2, and HCl 230 

available in China. We conclude from our comparisons that the chlorine over China is mainly 231 

anthropogenic, and that the underlying chlorine emissions and chemistry are relatively well 232 

understood.  233 

 234 

3.3. Impact of anthropogenic chlorine emissions on inorganic PM2.5 in China 235 

Figure 5 shows our simulated net impacts of anthropogenic chlorine emissions on annual mean 236 

PM2.5 concentrations calculated as differences between the standard simulation and a simulation 237 

without anthropogenic chlorine emissions. This does not account for Cl-initiated SOA formation, 238 

as explained in Section 2. We find that the largest impact is over Northeast China, where annual 239 

mean PM2.5 increases by 3.2 µg m-3 (6.5%), which is 9% of the Chinese national air quality 240 
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standard of 35 µg m-3 and mainly contributed by biomass burning emissions. Absolute and relative 241 

impacts in January and July are given in Figure S2. 242 

We find that anthropogenic chlorine has negligible effect on SO4
2- concentrations in China (< 243 

0.1 µg m-3). The contribution of HOCl + S(IV) to SO2 oxidation is minimal because the main sink 244 

of HOCl is photolysis.  As shown in Figure 5, anthropogenic chlorine emissions can cause annual 245 

mean surface NH4
+ concentrations to increase by up to 1 µg m-3. Since NH3 is in excess in most 246 

areas of China,47 the emitted HCl causes NH3 transfer to NH4
+ through reaction (R1), so that the 247 

pattern of enhanced NH4
+ largely matches that of  Cl- concentrations. In contrast, anthropogenic 248 

chlorine emissions result in annual average NO3
- concentrations decreases by up to 1.5 µg m-3 249 

following a similar spatial distribution as modeled ClNO2 (Figure 2). The dominant factor for the 250 

NO3
- decrease is not acid displacement by HCl (since NH3 is in excess) but the increased 251 

competition of N2O5
 + Cl- with N2O5 hydrolysis which is a major source of NO3

-
.
53  252 

 253 

3.4. Impact of anthropogenic chlorine emissions on oxidants in China 254 

Figure 6 shows the effects of anthropogenic chlorine emissions on annual mean hydroxyl radical 255 

(OH), NOx, and ozone concentrations in surface air, calculated as differences between the standard 256 

simulation and a simulation without anthropogenic chlorine emissions. OH concentrations in 257 

surface air increase by up to 6%, mainly due to ClNO2 chemistry 11, 12. Annual mean Cl atom 258 

concentrations (not shown) increase up to 2700 cm-3; 90% of that increase is from ClNO2 259 

chemistry, while the remaining 10% is from HCl + OH and from Cl2 and HOCl photolysis. The 260 

latter reactions are most important in summer but even then they contribute less than 25% of the 261 

Cl atoms.  The combined increases of both Cl atoms and OH enhance the annual mean reactivities 262 

of ethane, propane, ≥C3 alkenes, methanol, toluene, and ethanol over the North China Plain by 263 
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48%, 40%, 28%, 11%, 11%, and 10%, respectively. The increase of OH leads to a decrease in NOx 264 

since the principal sink of NOx is its oxidation by OH.   265 

As shown in Figure 6, annual mean values of maximum daily 8-hour average (MDA8) ozone 266 

concentrations increase by up to 1.9 ppb (3.2%) after including anthropogenic chlorine emissions. 267 

Seasonal effects are presented in Figure S3 and relative effects are in Figure S4. The ozone increase 268 

is mainly because of ClNO2 chemistry and is most important in winter (Figure S3) due to the longer 269 

night and higher chlorine emissions from residential heating. Wang et al.3 showed that tropospheric 270 

chlorine drives a global decrease of ozone by catalytic production of bromine radicals from sea 271 

salt aerosol, but we find that this effect is negligibly small over China because bromine 272 

concentrations (mainly of marine origin) are negligibly low.3  273 

   In summary, we have examined the impact of anthropogenic chlorine emissions on air quality in 274 

China through model simulations with a detailed chemical mechanism. The model is generally 275 

consistent with the observations available for fine particulate Cl-, HCl, and ClNO2. We show that 276 

the observations are dominantly contributed by anthropogenic chlorine emissions.  Anthropogenic 277 

chlorine increases PM2.5 concentrations in China by up to 3.2 µg m-3 on an annual mean basis 278 

because of the condensation of (NH4
+, Cl-) when NH3 is in excess, as is the case generally over 279 

China. Annual mean surface OH and MDA8 ozone concentrations increase by up to 6% and 1.9 280 

ppb, respectively, mostly driven by ClNO2 chemistry providing an early-morning source of 281 

radicals. Our results suggest that a sufficient representation of anthropogenic chlorine chemistry 282 

in air quality models for China can be obtained from consideration of H2SO4-HCl-HNO3-NH3-283 

NVCs thermodynamics and ClNO2 chemistry, since other aspects of chlorine chemistry have a 284 

relatively minor effect.  285 
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   Emissions in China are presently changing rapidly in response to the governmental Clean Air 286 

Action.27 According to the MEIC inventory, Chinese emissions decreased by 59% for SO2 and 287 

21% for NOx over 2013-2017, mainly due to emission controls applied to coal burning and 288 

industry.27 No estimates are available for trends in anthropogenic chlorine emissions. Agricultural 289 

fires in China are increasingly banned out of concern for air quality54, and coal combustion 290 

emission controls would presumably remove chlorine. On the other hand, waste incineration has 291 

increased during the 2010-2015 period.55 Better understanding of trends in anthropogenic chlorine 292 

emissions is needed for a comprehensive assessment of trends in China air quality. 293 
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 534 
 535 

Figure 1. Annual chlorine emissions from Chinese anthropogenic sources (left) and from sea salt 536 

aerosol (right). Values are for 2014. Anthropogenic emissions are from the (HCl + Cl-) inventory 537 

of Fu et al.7 including contributions from agricultural fires, residential biofuels, waste incineration, 538 

coal combustion, and industry.  Note difference in scales between panels. 539 

 540 

  541 
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 542 

Figure 2. Annual mean concentrations of HCl, PM2.5 Cl-, and nighttime maximum ClNO2 in 543 

surface air. The left panels show the concentrations in the standard GEOS-Chem simulation, with 544 

superimposed circles showing PM2.5 Cl- and ClNO2 observations discussed in the text.  The middle 545 

panels show the contributions from Chinese anthropogenic chlorine emissions, as diagnosed by 546 

difference with a simulation shutting off these emissions. The right panel shows the contributions 547 

from anthropogenic non-chlorine emissions driving Cl- displacement from sea-salt aerosol, as 548 

further diagnosed by difference with a simulation shutting off all Chinese anthropogenic 549 

emissions.  550 
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 552 

 553 

Figure 3. ClNO2 mixing ratios measured at 6 sites in China. The maximum (triangle) and mean 554 

nighttime maximum (circle) during the measurement periods are shown. Model values are sampled 555 

for the measurement locations and months. Results from a sensitivity simulation without 556 

anthropogenic chlorine emissions are also shown. Observations are for Changping56, Beijing50, 557 

Wangdu18,17; Ji’nan57, Mountain Tai15, and Mountain Tai Mo Shan13. Site locations are shown in 558 

Figure 2. Two measurements are available at the Wangdu site during the same time period, and 559 

both values are shown here.   560 
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 561 

Figure 4. Diurnal variations of HCl, PM1 Cl-, and ClNO2 concentrations at Changping in May-562 

June 2016. Model values are compared to observations from Le Breton et al.6 Median values are 563 

shown as solid lines and shaded regions span 25th - 75th percentiles. 564 
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 566 

Figure 5. Effect of anthropogenic chlorine emissions on annual mean concentrations of PM2.5 and 567 

selected components in surface air in China. Values are obtained by difference between our 568 

standard GEOS-Chem simulation and a sensitivity simulation with anthropogenic chlorine 569 

emissions shut off. Note difference in scale between panels. 570 

 571 
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 572 

Figure 6. Effect of anthropogenic chlorine emissions on annual mean concentrations of OH, NOx, 573 

and maximum daily 8-hour average (MDA8) ozone in surface air in China. Values are obtained 574 

by difference between our standard GEOS-Chem simulation and a sensitivity simulation with 575 

anthropogenic chlorine emissions shut off. Note differences in units and scales between panels. 576 




