This document is the Accepted Manuscript version of a Published Work that appeared in final form in Environmental science and technology, copyright © 2020 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.est.0c05235.

The following publication He, C., Wang, Y., Li, Z., Huang, Y., Liao, Y., Xia, D., & Lee, S. (2020). Facet engineered α-MnO2 for efficient catalytic ozonation of odor CH3SH: oxygen vacancy-induced active centers and catalytic mechanism. Environmental science & technology, 54(19), 12771-12783.

This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies.

Engineering Crystal Facet of a-MnO2 for Efficient Catalytic Ozonation of Odor CH3SH: Oxygen Vacancy-Induced Active Centers and Catalytic Mechanism

Journal:	Environmental Science & Technology
Manuscript ID	es-2020-040764.R1
Manuscript Type:	Article
Date Submitted by the Author:	n/a
Complete List of Authors:	He, Chun; Sun Yat-sen University, China, Environmental Science and Engineering Wang, Yunchen; Sun Yat-Sen University Li, Zhiyao; Sun Yat-Sen University Liao, Yuhong; Sun Yat-Sen University Xia, Dehua; Sun Yat-sen University, School of Environmental Science and Engineering Lee, Shun Cheng; The HongKong Polytechnic University, Department of Civil and Structural Engineering

1	Engineering Crystal Facet of α -MnO ₂ for Efficient Catalytic
2	Ozonation of Odor CH₃SH: Oxygen Vacancy-Induced Active Centers
3	and Catalytic Mechanism
4	
5	
6	Chun He ^{a, b} , Yunchen Wang ^a , Zhiyao Li ^a , Yuhong Liao ^a , Dehua Xia ^{a, b, *} ,
7	Shuncheng Lee ^c
8	
9	^a School of Environmental Science and Engineering, Sun Yat-sen University,
10	Guangzhou, 510275, CHINA
11	^b Guangdong Provincial Key Laboratory of Environmental Pollution Control and
12	Remediation Technology, Guangzhou, 510275, CHINA
13	^c Department of Civil and Structural Engineering, Hong Kong Polytechnic
14	University, Hong Kong, China
15	
16	
17	
18	
19	
20	
21	
22	
23	
23	
27	
25	
26	
27	Corresponding author: School of Environmental Science and Engineering, Sun Yat-sen University,
28	Guangzhou, 510275, China. Tel.: +86 20 39332690. Email address: xiadehua3@mail.sysu.edu.cn
29	(D.H. Xia).

30 Abstract

31 The oxygen vacancy in MnO_2 is normally considered as the active site for catalytic 32 ozonation, and acquiring a highly reactive crystal facet with abundant oxygen vacancy 33 by facet engineering is highly desirable for improving the catalytic reactivity. Herein, 34 three facet-engineered α -MnO₂ was prepared and successfully utilized for catalytic 35 ozonation towards an odorous CH₃SH. The as-synthesized 310-MnO₂ exhibited superior activity in catalytic ozonation of CH₃SH than that of 110-MnO₂ and 100-MnO₂, 36 37 which could achieve 100% removal efficiency for 70 ppm of CH₃SH within 20 min. 38 The results of XPS, Raman, H₂-TPR, and DFT calculation all confirm that the (310) 39 facets with higher surface energy than other facets can feature the formation of oxygen 40 vacancies, which facilitate the adsorption and activate O₃ into intermediate peroxide 41 species (O^{2-}/O_2^{2-}) and reactive oxygen species $(\bullet O_2^{-}/O_2)$ for eliminating adjacent 42 CH₃SH. In-situ diffuse reflectance infrared Fourier transform spectroscopy (In-situ 43 DRIFTS) revealed that the CH₃SH was chemisorbed at S atom to form CH₃S⁻, which 44 was further converted into intermediate CH₃SO₃⁻ and finally oxidized into SO₄²⁻ and 45 CO_3^{2-}/CO_2 during process. Attributed to the deep oxidation of CH₃SH on 310-MnO₂ 46 via efficient cycling of active oxygen vacancies, the lifetime of 310-MnO₂ can be 47 extended to 2.5 h with limited loss of activity, while 110-MnO₂ and 100-MnO₂ were 48 inactivated within 1 h. This study deepens the comprehension of facet-engineering in 49 MnO₂ and presents an efficient and portable catalyst to control odorous pollution.

50

51 Keywords: Crystal facet engineering, α-MnO₂, CH₃SH, catalytic ozonation, density 52 functional theory

- 53
- 54
- 55
- 56
- 57

581. Introduction

59 Methyl mercaptan (CH₃SH), a typical sulfur containing odorous gas (S-VOCs) 60 with high toxicity and corrosiveness, widely released from sewage treatment and 61 sanitary landfill.¹⁻³ The exposure of CH₃SH at few ppm-level can give human an unpleasant feeling and dozens of ppm-level can cause significant poisoning²⁻³. To date, 62 63 considerable efforts have been devoted to control CH₃SH, including adsorption, biological treatment, incineration, plasma technology and catalytic conversion.³⁻⁷ 64 65 Catalytic combustion with high efficiency is the most promising technology, because S-VOCs are converted to CO₂ and H₂O or less toxic products. However, the catalytic 66 67 temperature is generally higher than 200 °C, which increases the energy consumption 68 and the catalysts are prone to sintering. Therefore, the catalytic combustion may not be 69 cost-effective for CH₃SH removal from industrial activities with the concentrations 70 ranging from few to hundreds of ppm. Currently, catalytic ozonation has attracted much 71 attention because of its capacity to oxidize CH₃SH at various concentrations under mild 72 conditions.^{8,9} Especially, due to the nonselective oxidation and efficient mineralization of VOCs, catalytic ozonation causes no great accumulation of intermediates and limited 73 deactivation of catalysts.¹⁰ Moreover, as an electrophilic molecule, O₃ prefers to react 74 75 with high electronic density sites of molecules such as CH₃SH having carbon-carbon 76 or carbon-sulfur bonds.

In most studies, noble metals, transition metals, and their derived mixed oxides 77 78 (especially MnO₂), are commonly used in the catalytic ozonation, depending on its 79 plentiful valence states, versatile structures, high stability and low cost. Till now, 80 different crystal structures like α -, β -, γ - and δ -MnO₂, and different morphologies like 81 rod-, wire-, tube- and flower-like MnO₂ are designed to achieve efficient catalytic 82 ozonation. However, limited studies devoted to the dependence of reactivity on crystal facets of MnO₂^{1,11-13}. Generally, crystal facet engineering can induce specific 83 84 physicochemical properties in catalysts, owing to the distorted electronic structure and different exposed atoms in the surface of different facet engineered catalysts.¹⁴⁻¹⁶ For 85

86 instance, by tuning the morphology and ratio of different facets such as (100), (110), 87 (310), the catalytic reactivity of MnO_2 for HCHO decomposition could be evidently 88 boosted due to the enhanced adsorption/activation of O₂ and H₂O by higher oxygen 89 vacancy on (310) facet.¹⁷⁻¹⁹ Aside from the facet reforming and growth, a large 90 amplitude of catalytically active regions is indispensable for exposed surface-active 91 complexes within facet-dominated surfaces. Motivated by this work, the identified 92 property of facet engineered MnO₂ infers its great potential for catalytic ozonation of 93 CH₃SH.

94 In general, the catalytic ozonation pathway proceeds by the adsorption and 95 decomposition of O₃ to atomic oxygen species and derived reactive oxygen species (ROS) on the catalyst, both steps have an imperative bearing on the efficiency of 96 catalytic ozonation.¹⁴⁻¹⁶ As identified, the affinity and reactivity with reactants and 97 98 pollutants are both tightly related to the kind of crystal facets, and a high-index facet 99 with high percentage of under-coordinated atoms and defects (especially oxygen 100 vacancy) always exhibit high surface energy to capture neighbouring molecular.¹⁷ 101 Oyama and his coworkers have proposed that oxygen vacancy of MnO₂ was likely the active center for ozone adsorption and decomposition.²⁰ Therefore, the high energy 102 facet of MnO₂ with higher oxygen vacancy is expected to achieve enhanced catalytic 103 104 ozonation. On the other hand, competitive adsorption between O_3 and pollutants always 105 happen during catalytic ozonation, which is the critical step for the whole catalytic 106 process. Therefore, the adsorption and catalytic ability of O₃ towards CH₃SH by facet 107 engineered MnO₂ need require further research.

108 α -MnO₂ has been proved for a superior performance in catalytic decomposition 109 toward O₃ than β -, γ - and δ -MnO₂, as the tunnel structure of α -MnO₂ exposed more 110 MnO₆ edges for ozone adsorption and interface reaction.^{1,13,21,22} Hence, α -MnO₂ with 111 exposed three major (100), (110) and (310) facet-dominated surfaces were 112 systematically studied for catalytic ozonation of S-VOCs in terms of activity and 113 selectivity, formation of oxygen vacancies, identification of catalytic active sites, and 114 intermediate pathways. The density functional theory (DFT) calculations were also 115 used to investigate the difference in the adsorption and catalytic activity of facet α -116 MnO₂ towards O₃. Moreover, the efficient 310-MnO₂ catalysts were immobilized on 117 the mesoporous Al₂O₃ as substrates to evaluate their removal effectiveness. The present 118 work offers a promising way to tune the crystal facets of metal oxides and model it into 119 a portable shape for practical environmental remediation.

120

121 **2. Experimental Section**

122 **2.1 Sample Preparation**

123 (1) 310- α -MnO₂: 20.0 mmol of KMnO₄ and 10.0 mmol of (NH₄)₂C₂O₄·H₂O were 124 dissolved in 70 mL of deionized water under vigorous magnetic stirring. The mixture 125 was then transferred to a 100 mL stainless-steel autoclave and kept at 180 °C for 24 h. The resulting precipitates were collected via centrifugation, washed and dried. To 126 127 prepare α -MnO₂-310/Al₂O₃ (310-Mn/Al): 3 g of γ -Al₂O₃ was impregnated into the 128 solution of KMnO₄ and (NH₄)₂C₂O₄·H₂O followed by an ultrasonic bath for 3 h and 129 then magnetically stirred for 24 h to assure a sufficient absorption. Other processes are 130 same with $310-\alpha$ -MnO₂. (2) $110-\alpha$ -MnO₂: it was prepared by the same method with 131 310- α -MnO₂, but the reactant of (NH₄)₂C₂O₄ was replaced by (NH₄)₂SO₄. (3) 100- α -132 MnO_2 : 8.0 mmol of $MnSO_4 H_2O$, 8.0 mmol of $(NH_4)_2S_2O_8$, 15.0 mmol of $(NH_4)_2SO_4$, 133 and 8.0 mmol of KNO₃ were dissolved in 40 mL of deionized water under vigorous 134 magnetic stirring to form a precursor solution. The mixture was then transferred to a 135 100 mL autoclave and kept at 120 °C for 20 h. The resulting precipitates were collected 136 via centrifugation, washed and dried.

137

138 **2.2 Sample Characterization**

X-ray diffraction (XRD) analysis of the samples was performed on a Rigaku D/MAX
2500 X-ray diffractometer equipped with a Cu Kα radiation source. The morphology
of the samples was examined by scanning electron microscopy (SEM, 5 kV) and

142 transmission electron microscopy (TEM, 300 kV, JEM-2010HR) at 5 kV, respectively. 143 Nitrogen adsorption-desorption isotherms of the samples were obtained at 77 K on a 144 Gemini VII 2390 surface area analyzer (MQL). The chemical compositions of the 145 catalysts were determined by X-ray photoelectron spectroscopy (XPS, ESCALAB 250, 146 Thermo Fisher Scientific, USA). Hydrogen temperature-programmed reduction (H₂-147 TPR) analysis was performed on the 80 BELCAT-B (Japan) instrument. Raman spectra 148 was obtained using a Laser Micro-Raman Spectrometer (Renishaw inVia, British) with 149 a 514.5 nm laser source. In-situ DRIFTS was recorded on Thermo Fisher 6700. The CV 150 curves were obtained on a CHI 660E electrochemical workstation equipped with a 151 standard three-electrode system (a platinum foil as the counter electrode and saturated 152 calomel electrode (SCE) as a reference electrode) using 0.5 M Na₂SO₄ buffer.

153

154 2.3 CH₃SH Removal Test

155 The elimination of CH₃SH with catalytic ozonation was carried out using a 156 continuous flow reactor as shown in Figure S1. The fixed bed quartz tube reactor (Φ 1.5 cm) was padded with 0.1 g of facet engineered MnO₂ powder. For each test, the CH₃SH 157 158 and N₂ were premixed in a container to adjust the initial concentration of CH₃SH 159 maintained at 70 ppm with a flow rate of 0.18 L/min. O₃ was produced by an ozone 160 generator (YDG, YE-TG-02PH) with an initial concentration at 2.0 mg/L and a flow 161 rate of 0.02 L/min. The inlet and outlet concentrations of CH₃SH were continuously monitored by a CH₃SH sensor (Detcon, DM-400IS). The total gas stream velocity was 162 163 kept at 0.2 L/min.

164

165 **2.4 Reactive species tests**

In radicals inhibiting tests, tert-butanol (TBA) was used as hydroxyl radical (•OH) scavenger; ascorbic acid was used to suppress superoxide radical (• O_2^-) and NaN₃ was used to trap singlet oxygen ($^{1}O_2$), respectively.^{23, 24} The catalysts were immersed into 25.0 mM of above trapping agents and ultrasonicated for 15 min, followed by filtration and dried, then applied for catalytic ozonation of CH₃SH. For electron spin resonance (ESR) detection of radicals, 5, 5-dimethyl-1-pyrrolineN-oxide (DMPO) was used to trap •OH and $\bullet O_2^-$, then 2,2,6,6-Tetramethylpiperidine (TEMP) was used to trap ${}^{1}O_2$. In detail, the samples for ESR tests were dispersed in a 100 mM DMPO/TMPO solution (2 mL) with O₃ purging, and the solvent was H₂O for trapping •OH and ${}^{1}O_2$, methanol for trapping $\bullet O_2^{-25, 26}$

176

177 **2.5 DFT Calculation Method**

The different exposed facets of MnO₂ were studied by first-principles calculations 178 179 density-functional theory (DFT) as implemented in the VASP code with projectoraugmented wave (PAW) pseudopotentials.^{27, 28} The electronic structure was calculated 180 181 using the Generalized Gradient Approximation (GGA) of Perdew-Burke-Ernzerhof with Hubbard U corrections (PBE+U).²⁹⁻³¹ To obtain the equilibrium lattice parameters 182 183 by relaxation of the bulk cell, a cutoff for the plane wave basis set of 520 eV was used 184 to avoid Pulay stress. Geometry structures were fully relaxed until the convergence criteria of energy and force are less than 10⁻⁸ eV and 0.05 eV/Å, respectively. The lattice 185 constants of α -MnO₂ was set as a = b = 9.75 Å, c = 2.86 Å. The calculations afterwards 186 187 were performed based on the obtained equilibrium lattice constants using a cutoff energy of 400 eV, and a minimum of $3 \times 3 \times 9$ k-points was used for each calculation. 188 189 The surface energy of different facets was also computed, and the specific method was 190 defined as follows (Equation 1):

- 191
- 192
- 193

194 where E_s is the energy of a slab containing *n* formula units and E_b is the total energy 195 per formula unit. *A* is the area of the slab surface, and the factor of 2 represents that 196 there are two surfaces for each slab.

 $\gamma = \frac{E_s - nE_b}{2 A}$

Eq. 1

198 **3 Results and discussion**

199 **3.1 Catalyst Structure and Morphology**

200 X-ray diffraction (XRD) was firstly used to determine the crystalline structure and 201 purity of three facet-engineered MnO₂.³²⁻³⁴ As shown in Figure 1a, all the pure MnO₂ samples exhibit distinct peaks at 12.8°, 18.1°, 28.9°, 37.6°, 49.9° and 60.2°, 202 203 corresponding to the diffraction plane of (110), (200), (310), (211), (411) and (521), 204 respectively, well indexed to the tetragonal α -MnO₂ phase (JCPDS, PDF #44-0141). 205 Through comparing the intensities of peaks in (310), (110) and (100) (Figure 1b), an 206 obvious distinction can be observed in the relative ratio of their strength: for 310-MnO₂, 207 the diffraction peak referring to (310) is clearly more intense and sharper with respect 208 to the peaks in (110) and (100). The ratio of (310): (110): (100) in the zoomed XRD 209 pattern of 310-MnO₂ is 2.27:1.12:1 (Figure 1b). As for 110-MnO₂, the (110) peak is the 210 strongest among the three facet MnO₂; similarly, the intensity of major (100) facet 211 obviously ascends in 100-MnO₂, and these characteristics are in well accordance with a former research.³⁵ These results verify the successful preparation of MnO₂ with 212 213 different exposed facet.

214 Raman spectroscopy was recorded to show the bulk structure of as-prepared catalysts.³⁶⁻³⁷ As can be seen in Figure 1c, the peaks at around 625 cm⁻¹ attributes to the 215 216 symmetric stretching vibrations v_2 (Mn-O) perpendicular to the direction of the [MnO₆] groups,³⁸ and the band at about 580 cm⁻¹ can be assigned to the stretching vibration 217 218 v_3 (Mn-O) in the basal plane of [MnO₆] chains.³⁹ The calculated ratios of peak intensity 219 between v_2 (Mn-O) and v_3 (Mn-O) peaks follow the order: 110-MnO₂ (1.046) >100- $MnO_2(0.998) > 310-MnO_2(0.963)$ (Table S1), indicating that 310-MnO₂ possesses the 220 221 most abundant surface defects,⁴⁰ which are beneficial to form oxygen vacancies. 222 Moreover, according to the Hooke's law,⁴¹ an equation can be applied to calculate the Mn-O bond force constant (k) as follow, which represents the Mn-O bond strength (Eq. 223 224 2).

 $\omega = \frac{1}{2\pi c} \sqrt{\frac{k}{\mu}}$

Eq. 2

227

228 where ω is the Raman shift (cm⁻¹), c is light velocity, and μ is effective mass.

229 Obviously, all the peaks of 310-MnO₂ exhibit the lowest Raman shift (ω) among the 230 three MnO₂, indicating that 310-MnO₂ owns the lowest k constant on the basis of the 231 equality of relevant parameters other than ω . The results confirm that the highly active 232 facets of 310-MnO₂ could lead to the weakening of Mn-O bonds. This means the 233 decrease of oxygen escaping energy is conducive to the formation of oxygen vacancies 234 and thus facilitates the mobility of oxygen species. Moreover, it is generally accepted 235 that a facet with a high percentage of unsaturated atoms always possesses a superior reactivity to that with a low percentage of unsaturated atoms.^{42,43} Therefore, these high-236 237 index facets in the 310-MnO₂ could possess a high density of under-coordinated atoms, 238 such as steps, edges, and kinks, and serve as active sites for catalytic ozonation.⁴⁴

239 The morphologies and microstructures of the facet engineered MnO₂ catalysts were 240 further investigated by SEM and TEM analysis. As shown in Figure 1d1-f3, all the facet 241 engineered MnO₂ are formed as clusters of nanowires. Under higher magnification, it 242 can be seen that both 110-MnO₂ and 100-MnO₂ nanowires exhibit similar diameter of 243 70~80 nm, while 310-MnO₂ nanowires show a smaller diameter of around 50 nm. 244 HRTEM images further demonstrate the exposed crystalline facets of different facet 245 engineered MnO₂ (Figure 1d4-f4), the lattice spacings of 0.31, 0.69 and 0.49 nm are 246 consistent well with the values of 3.09, 6.92 and 4.90 Å for the (310), (110) and (100) 247 planes of a-MnO₂ (JCPDS, PDF #44-0141), respectively. Especially, in view of α -248 MnO₂ usually grows along (001) direction (c axis), and four side walls will be the major exposed facets, it can be found that the 310-MnO₂ owns four (310) facets exposed on 249 250 the side walls.³² Consistently, similar phenomenon was also found in 110-MnO₂ and 251 100-MnO₂.

252

253 **3.2** Characteristics of Oxygen Vacancies

254 Generally, the surface element composition and element oxidation state play a 255 decisive role in the catalytic ozonation. XPS was conducted to characterize the surface 256 element composition and chemical states of the as-prepared facet MnO₂. As shown in 257 Figure 2a, the Mn-2p3/2 spectra can be deconvoluted into three peaks with binding energy at 640.6 eV, 641.6 eV and 642.9 eV, corresponding to Mn²⁺, Mn³⁺, and Mn⁴⁺, 258 respectively.¹³ The molar ratio of Mn²⁺+Mn³⁺/Mn⁴⁺ was quantified and summarized in 259 260 Table S2, following the order of $310-MnO_2$ (1.15) > $110-MnO_2$ (0.95) > $100-MnO_2$ 261 (0.94). Meanwhile, the average oxidation state (AOS) of Mn was calculated by the formula: $AOS = 8.956 - 1.126\Delta Es$ (ΔEs represents the difference in the binding energy 262 263 between the two Mn-3s peaks). The lowest AOS of 310-MnO₂ (3.394) also suggests that the 310-MnO₂ contains a higher content of low valence Mn than other facet MnO₂ 264 265 (Figure 2b).¹¹ It is commonly recognized that low valent Mn could result in the Jahn-266 Teller distortion and thus facilitate oxygen vacancy formation to maintain charge conservation based on the following process (Eq. 3), 11,13,44 and oxygen vacancies 267 always work as active sites in the catalytic ozonation.¹³ Therefore, it is reasonable to 268 269 deduce that higher oxygen vacancy density are survived in 310-MnO₂, which could be 270 beneficial for catalytic ozonation than other facet MnO₂.

271

272

$$4Mn^{4+} + O^{2-} \rightarrow 4Mn^{4+} + 2e^{-}/V_{O} + 1/2 O_{2} \rightarrow 2Mn^{4+} + 2Mn^{3+} + V_{O} + 1/2 O_{2}$$
 Eq. 3

273

274 Moreover, the O 1s spectra (Figure 2c) can be divided into three peaks at 529.7-530.3 eV, 531.4-531.8 eV and 532.9-533.7 eV, corresponding to the lattice oxygen (O_{latt}), 275 276 low-coordinated oxygen species adsorbed in oxygen vacancies (O_{ads}, such as O²⁻, O⁻, 277 and OH group), and hydroxyl species of surface-adsorbed water molecules (O_{surf}), 278 respectively.^{34, 35} Generally, the amount of O_{ads} represents the surface oxygen vacancy 279 concentration in catalysts, because oxygen molecules are usually adsorbed at oxygen 280 vacancies and evolved into O_{ads} on catalysts' surface.¹³ Therefore, the molar ratio of O_{ads}/O_{latt} descends in the sequence of 310-MnO₂ (0.41) > 110-MnO₂ (0.26) > 100-MnO₂ 281

(0.25), suggesting that 310-MnO₂ is beneficial for the formation of surface oxygen vacancies. Consistently, the Mn/O ratios of 310-MnO₂, 110-MnO₂ and 100-MnO₂ are estimated to be 0.53, 0.53 and 0.51 (Table S2), mainly due to the more oxygen vacancies formed in 310-MnO₂, accordant well with Raman results.^{36, 37}

286 The O₂-TPD spectra is also analyzed to understand the roles of oxygen species within 287 the different exposed facets, which is related to the formation of oxygen vacancies. As 288 shown in Figure 2g, the chemisorbed oxygen species and active surface oxygen usually 289 desorb at lower temperatures around 350 °C, and the higher temperature desorption 290 peak (500-650 °C) is ascribed to the subsurface lattice oxygen from MnO₂ into 291 Mn₂O₃/Mn₃O₄. The higher temperature peak at 700 °C is attributed to the conversion 292 of bulk lattice oxygen. The lower the temperature at which oxygen is released, the 293 looser it is bound to Mn atoms within the framework. Therefore, the 310-MnO₂ has a 294 higher oxygen mobility. Especially, the total peak area for 310-MnO₂ is obviously 295 larger than the other catalysts, indicating that the former has more excellent oxygen 296 adsorption and storage capacity, which corresponded to the higher formation of oxygen 297 vacancies in the 310-MnO₂ and consistent with the O 1s XPS spectra.

EPR measurement was further performed to confirm the oxygen vacancy concentration in three MnO₂ catalysts (Figure 2h). The signal located at around g =2.003 is ascribed to oxygen vacancies. Generally, the higher the peak intensity, the higher the oxygen vacancy concentration. The sequence of peak intensity is 310 > 110 >100, further indicating that the 310-MnO₂ catalyst has higher oxygen vacancies than the other two catalysts.

304

305 3.3 Reducibility of Catalysts

Since a higher reduction ability was beneficial for catalysts to yield a higher catalytic ozonation, H_2 -TPR measurements were thus carried out to further evaluate the reducibility of as-prepared MnO₂. As depicts in Figure 3a, both 110-MnO₂ and 100-MnO₂ contain two peaks of H_2 consumption, assigned to the continuous reduction

process of $MnO_2 \rightarrow Mn_2O_3 \rightarrow MnO$, respectively.¹² In contrast, the 310-MnO₂ exhibits 310 311 only one overlapped reduction peak at 354 °C, mainly caused by the over-close distance 312 between two peaks. Especially, the 310-MnO₂ shows the lowest temperature of 313 reduction peak among the three catalysts, indicating it owns the highest mobile oxygen 314 species. Coincidently, the onset reduction temperature for all the facet-engineered 315 MnO_2 also follows the order of 310- $MnO_2 < 110-MnO_2 < 100-MnO_2$ (the inset of 316 Figure 3a). Moreover, 310-MnO₂ has the lowest H₂ consumption during the whole 317 treatment, which is related to the formation of the maximum oxygen vacancies within 318 310-MnO₂ obtained in O₂-TPD profiles (Figure 2g). The easy reducibility of 310-MnO₂ 319 may be due to the formation of more abundant oxygen vacancies on its surface, which 320 greatly boosts the mobility of oxygen species and facilitates the formation of active 321 oxygen for catalytic ozonation. 322 Moreover, the CV (cyclic voltammetry) curves were conducted to directly identify

323 the redox reactivity of different facet-engineered MnO_2 . As shown in Figure 3b, the 324 anodic current oxidation peaks are corresponded to the oxidation process from $Mn^{2+} \rightarrow Mn^{3+}$ to $Mn^{3+} \rightarrow Mn^{4+}$, conversely, the cathodic current reduction peaks are 325 related to the reduction process from $Mn^{4+} \rightarrow Mn^{3+}$ to $Mn^{3+} \rightarrow Mn^{2+}$. Obviously, the 326 current intensity of both reduction and oxidation curves for 310-MnO₂ are significantly 327 328 higher than the other two catalysts, illustrating the higher surface charges in Mn species 329 of 310-MnO₂.⁴⁶ Therefore, it can be proposed that the 310-MnO₂ owns the best ability 330 to perform a redox cycle, which is vital for continuous catalytic ozonation.⁴⁷ What's 331 more, with O_3 purging, the curve of 310-MnO₂ turns to be broader, indicating that O_3 332 could give impetus to the redox process.

333

334 **3.5 Catalytic Performance for CH₃SH decomposition**

335 **3.5.1** Adsorption and Catalytic Ozonation of CH₃SH by Facet engineered MnO₂

Accordingly, the adsorption ability of 310-MnO₂ for CH₃SH was firstly explored

337 (Figure 4a). In the presence of 310-MnO₂ alone, the reaction reached adsorption

equilibrium within 200 s and maintained at 44.2% removal of CH₃SH within 600 s, 338 339 higher than that of 110-MnO₂ (37.9%) and 100-MnO₂ (30.9%). These results confirm 340 that 310-MnO₂ are optimum for CH₃SH adsorption. After the adsorption equilibrium 341 was attained, then the performance of catalytic ozonation using different catalysts was 342 investigated. As plotted in Figure 4b, facet engineered MnO₂ exhibits obvious facet 343 dependent catalytic performance, i.e. the activities followed the order of 310-MnO₂ > 344 110-MnO₂ > 100-MnO₂. With respect to 310-MnO₂, in initial 300 s period, the catalytic 345 degradation efficiency increased significantly, whereas the catalytic degradation trend 346 for the 310-MnO₂ reached a relatively stable trend during 400-900 s period. This is 347 because the concentration of CH₃SH in the rection system decreases rapidly due to the 348 catalytic degradation of 310-MnO₂, then quickly decreased to their minimum values 349 along with time extension. Within 1200 s reaction, 310-MnO₂ can realize 100% 350 removal efficiency for 70 ppm of CH₃SH, significantly higher than that of 110-MnO₂ 351 (82.9 %) and 100-MnO₂ (71.5 %), verifying the high percentage of high index facet (310) can readily facilitate the catalytic ozonation. To illustrate deeply, the rate 352 constants for the catalytic ozonation (k) were calculated based on the pseudo first-order 353 354 kinetics for the initial 300 s reaction (Eq. 4).

$$In\frac{C}{C_0} = -kt Eq. 4$$

356 where k is the first order rate constant, C is the CH_3SH concentration after certain 357 reaction time (t), and C_0 is the CH₃SH initial concentration. As shown in Table S1, the removal rate constant of 310-MnO₂ (0.00416 s⁻¹) is 1.4 times higher than that of 110-358 359 MnO_2 (0.00297 s⁻¹) and 1.74 times than that of 100- MnO_2 (0.00239 s⁻¹), which directly 360 reveals the reaction rate at initial stage and also confirms the critical function of high 361 index 310-facet again. Consistently, the turnover frequencies (TOFs, defined as the 362 number of reactant molecules converted per active site in a unit of time) are also 363 compared, which is in the rank of 310-MnO₂ (0.00246 h^{-1}) > 110-MnO₂ (0.00178 h^{-1}) 364 ¹) >100-MnO₂ (0.00166 h⁻¹). The catalytic ozonation over MnO₂ usually proceeds via the Mars-van Krevelen mechanism. Generally, the surface oxygen species (O_{surf}) have greater mobility and activity than the lattice oxygen species (O_{latt}) and may give rise to beneficial spillover phenomena at the solid surface. Therefore, the availability and reactivity of O_{surf} play an important role in the activity of MnO₂. It is well known that O vacancies are directly related to active surface oxygen species. Thus, O vacancies act as active sites for catalytic ozonation.

371 Moreover, long-term catalytic stability of 310-MnO₂ was also investigated (Figure 372 4c), the removal efficiency of CH₃SH merely shows a subtle decline after 150 min, 373 revealing a long-term stability of the catalyst, mainly due to the abundant oxygen 374 vacancy in (310) facets. In contrast, (110) and (100) both displayed a significant 375 decrease within 1 h. The slight deactivation for (310) MnO₂ is mainly due to the 376 accumulation of the intermediate/product adsorbed on the oxygen vacancies can't be 377 easily desorbed, evidenced by the great formation of new peaks belongs to sulfur and 378 carbon species in the In situ DRIFTS (Fig. 6). To further explore whether the 379 deactivation is reversible, the used catalysts were regenerated by ethanol/sulfuric acid 380 and then utilized for following catalytic ozonation. As shown in Figure 4d, the removal 381 efficiency of CH₃SH has improved a lot to almost approach the fresh state. Actually, 382 ethanol could extract plugged species and H₂SO₄ could dissolve accumulated stuffs due to their polarity and acidity, respectively. 48-50 383

384

385 **3.5.2 ROS Generation in Catalytic Ozonation**

Generally, the catalytic ozonation is strongly related to the transformation of decomposed ozone into atomic oxygen species (O^{2-}/O_2^{2-}) and further evolves into reactive oxygen species (ROSs) like as ${}^{1}O_2$, ${}^{\circ}O_2^{-}$, and ${}^{\circ}OH$, leading to their oxidative degradation and ultimate mineralization.^{52, 53} First, *in situ* DRIFTS was conducted to identify the atomic oxygen species, a new peak belongs to oxygen species appears at 1380 cm⁻¹ with O₃ purging to the 310-MnO₂, confirming the formation and accumulation of intermediate peroxide species (O^{2-}/O_2^{2-}) (Figure 5a).²⁸ Second, 393 different chemical scavengers and ESR spectroscopy were collectively applied to 394 identify the primary ROSs involved in the catalytic reaction of 310-MnO₂. As shown 395 in Figure 5b, the CH₃SH removal efficiency of 310-MnO₂ was slightly declined to 88 % 396 by adding tert-butanol (TBA, •OH scavenger), whereas that of 310-MnO₂ decreased dramatically to 68.1 % and 65.0 % in the presence of ascorbic acid (AA, $\bullet O_2^-$ scavenger) 397 398 and NaN₃ ($^{1}O_{2}$ scavenger), revealing that both $\bullet O_{2}^{-}$ and $^{1}O_{2}$ exert dominating effect on 399 CH₃SH degradation. Coincidently, the continuous generation of $\bullet O_2^-$ and 1O_2 by all the 400 three MnO₂ was evidenced by the significant characteristic peaks of DMPO- \bullet O₂⁻ 401 (relative intensities of 1:1:1:1, Figure 5c) and TEMPO-¹O₂ (relative intensities of 1:1:1, 402 Figure 5d).^{51, 52} Although the characteristic spectrum of DMPO-•OH adducts was also 403 observed, indicating •OH exerts a moderate effect in the present system (Figure 5e). 404 Especially, the stronger signal of EPR peaks for 310-MnO₂ were achieved with respect 405 to the other two samples, indicating the promoted active ROS generation caused by the 406 engineered high-index (310) facets.

407

408 **3.6 Conversion Pathway for CH₃SH Removal**

409 To reveal the mechanism of adsorption and ozonation of CH₃SH over 310-MnO₂, in-410 situ DRIFTS was carried out to monitor time-related evolution of the reaction intermediates and final products on 310-MnO₂. As shown in Figure 6a, during 411 412 adsorption process, a number of bands were appeared and greatly enhanced with time 413 going at around 2965 cm⁻¹ (stretch vibration of C-H), 976 cm⁻¹ (S-C-H vibration), 840 414 cm⁻¹ (C-H vibration), 1363 and 1423 cm⁻¹ (δ_s -CH₃ and δ_{as} -CH₃), respectively, which 415 are all derived from the adsorption and deformation of CH₃SH into CH₃S⁻ over catalyst. 416 It suggested a portion of S-H bond were cleaved and CH₃SH was transformed into 417 CH₃S⁻, deriving from the chemisorption interaction between CH₃SH and Mn species.⁴⁶ 418 Simultaneously, several new bands developed progressively can be designated as 419 deprotonated sulfonic acid ($CH_3SO_3^-$) at 1192 cm⁻¹ and the protonated acid (CH_3SO_3H) 420 at 1153 cm⁻¹, indicating the adsorbed CH₃S⁻ was partially oxidized into CH₃SO₃⁻. With 421 prolonged adsorption time, COO⁻ stretch vibrating band (1656 and 1598 cm⁻¹), S-O 422 stretching band (927 cm⁻¹), and sulfate band (SO_4^{2-} , 1036 cm⁻¹) appeared and increased, 423 suggesting S-S and C-S bonds in CH₃SO₃⁻ were broken and converted into SO_4^{2-} and 424 COO⁻. Actually, surface OH groups are greatly formed (3261 cm⁻¹) via water 425 dissociation on oxygen vacancies or water-oxygen interactions on metal surfaces, 426 which can be easily activated into ROS, thus take effects in the oxidation of CH₃SH 427 during adsorption stage.⁴⁶

428 The timely changes of *in-situ* DRIFTS for catalytic ozonation can be seen in Figure 429 6c. The baseline of adsorption equilibrium was the same as that of 20 min in Figure 6a. 430 Obviously, the increasing peaks of OH/H₂O groups at 3261 cm⁻¹ and 1620 cm⁻¹ reveal 431 the release of active OH species and the generation of H₂O during fierce oxidation. 432 Correspondingly, many adsorption bands at 927, 976, 1423, 1363, 2965 and 2934 cm⁻¹ 433 corresponding to the adsorbed CH₃S⁻ species were significantly diminished and even 434 disappeared, verifying the great consumption of chemisorbed CH₃S⁻ via oxidation. 435 Interestingly, the peak related to CH₃SO₃⁻ at 1215 cm⁻¹ was increased in the initial 5 436 min and then sharply decreased in the following 20 min, suggesting CH₃SO₃⁻ was the 437 main intermediate product. With the further oxidation of CH₃SO₃⁻, several new bands of C elements referring to $v_s(COO^-)$ at 1315 cm⁻¹, carbonate species (CO₃²⁻) at 1421 438 cm⁻¹ and Fermi doublet of CO₂ at 2334 and 2360 cm⁻¹ were appeared and greatly 439 boosted as the oxidation progressing, indicating that the cleaved C were utterly oxidized 440 441 over the catalyst. In parallel, the bands of S products located at 1045 cm⁻¹ (sulfate 442 species, SO_4^{2-}) were also greatly intensified.

To clearly elucidate the tendency of product species evolution during these two stages, the normalized absorbance of intermediates and final products are illustrated in Figure 6b and 6d, which prove that the adsorption and transformation of CH_3SH are efficiently boosted on 310-MnO₂. As mentioned above, CH_3SH was greatly chemisorbed as CH_3S^- and partially oxidized by 310-MnO₂ during adsorption stage; after O₃ purged, the oxidation process was greatly enhanced, $CH_3SO_3^-$ was greatly formed as the intermediate product and subsequently decomposed into SO_4^{2-} and COO^{-} 450 / CO_3^{2-} with CO_2 releasing afterwards. The results clearly confirm the efficient deep 451 oxidation on mesoporous 310-MnO₂ with limited intermediate survived on the catalysts. 452

453 **3.7 Surface Energies, Adsorption of Ozone and CH₃SH**

454 To deepen the comprehension of the discrepancies in the affinity of exposed facets to O₃, the first-principles calculations are performed based on density functional theory 455 456 using VASP program. As depicted in Figure 7a-c, the surface energies of three facets 457 follow the order that 310 $(1.57 \text{ J/m}^2) > 110 (0.89 \text{ J/m}^2) > 100 (0.96 \text{ J/m}^2)$. Obviously, 458 the highest surface energy of (310) facet signifies its best thermodynamic activity. 459 According to Wulff construction theory, high energy facets have the tendency to vanish 460 gradually in the bulk of crystals, thus to minimize the total surface energy of crystals 461 and stabilize itself. Coincidently, (310) facets of α -MnO₂ can't be easily observed in 462 most experiments, mainly due to its lower stability, higher surface energies and active 463 sites. In the current case, due to the higher percentage of under-coordinated atoms and oxygen vacancies in high-index 310-MnO₂, the exposed high-energy facets thus can 464 465 efficiently boost the efficiency of catalytic reactions, evidenced by its excellent 466 performance in Figure 4b and 4c.

467 Generally, the reactions of catalytic ozonation are launched by the interactions 468 between O₃ and the surface defects of catalysts, and its activity largely depends on the concentration and adsorption ability of the oxygen vacancy.⁵⁷ Firstly, XPS and Raman 469 470 results above have identified (310) facets achieve higher concentration of oxygen 471 vacancies on its surface, since (310) facets are readily to consume lower energy to form 472 oxygen vacancies (E_{vo} (310) = 0.33 eV < E_{vo} (110) = 0.96 eV < E_{vo} (100) = 1.10 eV).³² 473 Secondly, since the strong adsorption of O₃ over the catalyst surface is favorable for the catalytic ozonation, the adsorption energy of O₃ over the oxygen vacancy of different 474 475 facet MnO₂ was thus studied by DFT. As shown in Figure 7d-f, 310-MnO₂ facets 476 exhibit the highest adsorption energy towards O₃ among the three-facet engineered 477 MnO_2 : 310- MnO_2 (2.03 eV) > 110- MnO_2 (1.74 eV) > 100- MnO_2 (1.57 eV). The longer 478 bond length of O-O (of adsorbed O₃, 1.24 Å) in 310- MnO_2 indicates that the bond of 479 O₃ can be more easily broken and activated. Therefore, the strong adsorption of O₃ on 480 310- MnO_2 facet is beneficial for the formation of active oxygen species and the quick 481 replenishment of surface active oxygen species, which is favorable for the catalytic 482 ozonation of CH₃SH.

483 As the affinity and reactivity with O₃ and CH₃SH are both tightly related to the catalyst surface, the occurrence of competitive adsorption between O3 and CH3SH may 484 485 inhibit the reaction. Therefore, the adsorption energy of CH₃SH over the oxygen 486 vacancy of different facet MnO₂ was further studied by DFT. As shown in Figure 7g-487 h, CH₃SH molecule can be stablely adsorbed on 310-MnO₂ in a configuration with the 488 adsorption energies of -1.69 eV kJ mol⁻¹, confirming the higher chemisorption of 489 CH₃SH molecules induced by 310-MnO₂ than that of 100-MnO₂ and 110-MnO₂ (-1.25 490 and -1.41 kJ mol⁻¹), coincident well with the observed adsorption performance (Figure 491 4a). Notably, the adsorption energy of CH₃SH in 310-MnO₂ is -1.69 eV, which is higher 492 than that of O₃ (-2.03 eV), indicating 310-MnO₂ possesses a more intact surface for O₃ 493 than CH₃SH capture. Therefore, it can be proposed that 310-MnO₂ can firstly convert 494 O₃ into reactive oxygen species and subsequently oxidize the neighbouring adsorbed 495 CH₃SH. The step by step reaction ensure the sustainability of the entire process.

496

497 **3.8 Mechanism of Adsorption and Catalytic Ozonation**

Above performances and calculations have identified the great role of oxygen vacancy on the adsorption and catalytic ozonation for eliminating CH_3SH by 310-MnO₂. Therefore, a mechanism based on the involvement and circulation of oxygen vacancy is proposed, through probing changes of the chemical surface composition/state of the used 310-MnO₂ by XPS, XRD and *in situ* DRIFTS spectra. After adsorption stage, XPS results of O-1s and Mn-2p3/2 (Figure 2d, 2e and Table S2) show an evident increase in the ratio of O_{latt}/O_{ads} from 2.44 to 3.25, whereas a subtle decline in that of

505 $Mn^{2+}+Mn^{3+}/Mn^{4+}$, indicating the important role of O_{ads} rather than Mn to take effect on 506 the oxidation of CH₃SH during adsorption stage. Actually, the consumed O_{ads} can be 507 captured by oxygen vacancy and then transformed into active oxygen species, which 508 play an important role in the partial oxidation of chemisorbed CH₃S⁻.^{46, 57}

After catalytic ozonation, the molar ratio of Mn²⁺⁺Mn³⁺/Mn⁴⁺ significantly 509 510 decreased from 1.11 to 0.84 and the surface average oxidation state (AOS) of Mn 511 decreased from 0.528 to 0.515 (Figure 2d, 2f and Table S2), indicating that the oxygen 512 vacancies of 310-MnO₂ decreased after catalytic ozonation. Generally, when O₃ flows 513 through MnO₂, O₃ molecule binds to MnO₂ surface by inserting an O atom into an 514 oxygen vacancy site.^{1, 6} The oxygen vacancy is a 2-electron donor and transfer 2-515 electron to an O atom of O_3 , thus forming an activate oxygen species (O^{2-}) in the oxygen vacancy site and an oxygen molecule, which desorbs into the air (Eq. 5).^{8, 9} Then 516 another O_3 molecule reacts with O^{2-} to produce a gas-phase oxygen molecule and a 517 bridging O₂ dimer (peroxide, O₂²⁻) species (Eq. 6). In situ DRIFTS in Figure 4d 518 confirms the formation of peroxide species (O^{2-}/O_2^{2-}) . Further, the reaction between 519 O^{2-/}O₂²⁻-active species and ozone molecules occurred along with the evolution of 520 521 oxygen molecules ($\cdot O_2^{-1}O_2/OH$) via charge-transfer interactions. During the above-522 mentioned reactions, the oxygen-related intermediates gradually accumulated on 310-523 MnO₂ surfaces and simultaneously transformed into oxygen molecules to release a 524 portion of oxygen vacancies to maintain the electrostatic balance.⁵³ Therefore, due to 525 more oxygen vacancy and un-coordinated Mn-Mn bond in the MnO₆ octahedral chains 526 of 310-MnO₂, it can promote the decomposition speed of O₃ and likely produce more 527 active oxygen species in the local area of the catalyst.

In conclusion, the proposed reaction pathway for catalytic ozonation of CH₃SH over 310-MnO₂ was established in Figure 8.^{9, 53} O₃ can be captured and decomposed by the structural defects (Vo, mostly the oxygen vacancies) on MnO₂ surface; then transformed into activate oxygen species (O^{2-}/O_2^{2-}) and quickly evolved into $\cdot O_2^{-}$ $/\cdot OH/^1O_2$ through a chain cycle reaction, which can directly participate in CH₃SH and adsorbed CH_3S^- oxidation (Eq. 7-9). And these defects can be regenerated through the cycle thus to maintain a long-term removal efficiency (Eq. 7). Hence, the presence of more surface oxygen vacancies was beneficial to the highly efficient catalytic ozonation on 310-MnO₂. Given the importance of oxygen vacancy in the catalytic ozonation, engineering the crystalline structure of MnO₂ with abundant oxygen vacancy will provide promising perspectives in purification of odor gas.

539

540
$$O_3 + V_0 \rightarrow O_2 + O^2$$
 Eq. 5

541
$$O^{2-} + O_3 \rightarrow O_2 + O_2^{2-}$$
 Eq. 6

542
$$O_2^{2-} \rightarrow O_2 + Vo$$
 Eq. 7

543
$$O^{2-}/O_{2}^{2-} + H_{2}O \rightarrow O_{2}^{-}/O_{1}O_{2}/OH$$
 Eq. 8

544 $CH_3SH/CH_3S^- + O_2^{-/1}O_2/OH \rightarrow CH_3SO_3^- \rightarrow SO_4^{2-} + CO_3^{2-}/CO_2$ Eq. 9

545

546 Environmental implication

547 In this study, facet engineered MnO₂ was prepared and efficiently utilized for catalytic ozonation of CH₃SH. In addition, a combination of both experimental and DFT 548 549 calculation results confirmed the key role of oxygen vacancies in the catalytic reaction 550 process, evidenced by the positive correlation between oxygen vacancy and activity. 551 To promote the applicability of 310-MnO₂ in view of practice, mesoporous Al₂O₃ 552 supports were used to immobilize α -MnO₂, as it can provide the extensive reactive sites for enhancing retention time and practicability for reuse.²⁶ Compared with the bare 553 554 Al_2O_3 , the immobilized MnO₂ leads to a decline in the surface area/pore size (238.2) 555 $m^2g^{-1}/4.1$ nm) of 310-MnO₂/Al₂O₃ and clearly observed XRD patterns of 310-MnO₂ 556 (Figure S2-S3, Table S3-S4), confirming the 310-MnO₂ are well deposited on the 557 surface and into the channels of Al₂O₃.³³ As depicted in Figure S4, within 800 s reaction, 558 310-MnO₂/Al₂O₃ can realize 100% removal efficiency for 70 ppm of CH₃SH, faster 559 than that of 310-MnO₂ alone. These results provided a new perspective for catalysts 560 applied for catalytic ozonation. This work has a proper strategy recommendation for

translating laboratory research into commercial value to eliminate odor gas via the efficient and cost-effective catalytic oxidation to attain the standard protocols of air guality.

564

565 Acknowledgments

566 The authors wish to thank the National Natural Science Foundation of China (No. 51578556, 21876212, 41573086, 41603097, 21976214), Natural Science Foundation 567 568 of Guangdong Province (No. 2015A030308005 S2013010012927, 569 S2011010003416), Science and Technology Research Programs of Guangdong 570 Province (No. 2014A020216009, 2019A1515011015), the Science and Technology 571 Program of Guangzhou (201904010353), and Fundamental Research Funds for the 572 Central Universities (13lgjc10, 19lgpy157) for financially supporting this work. Dr. Xia 573 was also supported by the Start-up Funds for High-Level Talents of Sun Yat-sen 574 University (38000-18821111).

575

Appendix A. supplementary data associated with this article can be found. H₂-TPR, 576 577 Raman and degradation rate constant of three facet MnO₂ (Table S1), XPS analysis of 578 310-MnO₂ before and after catalytic ozonation (Table S2), EDS analysis of 310-579 MnO₂/Al₂O₃ (Table S3), BET analysis of 310-MnO₂/Al₂O₃ (Table S4), schematic 580 diagram of setup (Figure S1), N₂ adsorption-desorption isotherm and pore-size 581 distribution of 310-MnO₂/Al₂O₃ (Figure S2), XRD, SEM, EDS spectra and elemental 582 mapping of 310-MnO₂/Al₂O₃ (Figure S3), Performances in catalytic ozonation of 583 CH₃SH with 310-MnO₂/Al₂O₃ (Figure S4).

584

585 **References**

1. Huang, J.; Zhong, S.; Dai, Y.; Liu, C. C.; Zhang, H. Effect of MnO₂ phase structure
on the oxidative reactivity toward Bisphenol A degradation. *Environ. Sci. Technol.*2018, *52*, 11309-11318.

- 589 2. Lu, J.; Hao, H.; Zhang, L.; Xu, Z.; Zhong, L.; Zhao, Y.; He, D.; Liu, J.; Chen, D.;
- 590 Pu, H.; He, S.; Luo, Y. The investigation of the role of basic lanthanum (La) species on

591 the improvement of catalytic activity and stability of HZSM-5 material for eliminating 592 methanethiol (CH₃SH). Appl. Catal., B 2018, 237, 185-197. 593 3. Kastner, J. R.; Das, K. C.; Buquoi, Q.; Melear, N. D. Low temperature catalytic 594 oxidation of hydrogen sulfide and methanethiol using wood and coal fly ash. Environ. 595 Sci. Technol. 2003, 37, 2568-2574. 596 4. Omri, I.; Bouallagui, H.; Aouidi, F.; Godon, J.-J.; Hamdi, M. H₂S gas biological 597 removal efficiency and bacterial community diversity in biofilter treating wastewater 598 odor. Bioresour. Technol. 2011, 102, 10202-10209. 599 5. Bashkova, S.; Bagreev, A.; Bandosz, T. J. Adsorption of methyl mercaptan on activated carbons. Environ Sci Technol 2002, 36, 2777-2782. 600 601 6. Roman, P.; Veltman, R.; Bijmans, M. F. M.; Keesman, K. J.; Janssen, A. J. H. Effect 602 of methanethiol concentration on sulfur production in biological desulfurization 603 systems under haloalkaline conditions. Environ. Sci. Technol. 2015, 49, 9212-9221. 7. Estrada, J. M.; Kraakman, N. J. R. B.; Munoz, R.; Lebrero, R. A comparative analysis 604 605 of odour treatment technologies in wastewater treatment plants. Environ. Sci. Technol. 606 **2011,** *45*, 1100-1106. 607 8. He, D.; Wan, G.; Hao, H.; Chen, D.; Lu, J.; Zhang, L.; Liu, F.; Zhong, L.; He, S.; Luo, Y. Microwave-assisted rapid synthesis of CeO₂ nanoparticles and its 608 desulfurization processes for CH₃SH catalytic decomposition. Chem. Eng. J. 2016, 289, 609 610 161-169. 611 9. Wang, H.; Huang, Z.; Jiang, Z.; Jiang, Z.; Zhang, Y.; Zhang, Z.; Shangguan, W. 612 Trifunctional C@MnO catalyst for enhanced stable simultaneously catalytic removal 613 of formaldehyde and ozone. ACS Catal. 2018, 8, 3164-3180. 614 10. Rezaei, E.; Soltan, J.; Chen, N.; Lin, J. Effect of noble metals on activity of MnOx/yalumina catalyst in catalytic ozonation of toluene. Chem. Eng. J. 2013, 214, 219-228. 615 616 11. Jia, J.; Zhang, P.; Chen, L. Catalytic decomposition of gaseous ozone over manganese dioxides with different crystal structures. Appl. Catal., B 2016, 189, 210-617 218. 618 619 12. Zhang, J.; Li, Y.; Wang, L.; Zhang, C.; He, H. Catalytic oxidation of formaldehyde 620 over manganese oxides with different crystal structures. Catal. Sci. Technol. 2015, 5, 621 2305-2313. 622 13. Wang, F.; Dai, H.; Deng, J.; Bai, G.; Ji, K.; Liu, Y. Manganese oxides with rod-, 623 wire-, tube-, and flower-like morphologies: highly effective catalysts for the removal

- 624 of toluene. *Environ Sci Technol* **2012**, *46*, 4034-4041.
- 14. Xie, X.; Li, Y.; Liu, Z.-Q.; Haruta, M.; Shen, W. Low-temperature oxidation of CO
 catalysed by Co₃O₄ nanorods. *Nature* 2009, *458*, 746-749.
- 627 15. Zhang, B.; Wang, D.; Hou, Y.; Yang, S.; Yang, X. H.; Zhong, J. H.; Liu, J.; Wang,
- 628 H. F.; Hu, P.; Zhao, H. J.; Yang, H. G. Facet-dependent catalytic activity of platinum
- 629 nanocrystals for triiodide reduction in dye-sensitized solar cells. *Sci. Rep.* **2013**, *3*, 1836.
- 630 16. Tian, N.; Zhou, Z.-Y.; Sun, S.-G.; Ding, Y.; Wang, Z. L. Synthesis of
- 631 tetrahexahedral platinum nanocrystals with high-index facets and high electro-632 oxidation activity. *Science* **2007**, *316*, 732-735.

- 17. Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; 633
- 634 Lu, G. Q. Anatase TiO₂ single crystals with a large percentage of reactive facets. *Nature* 635 2008, 453, 638-U4.
- 18. Penn, R. L.; Banfield, J. F. Morphology development and crystal growth in 636
- 637 nanocrystalline aggregates under hydrothermal conditions: Insights from titania. 638 Geochim. Cosmochim. Acta 1999, 63, 1549-1557.
- 639 19. Dinh, C.-T.; Nguyen, T.-D.; Kleitz, F.; Do, T.-O. Shape-controlled synthesis of 640 highly crystalline titania nanocrystals. ACS Nano 2009, 3, 3737-3743.
- 641 20. Li, W.; Gibbs, G. V.; Oyama, S. T. Mechanism of ozone decomposition on a 642 manganese oxide catalyst. 1. In situ ramanspectroscopy and Ab Initio molecular orbital 643 calculations. J. Am. Chem. Soc. 1998, 120 (35), 9041-9046.
- 644 21. Einaga, H.; Maeda, N.; Yamamoto, S.; Teraoka, Y. Catalytic properties of copper-
- 645 manganese mixed oxides supported on SiO₂ for benzene oxidation with ozone. Catal. 646 Today 2015, 245, 22-27.
- 647 22. Einaga, H.; Teraoka, Y.; Ogat, A. Benzene oxidation with ozone over manganese 648 oxide supported on zeolite catalysts. Catal. Today 2011, 164, 571-574.
- 649 23. Einaga, H.; Teraoka, Y.; Ogata, A. Catalytic oxidation of benzene by ozone over manganese oxides supported on USY zeolite. J. Catal. 2013, 305, 227-237. 650
- 651 24. Rezaei, E.; Soltan, J.; Chen, N. Catalytic oxidation of toluene by ozone over alumina
- 652 supported manganese oxides: effect of catalyst loading. Appl. Catal., B 2013, 136, 239-653 247.
- 654 25. Ma, J.; Sui, M. H.; Chen, Z. L.; Wang, L. N. Degradation of refractory organic 655 pollutants by catalytic ozonation-activated carbon and Mn-loaded activated carbon as 656 catalysts. Ozone: Sci. Eng. 2004, 26, 3-10.
- 26. Bing, J.; Hu, C.; Zhang, L. Enhanced mineralization of pharmaceuticals by surface 657
- 658 oxidation over mesoporous γ -Ti-Al₂O₃ suspension with ozone. Appl. Catal., B 2017, 659 202, 118-126.
- 27. Kresse; Furthmuller. Efficient iterative schemes for ab initio total-energy 660
- 661 calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter Mater. Phys. 662 **1996,** *54*, 11169-11186.
- 663 28. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-
- 664 wave method. Phys. Rev. B 1999, 59, 1758-1775.
- 665 29. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made 666 simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
- 667 30. Crespo, Y.; Seriani, N. Electronic and magnetic properties of alpha-MnO₂ from ab initio calculations. Phys. Rev. B 2013, 88, 144428. 668
- 31. Tompsett, D. A.; Parker, S. C.; Bruce, P. G.; Islam, M. S. Nanostructuring of beta-669
- 670 MnO₂: The Important Role of Surface to Bulk Ion Migration. Chem. Mater. 2013, 25, 671 536-541.
- 672 32. Rong, S.; Zhang, P.; Liu, F.; Yang, Y. Engineering crystal facet of α-MnO₂
- nanowire for highly efficient catalytic oxidation of carcinogenic airborne formaldehyde. 673
- 674 ACS Catal. 2018, 8, 3435-3446.

- 675 33. Xia, D.; Hu, L.; Tan, X.; He, C.; Pan, W.; Yang, T.; Huang, Y.; Shu, D.
- 676 Immobilization of self-stabilized plasmonic Ag-AgI on mesoporous Al₂O₃ for efficient
- 677 purification of industrial waste gas with indoor LED illumination. *Appl. Catal., B* **2016**,
- 678 *185*, 295-306.
- 679 34. Mathew, T.; Suzuki, K.; Ikuta, Y.; Takahashi, N.; Shinjoh, H. Mesoporous 680 ferrihydrite with incorporated manganese for rapid removal of organic contaminants in
- 681 air. Chem. Commun. 2012, 48, 10987-10989.
- 682 35. Wang, J.; Li, D.; Li, P.; Zhang, P.; Xu, Q.; Yu, J. Layered manganese oxides for
- 683 formaldehyde-oxidation at room temperature: the effect of interlayer cations. Rsc
- 684 *Advances* **2015**, *5*, 100434-100442.
- 685 36. Yang, R.; Ren, C.; Teng, X.; Chen, Z.; Wu, S.; Zhang, W. Study of the surface 686 oxygen vacancies evolvement on the single and Bi-components manganese oxide 687 precursors and their catalytic performance. *Catal. Lett.* **2017**, *147*, 727-737.
- 688 37. Feng, Z.; Huang, L.; Feng, Q.; Li, X.; Zhang, H.; Tang, W.; Zhang, J.; Hao, Y.
- 689 Influence of annealing atmosphere on the performance of a beta- Ga_2O_3 thin film and 690 photodetector. *Opt. Mater. Express* **2018**, *8*, 2229-2237.
- 691 38. Polverejan, M.; Viliegas, J. C.; Suib, S. L. Higher valency ion substitution into the 692 manganese oxide framework. *J. Am. Chem. Soc.* **2004**, *126*, 7774-7775.
- 693 39. Piumetti, M.; Fino, D.; Russo, N. Mesoporous manganese oxides prepared by
 694 solution combustion synthesis as catalysts for the total oxidation of VOCs. *Appl. Catal.*,
 695 *B* 2015, *163*, 277-287.
- 696 40. Qu, Z.; Bu, Y.; Qin, Y.; Wang, Y.; Fu, Q. The improved reactivity of manganese 697 catalysts by Ag in catalytic oxidation of toluene. *Appl. Catal.*, *B* **2013**, *132*, 353-362.
- 698 41. Wei, Y. J.; Yan, L. Y.; Wang, C. Z.; Xu, X. G.; Wu, F.; Chen, G. Effects of Ni
- 699 doping on MnO₆ octahedron in LiMn₂O₄. J. Phys. Chem. B **2004**, 108, 18547-18551.
- 42. Selloni, A. Crystal growth Anatase shows its reactive side. *Nat.Mater.* 2008, 7,
 613-615.
- Vittadini, A.; Selloni, A.; Rotzinger, F. P.; Gratzel, M. Structure and energetics of
 water adsorbed at TiO₂ anatase (101) and (001) surfaces. *Phys. Rev. Lett.* 1998, *81*,
 2954-2957.
- 44. Van Santen, R. A. Complementary structure sensitive and insensitive catalytic
 relationships. *Acc. Chem. Res.* 2009, *42*, 57-66.
- 45. Li, Y.; Fan, Z.; Shi, J.; Liu, Z.; Shangguan, W. Post plasma-catalysis for VOCs
 degradation over different phase structure MnO₂ catalysts. *Chem. Eng. J.* 2014, *241*,
 251-258.
- 710 46. Xia, D.; Xu, W.; Wang, Y.; Yang, J.; Huang, Y.; Hu, L.; He, C.; Shu, D.; Leung,
- 711 D. Y. C.; Pang, Z. Enhanced performance and conversion pathway for catalytic
- 712 ozonation of methyl mercaptan on single-Atom Ag deposited three-dimensional
- 713 ordered mesoporous MnO₂. *Environ. Sci. Technol.* **2018**, *52*, 13399-13409.
- 714 47. Liu, C. S.; Zhang, L. J.; Feng, C. H.; Wu, C. A.; Li, F. B.; Li, X. Z. Relationship
- 715 between oxidative degradation of 2-mercaptobenzothiazole and physicochemical
- 716 properties of manganese (hydro)oxides. *Environ. Chem.* **2009**, *6*, 83-92.

 717 718 719 720 721 722 723 724 725 	 48. Su, G.; Li, Q.; Lu, H.; Zhang, L.; Huang, L.; Yan, L.; Zheng, M. Thermal catalytic oxidation of octachloronaphthalene over anatase TiO₂ nanomaterial and its hypothesized mechanism. <i>Sci. Rep.</i> 2015, <i>5</i>, 1-11. 49. Afzal, S.; Quan, X.; Zhang, J. High surface area mesoporous nanocast LaMO₃ (M = Mn, Fe) perovskites for efficient catalytic ozonation and an insight into probable catalytic mechanism. <i>Appl. Catal., B</i> 2017, <i>206</i>, 692-703. 50. Lai, TL.; Lai, YL.; Lee, CC.; Shu, YY.; Wang, CB. Microwave-assisted rapid fabrication of Co₃O₄ nanorods and application to the degradation of phenol. <i>Catal. Today</i> 2008, <i>131</i>, 105-110.
726	51. Ozawa, T.; Miura, Y.; Ueda, JI. Oxidation of spin-traps by chlorine dioxide (ClO ⁻²)
727 728	radical in aqueous solutions: First ESR evidence of formation of new nitroxide radicals.
728	52. Ueda, J.: Takeshita, K.: Matsumoto, S.: Yazaki, K.: Kawaguchi, M.: Ozawa, T.
730	Singlet oxygen-mediated hydroxyl radical production in the presence of phenols:
731	Whether DMPO-(OH)-O-center dot formation really indicates production of (OH)-O-
732	center dot? <i>Photochem. Photobiol.</i> 2003, <i>77</i> , 165-170.
734 734	55. Long, L.; Znao, J.; Yang, L.; Fu, M.; Wu, J.; Huang, B.; Ye, D. Room Temperature Catalytic Ozonation of Toluene over MnO_2/Al_2O_2 Chin I Catal 2011 32 904-916
735	54. Zhu G.; Zhu J.; Li L.; Yao W.; Zong R.; Zhu Y.; Zhang Q. Tuning the K ⁺
736	Concentration in the Tunnels of α -MnO ₂ To Increase the Content of Oxygen Vacancy
737	for Ozone Elimination. Environ Sci Technol. 2018, 52, 8684-8692.
738	
739	
740	
741	
742	
743	
744	
745	
746	
747	
748	
749	
750	
751	

Figure 1. (a) XRD pattern, (b) magnified XRD patterns with a relative intensity comparison of different peaks, all the intensity of (200) peak were set as normalized one) and (c) Raman spectra of pure α -MnO₂ with different exposed facets; SEM images of (d1) 310-MnO₂; (e1) 110-MnO₂; (f1) 100-MnO₂, and TEM and HRTEM images of

766

Figure 2. XPS spectra of Mn 2p (a, d), Mn 3s (b, e) and O 1s (c, f) for fresh different MnO₂ (upper row); different MnO₂ after deep adsorption of CH₃SH, different MnO₂ after deep catalytic ozonation of CH₃SH (lower row); (g) O₂-TPD profiles of facet engineered MnO₂ (h) EPR profiles.

- 771
- 772
- 773
- 774
- 775
- 776

Figure 4. Performances in adsorption (a) and catalytic ozonation (b) of CH₃SH in
different MnO₂, (c) Removal of CH₃SH in long-term runs using facet engineered MnO₂,
(d) Catalytic ozonation removal rate of CH₃SH by regenerated 310-MnO₂ with ethanol
and sulfuric acid.

- **Figure 5.** (a) *In situ* DRIFTS spectra of the 310-MnO₂ with O₃ purging to detect atomic
- 801 oxygen; (b) Catalytic ozonation of CH₃SH by 310-MnO₂ with different scavengers;
- 802 ESR signals of (c) $\bullet O_2^-$, (d) 1O_2 and (e) $\bullet OH$.
- 803
- 804

Figure 6. *In-situ* DRIFTS spectra of (a) adsorption, (c) catalytic ozonation for CH₃SH
with 310-MnO₂; normalized species evolution of (b) adsorption, (d) catalytic ozonation
for CH₃SH with 310-MnO₂.

Figure 7. (a-c) Surface energy of α -MnO₂ with different exposed facets; (d-f) adsorption energy of O₃ on oxygen vacancy of α -MnO₂ with different exposed facets; (g-i) adsorption energy of S atom in CH₃SH on oxygen vacancy of α -MnO₂ with different exposed facets. Red sphere stands for oxygen atom and violet sphere stands for manganese atom.

840 Graphical Abstract

841

843

842