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a b s t r a c t 

The brain undergoes many changes at pathological and functional levels in healthy aging. This study employed 

a longitudinal and multimodal imaging dataset from the OASIS-3 study ( n = 300) and explored possible relation- 

ships between amyloid beta (A 𝛽) accumulation and functional brain organization over time in healthy aging. We 

used positron emission tomography (PET) with Pittsburgh compound-B (PIB) to quantify the A 𝛽 accumulation in 

the brain and resting-state functional MRI (rs-fMRI) to measure functional connectivity (FC) among brain regions. 

Each participant had at least 2 to 3 follow-up visits. A linear mixed-effect model was used to examine longitudinal 

changes of A 𝛽 accumulation and FC throughout the whole brain. We found that the limbic and frontoparietal net- 

works had a greater annual A 𝛽 accumulation and a slower decline in FC in aging. Additionally, the amount of the 

A 𝛽 deposition in the amygdala network at baseline slowed down the decline in its FC in aging. Furthermore, the 

functional connectivity of the limbic, default mode network (DMN), and frontoparietal networks accelerated the 

A 𝛽 propagation across their functionally highly connected regions. The functional connectivity of the somatomo- 

tor and visual networks accelerated the A 𝛽 propagation across the brain regions in the limbic, frontoparietal, and 

DMN networks. These findings suggested that the slower decline in the functional connectivity of the functional 

hubs may compensate for their greater A 𝛽 accumulation in aging. The A 𝛽 propagation from one brain region to 

the other may depend on their functional connectivity strength. 
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. Introduction 

The brain undergoes many changes at pathological levels in healthy

ging. Pathological changes in the brain with aging include the accumu-

ation of amyloid beta (A 𝛽) and neurofibrillary tangles (tau), which are

ssociated with Alzheimer’s disease. The A 𝛽 accumulation occurs while

ndividuals are still cognitively normal ( Bennett et al., 2006 ; Price and

orris, 1999 ), decades before AD symptoms appear, emphasizing the

mportance of healthy aging research to detect early A 𝛽 deposition

 Karran et al., 2011 ). 

Positron emission tomography (PET) with Pittsburgh compound-B

PIB) has been widely used to examine amyloid accumulation in the

rain ( Quigley et al., 2011 ). Previous studies found an increase in the

 𝛽 accumulation of the whole brain with aging ( Jack et al., 2009 ;

ojkova et al., 2011 ; Villemagne et al., 2011 ). The A 𝛽 is more likely

o aggregate in some regions of the brain before spreading throughout
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he neocortex and causing neurodegeneration ( Braak and Braak, 1991 ;

hal et al., 2002 ). Greater A 𝛽 accumulation was found in the poste-

ior cingulate cortex (PCC), precuneus ( Palmqvist et al., 2017 ; Rodrigue

t al., 2012), and the temporal and frontal cortices ( Sojkova et al., 2011 ;

illain et al., 2012 ). These regions have been highlighted as functional

ubs in the brain that are the center of brain communication and neu-

al integration ( van den Heuvel and Sporns, 2013 ). It is suggested that

egions vulnerable to A 𝛽 accumulation are highly functionally intercon-

ected ( Jagust and Mormino, 2011 ). Further research is needed to fully

nderstand this relationship and to identify potential interventions that

ay help to reduce A 𝛽 accumulation and improve functional brain or-

anization in older adults. 

Cross-sectional studies mainly restricted the regions at the default

ode network (DMN) and showed that greater DMN functional con-

ectivity (FC) was associated with the elevated A 𝛽 accumulation level

 Hahn et al., 2019 ; Jagust and Mormino, 2011 ; Lim et al., 2014 ). Also,
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Table 1 

Clinical and demographic characteristics. 

All included subjects 

( n = 300) 

Subjects with 

longitudinal fMRI 

( n = 258) 

Subjects with 

longitudinal PET 

( n = 141) 

Subjects with both 

longitudinal fMRI and PET 

( n = 89) 

Statistics for 

Group 

comparisons 

gender (M/F) 118/182 107/151 45/96 34/55 𝜒2 = 3 . 63 
baseline age, year 65.9 (8.8) 66.3 (8.4) 64.4(9.0) 65.4(7.9) 𝐹 3 , 784 = 1 . 74 
education, year 16.0 (2.5) 16.0 (2.5) 15.9(2.5) 15.9(2.6) 𝐹 3 , 784 = 0 . 09 
MMSE 29.2(1.1) 29.1(1.2) 29.2(1.2) 29.1(1.4) 𝐹 3 , 784 = 0 . 35 
number of visits 2.7 (0.9) 2.6 (0.9) 2.4(0.6) 2.2(0.6) –

duration of the first and last scans, year 4.9 (2.3) 4.8 (2.1) 4.9(2.3) 4.7(1.9) –

Abbreviations: M, male; F, female; MMSE, mini-mental state examination. 

All p > 0.05. 
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lman et al. (2014) examined the relationship between voxel-wise brain

C and A 𝛽 accumulation in the frontoparietal, salience, and dorsal atten-

ion networks in healthy aging. Such a relationship has been explained

s a compensatory mechanism that the increased FC compensated for

he A 𝛽 pathology ( Lim et al., 2014 ; Mormino et al., 2011 ). However, it

s important to note that cross-sectional studies can only observe correla-

ions between A 𝛽 accumulation and functional connectivity and cannot

stablish causation. Therefore, longitudinal studies would help deter-

ine whether A 𝛽 accumulation leads to changes in functional connec-

ivity or if functional connectivity precedes or contributes to changes in

 𝛽 accumulation. 

This study employed a longitudinal and multimodal imaging dataset

rom the OASIS-3 study. We explored 1) the longitudinal relationship

etween the A 𝛽 accumulation and functional connectivity in the whole

rain, 2) whether the A 𝛽 pathology influences functional brain organi-

ation over time, and 3) whether the A 𝛽 propagation over time is re-

ated to brain functional wiring. We hypothesized that functional hub

egions, such as the PCC and precuneus, would exhibit a higher rate

f A 𝛽 accumulation but a slower decline in functional connectivity in

ealthy aging, supporting the compensatory mechanism. Moreover, we

xpected that A 𝛽 accumulation might propagate along possible path-

ays of functional hubs over time. The study computed participation

oefficients (PC) to quantify which brain regions play a hub role in con-

ecting to the brain subnetworks ( Bertolero et al., 2018 ; Power et al.,

013 ). This study, to the best of our knowledge, provided understanding

f the longitudinal relationship between A 𝛽 and FC in healthy aging. 

. Methods 

.1. Participants 

This study employed the image data from the OASIS-3 cohort

 https://www.oasis-brains.org ). The OASIS-3 included 1098 partici-

ants aged from 42 to 95 collected across several ongoing studies in

he Washington University Knight Alzheimer Disease Research Center

hroughout 15 years ( LaMontagne et al., 2019 ). All participants signed

nformed consent for the OASIS-3 imaging study. 

Fig. 1 illustrates the flowchart of the participant selection. In brief,

he OASIS-3 study included 605 cognitively normal participants. This

tudy included 300 cognitively normal participants with longitudinal

unctional MRI or/and PIB-PET data. Among them, 141 participants had

ongitudinal PIB-PET data, 265 participants had longitudinal fMRI data.

nly 258 subjects have good fMRI data. Among them, 89 participants

ad both longitudinal fMRI and PIB-PET data. Table 1 lists the demo-

raphical and clinical information of the participants. 

.2. MRI acquisition and processing 

The OASIS-3 study performed structural T 1 -weighted MRI and

esting-state fMRI on SIEMENS Trio 3T MRI or Biograph mMR (PET/MR)

T scanners. The image acquisition was detailed in http://www.oasis-

rains.org/#data . 
2 
.2.1. Structural T 1 -weighted MRI 

FreeSurfer longitudinal analysis pipeline was used to label each

oxel in the T 1 -weighted image as gray matter, white matter,

erebrospinal fluid (CSF), or subcortical structures ( Fischl et al.,

002 ). Post-processing quality check was conducted following

he instruction on https://surfer.nmr.mgh.harvard.edu/fswiki/

sTutorial/TroubleshootingData . The FreeSurfer longitudinal pipeline

reated a within-subject structural template to represent the subject’s

natomy. Large deformation diffeomorphic metric mapping (LDDMM)

o align these subjects’ templates to the JHU MNI atlas ( Du et al., 2011 ;

an and Qiu, 2016 ; Zhong, 2010 ). 

.2.2. Resting-state fMRI (rs-fMRI) 

Rs-fMRI were preprocessed in FSL with slice timing, zero

adding, motion correction, skull stripping, and intensity normalization

 Smith et al., 2004 ). Only the scans with mean framewise displacement

FD) less than 0.5 mm and had 5% of the time-series volume with FD less

han 0.5 mm were included. Fig. S1 in the Supplementary Material il-

ustrates the distribution of FD among the participants used in this study.

he whole brain, white matter, and cerebrospinal fluid (CSF) signals

ith six motion parameters were regressed and band-pass filtered (0.01–

.08 Hz). For each participation, the rs-fMRI scan was transformed to

he within-subject T 1 -weighted image via a boundary-based registration

ethod ( Greve and Fischl, 2009 ) and then to the JHU MNI atlas via the

ransformation obtained from its corresponding T1-weighted image and

he atlas image. 

This study used a whole-brain parcellation with 268 brain regions of

nterest (ROIs) ( Shen et al., 2013 ). We employed the GLASSO algorithm

n ROI’s fMRI time series to estimate a functional connectivity matrix

268 × 268) ( Colclough et al., 2018 ; Qiu et al., 2015 ). The GLASSO is a

parse inverse covariance estimation approach for computing functional

onnectivity matrices. It can avoid an indirect functional connection be-

ween regions A and C if both are functionally connected with region

. This approach has been used for better estimation of the functional

onnectivity matrix and elucidating brain functional networks in aging

 Colclough et al., 2018 ; Qiu et al., 2015 ). This study employed this ap-

roach because the functional connectivity estimation would not spit

ver the relationship between the functional connectivity and the A 𝛽

UVR accumulation from region A to C due to their indirect functional

onnection. 

We further computed participation coefficients (PC) from the func-

ional connectivity matrix to represent the diversity of intermodular

onnections of brain regions ( Bertolero et al., 2018 ). The higher PC indi-

ates that the ROI is a functional hub connecting the brain sub-networks

 Power et al., 2013 ). This study employed this metric to interpret the

ub role of brain regions. 

For visualization, this study further clustered the 268 ROIs into seven

unctional cortical networks based on Yeo’s atlas ( Yeo et al., 2011 ) and

our subcortical networks. The seven cortical networks are visual, so-

atomotor, dorsal attention, ventral attention, limbic, frontoparietal,

efault mode. The four subcortical networks include the cerebellum,

https://www.oasis-brains.org
http://www.oasis-brains.org/\043data
https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/TroubleshootingData
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Fig. 1. The flowchart of the participant selec- 

tion and statistical analysis of each dataset. 
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ubcortical (basal ganglia and thalamus), medial temporal lobe (MTL,

ippocampus), and amygdala (left and right amygdala) networks. Fig.

2 in the Supplementary Material illustrates the brain functional par-

ellation. 

.3. PIB-PET acquisition and processing 

PET scans were performed on Biograph mMR (PET/MR), 40 PET/CT,

nd ECAT HRplus 962 PET scanners. This study only employed Pitts-

urgh Compound B ([11C]PIB or PIB) PET scans (PIB-PET). The ac-

uisition and procedure of PIB-PET were detailed at http://www.oasis-

rains.org/#data . 

This study employed PET unified pipeline (PUP) to analyze the PIB-

ET data ( Su et al., 2015 , 2013 ). PET images were first smoothed to

btain a typical spatial resolution of 8 mm to harmonize them across

ET scanners ( Joshi et al., 2009 ). Standard image registration tools

ere used to conduct inter-frame motion correction for dynamic PIB-

ET data ( Eisenstein et al., 2012 ; Hajnal et al., 1995 ). Vector-gradient

lgorithm (VGM) was utilized to register PET to MR in a symmetric fash-

on ( Rowland et al., 2005 ). Partial volume effects (PVE) were corrected

ased on a regional spread function (RSF) technique ( Rousset et al.,

008 , 1998 ) to improve PET quantification and obtain improved sen-

itivity to longitudinal changes in amyloid load ( Su et al., 2016 ,

015 ). 

The peak time window of 30–60 min after injection was chosen for

IB-PET analysis. A regional target-to-reference intensity ratio, known

s a standard uptake ratio (SUVR), was calculated at each voxel when

he cerebellum was used as a reference. 
3 
.4. Statistical analysis 

First, we conducted a linear mixed-effects model (LME) to examine

he longitudinal trajectory of A 𝛽 or FC in each ROI. The model is given

elow: 

 𝑖𝑗 = 𝛽1 + 𝛽2 𝑡 𝑖𝑗 + 𝛽3 𝐺𝑒𝑛𝑑𝑒𝑟 𝑖 + 𝛽4 𝐸 𝑑 𝑢𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 + 𝛽5 𝐵 𝑠𝑙𝐴𝑔 𝑒 𝑖 + 𝑏 1 𝑖 + 𝑏 2 𝑖 𝑡 𝑖𝑗 + 𝑒 𝑖

(1) 

 and 𝑗 denoted the indices of subjects and time points, respectively. 𝑌 𝑖𝑗 
as the SUVR value or functional connectivity at time 𝑡 𝑖𝑗 . We defined

 𝑖𝑗 as the time interval between the 𝑗 𝑡ℎ follow-up scan and the age at

he baseline scan ( 𝐵 𝑠𝑙𝐴𝑔 𝑒 𝑖 ). Here, each subject’s baseline was defined

s the first useable time point. Gender and education were considered

s covariates since the education level was found to be a risk factor

or AD (( Qiu et al., 2001 ), and male and female brain sizes differed

 Ritchie et al., 2018 ). The mean framewise displacement of head motion

n fMRI images was considered an additional covariate for FC. 𝛽1 to

5 represented fixed effects, while 𝑏 1 𝑖 , 𝑏 2 𝑖 represented random effects

hat modeled the individual-specific intercept and accumulation rate of

ubject 𝑖 . False discovery rate (FDR) ( Benjamini and Hochberg, 1995 )

as used for the correction of multiple comparisons at a significance

evel of 0.05. When 𝑌 𝑖𝑗 was the SUVR value, the sample size for the LME

nalysis was 141. In contrast, when 𝑌 𝑖𝑗 was the FC value, the sample

ize for the analysis was 258. 

Second, we employed structural equation modeling (SEM) to exam-

ne whether the A 𝛽 level at baseline or its annual accumulation rate

ould influence FC and its annual change in each functional network.

or this, we employed a subject-specific linear regression model as fol-

http://www.oasis-brains.org/\043data
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Fig. 2. Annual rates of the A 𝛽 SUVR accumulation and functional connectivity (FC) at the levels of regions of interest (A, C) and functional networks (B, D). On 

panels A and C, regions colored in grey did not show significant annual rates at the level of FDR corrected p < 0.05. 
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ows to get the network-wise subject-specific baseline and slope of SUVR

r FC: 

 𝑗 = 𝑏 1 𝐴𝑔𝑒 𝑗 + 𝑏 2 + 𝜀, (2)

here 𝑗 denoted 𝑗-th time point. 𝑌 𝑗 is the functional connectivity av-

raged over the brain region in one functional network. 𝑏 1 was the

stimated slope for A 𝛽 accumulation or FC at the network level. 𝑏 2 
as the estimated subject-specific baseline value at the network level.

EM was then applied to establish the paths from the SUVR baseline

nd slope to the FC baseline and slope. Gender, years of education,

nd age at baseline were included as covariates in all the paths. Since

oth the fMRI and PET data were used in the SEM, the sample size

as 89. 

Finally, we examined whether the functional connectivity of specific

unctional networks at baseline facilitates the spread of the A 𝛽 accumu-

ation over time. The sample size for this was 89. To test this hypoth-

sis, we created the FC profile for each network that represents its FC

o the remaining brain ROIs and was averaged over 89 participants. We

hen employed Pearson’s correlation between the A 𝛽 accumulation rate

averaged over 89 participants) and the network profile over the rest

f the brain regions. Notably, only the ROIs with increased A 𝛽 accu-

ulation over time were included in this analysis. FDR ( Benjamini and

ochberg, 1995 ) was used for the correction of multiple comparisons at

 significance level of 0.05. 

. Results 

.1. Demographics 

This study included 300 healthy aging participants with longitudinal

RI or PIB-PET data. Of these participants, 258 had longitudinal fMRI

ata, 141 had longitudinal PIB-PET data, and 89 had longitudinal fMRI

nd PIB-PET data. Table 1 lists gender, years of education, MMSE, the

umber of visits, and the duration between the first and last visits. The

our datasets did not show differences in the proportion of males and

emales ( 𝜒2 = 3 . 63 , 𝑝 > 0 . 05 ), years of education ( 𝐹 3 , 784 = 0 . 09 , 𝑝 > 0 . 05 ),
4 
MSE scores ( 𝐹 3 , 784 = 0 . 35 , 𝑝 > 0 . 05 ) and baseline age ( 𝐹 3 , 784 = 1 . 74 , 𝑝 >
 . 05 ). 

.2. Longitudinal trajectories of a 𝛽 accumulation and FC in aging 

Fig. 2 illustrates the averaged maps of the A 𝛽 accumulation and FC

nnual rates across all the participants. These annual rates were sur-

ived at FDR corrected p < 0.05. The LME model found an increase in

he A 𝛽 accumulation in most of the 268 brain regions over time, par-

icularly in the precuneus, posterior cingulate cortex (PCC), superior

rontal cortex (SFC), and ventromedial prefrontal cortex (vmPFC). They

ere mainly located in the limbic, frontoparietal, and DMN networks

 Fig. 2 B ). 

The LME model also found a decrease in FC in most of the 268 brain

egions, particularly in the ventral attention, visual, cerebellar, and sub-

ortical networks. Figs. S3 and S4 in the Supplementary Material also

llustrate individual participant data on the trajectories of the A 𝛽 accu-

ulation and FC trajectories over time, respectively. 

The annual rates of the A 𝛽 accumulation and FC ( Fig. 1 A and 1 C )

ere significantly correlated ( r = 0.210, p < 0.001) over all the brain

egions, indicating that the higher rate of the A 𝛽 accumulation was as-

ociated with a slower decline of FC. 

This study further examined whether brain regions with the fastest

 𝛽 accumulation and FC changes over time are functional hubs quanti-

ed by greater participation coefficients. Fig. 3 A illustrates the spatial

attern of the participation coefficient across the whole brain, indicating

he brain regions in the limbic, frontoparietal, and DMN networks with

he greatest participation coefficient value, which was consistent with

xisting literature ( Tomasi and Volkow, 2012 ). Pearson’s correlation re-

ealed that the greater participation coefficient corresponds to the faster

 𝛽 SUVR accumulation ( r = 0.16, p = 0.04; Fig. 3 B ) and slower FC de-

line over time ( r = 0.28, p < 0.001; Fig. 3 C ). These findings suggested

hat the functional hubs may be particularly vulnerable to the annual

ccumulation of A 𝛽 but may be able to compensate for this by maintain-

ng strong FC. This may have implications for understanding the role of

 𝛽 and FC in aging. 
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Fig. 3. Relations of participation coefficient with the annual rates of the A 𝛽 SUVR accumulation and functional connectivity (FC). Panel (A) illustrates the spatial 

pattern of the participation coefficient that characterizes the diversity of intermodular connections of each brain region. Panels (B, C) show the scatter plots of the 

participation coefficient with the A 𝛽 SUVR accumulation and FC, respectively. Each dot represents one brain region and is colored based on the functional network 

that it belongs to. Only the brain regions with significant annual rates of the A 𝛽 SUVR accumulation or FC are shown. 

Fig. 4. Pathways demonstrate whether the A 𝛽 pathology influences brain functional connectivity (FC) over time. Panels (A-C) respectively show the pathways for 

the limbic, frontoparietal, and amygdala networks. Solid lines indicate significant pathways, while dashed lines indicate non-significant pathways. 
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over time. 
.3. A 𝛽 accumulation influences the degeneration of brain functional 

rganization in aging 

The study employed the SEM model to examine whether the A 𝛽

athology influences the functional brain organization over time. The

tudy revealed the positive association between the annual A 𝛽 accumu-

ation rate and FC changes in the limbic ( Fig. 4 A; z = 2.91, p = 0.004)
5 
nd frontoparietal networks ( Fig. 4 B; z = 2.59, p = 0.01). This sug-

ested that a greater A 𝛽 accumulation per year slows down the de-

line in FC in these two networks. Additionally, Fig. 4 C shows that the

reater A 𝛽 accumulation at baseline increases the steeper change of the

C in the amygdala network. These findings suggest that A 𝛽 pathol-

gy may have an impact on functional connectivity and its changes
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Fig. 5. The A 𝛽 accumulation propagation in relation 

to functional connectivity. Each panel illustrates the 

functional connectivity of a specific functional network 

with each ROI as the x-axis and the A 𝛽 accumulation 

change per year in each ROI as the y-axis. Only the 

brain regions with significant annual rates of the A 𝛽

SUVR accumulation are shown. The color indicates the 

functional network the ROI belongs to. 
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.4. Trans-neuronal propagation of A 𝛽 accumulation 

The study further examined whether the functional connectivity of

ach functional network at baseline facilitates the spread of the A 𝛽 accu-

ulation over time. The study found that the functional connectivity of

he limbic ( Fig. 5 A; r = 0.17, p = 0.05), frontoparietal ( Fig. 5 B; r = 0.30,
6 
 < 0.01), DMN ( Fig. 5 C; r = 0.53, p < 0.01), and subcortical networks

 Fig. 5 D; r = 0.35, p < 0.01) at baseline was positively correlated with

he annual A 𝛽 accumulation rate in the brain regions within these four

etworks and high-order functional networks. Additionally, the somato-

otor ( Fig. 5 E; r = 0.38, p < 0.01), visual ( Fig. 5 F; r = 0.24, p = 0.01),

nd dorsal attention networks ( Fig. 5 G; r = 0.29, p < 0.01) showed that
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heir greater negative functional connectivity at baseline was related to

he greater annual A 𝛽 accumulation rate in the brain regions of the lim-

ic, frontoparietal, and DMN. These findings suggest that the accumu-

ation of A 𝛽 may propagate over time through the functional pathways

f the high-order functional networks. 

. Discussion 

The study employed the longitudinal imaging dataset from the

ASIS-3 study and investigated the relationship between the A 𝛽 accu-

ulation and functional brain organization over time in aging. Our find-

ngs revealed that the limbic and frontoparietal networks had a greater

nnual A 𝛽 accumulation and a slower decline in FC in aging. Addition-

lly, the amount of the A 𝛽 deposition in the amygdala network at base-

ine slowed down the decline in its FC in aging. Furthermore, the func-

ional connectivity of the limbic, DMN, and frontoparietal networks at

aseline accelerated the A 𝛽 propagation over time across their function-

lly highly connected regions. The functional connectivity of the so-

atomotor and visual networks accelerated the A 𝛽 propagation across

he brain regions in the limbic, frontoparietal, and DMN networks. These

ndings suggested that the A 𝛽 propagation from one brain region to the

ther may depend on their functional connectivity. 

The study found that certain brain regions, known as functional

ubs, had a higher A 𝛽 accumulation rate. These functional hubs in-

luded the precuneus, PCC, and vmPFC in the DMN, and the SFC in

he frontoparietal network. Previous studies have found an increase in

he A 𝛽 accumulation with age in these regions ( Moffat et al., 2022 ;

odrigue et al., 2012 ; Villain et al., 2012 ). These findings suggested

hat these hub regions may be particularly vulnerable to the effects of

rain aging pathology. 

The study also found that an increase in the A 𝛽 accumulation rate

n the limbic and frontoparietal networks and the amount of A 𝛽 in the

mygdala at baseline reduced a decline in the FC change of these net-

orks over time. This is supported by previous cross-sectional stud-

es, which have found that the higher levels of the A 𝛽 deposition in

he DMN and frontoparietal networks were associated with higher lev-

ls of functional connectivity ( Elman et al., 2014 ; Hahn et al., 2019 ;

agust and Mormino, 2011 ; Lim et al., 2014 ). The functional hubs of the

imbic and frontoparietal networks have high activity and metabolism

 Buckner et al., 2009 ). Previous research suggested that the processing

f amyloid precursor protein, which can be converted into A 𝛽, may be

ctivity-dependent, with increased A 𝛽 deposition being related to in-

reased neuronal activity in the brain ( Cirrito et al., 2005 ; Nitsch et al.,

993 ). Together, these findings suggested that the A 𝛽 pathology may

elp to protect against the FC decline in aging, particularly in the func-

ional hubs of the limbic and frontoparietal networks. 

Previous research was mainly based on cross-sectional data and sug-

ested that the levels of the A 𝛽 accumulation in individual brain re-

ions were positively related to their FC strength with the DMN (e.g.,

recuneus) ( Sintini et al., 2020 ) and frontoparietal network (e.g., infe-

ior frontal cortex) ( Jones et al., 2016 ; Mutlu et al., 2017 ). This study

dded new evidence that the A 𝛽 propagation over time was guided by

he FC strength of the high-order functional networks (e.g., the limbic,

rontoparietal, and DMN) at baseline in these networks as well as the

omatomotor and visual networks. These relationships between the FC

nd A 𝛽 are complex and not fully understood. The extracellular ma-

rix (ECM), a network of proteins and other molecules that surround

ells and help to provide structural support and regulate cell behavior,

ay play key roles in linking the FC and A 𝛽 in the brain. The ECM has

een found to help maintain neuronal connections, which are neces-

ary for functional connectivity ( Bikbaev et al., 2015 ). Changes in the

CM have also been linked to changes in functional connectivity in the

rain ( Quattromani et al., 2018 ). Additionally, the ECM promotes the

ormation of amyloid beta plaques, and the presence of A 𝛽 plaques has

een associated with changes in the ECM ( Rahman and Lendel, 2021 ;

un et al., 2021 ). Therefore, changes in the ECM may contribute to the
7 
hanges in neural connectivity and the formation of amyloid plaques.

urther research is needed to fully elucidate the mechanisms underly-

ng the relationship between the EMC, FC, and A 𝛽 in the aging brain. 

There were several strengths in this study, such as the use of longi-

udinal and multimodal imaging data, as well as multivariate analysis.

evertheless, the study had a limited number of participants with both

ongitudinal PIB-PET and fMRI images. Larger sample sizes can increase

he statistical power of the study, which helps to increase the reliability

nd generalizability of our findings. 

In conclusion, the study provided insight into the relationship be-

ween the A 𝛽 accumulation and functional brain organization, suggest-

ng possible neural mechanisms underlying healthy aging. Further re-

earch is needed to better understand the complex interactions between

 𝛽 accumulation, functional brain organization, and cognitive function

n aging. 
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