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Based on the high positioning accuracy, low cost and low-power consumption, the ultra-wide-band
(UWB) is an ideal solution for indoor unmanned aerial vehicle (UAV) localization and navigation.
However, the UWB signals are easy to be blocked or reflected by obstacles such as walls and furniture. A
resilient tightly-coupled inertial navigation system (INS)/UWB integration is proposed and implemented
for indoor UAV navigation in this paper. A factor graph optimization (FGO) method enhanced by resilient
stochastic model is established to cope with the indoor challenging scenarios. To deal with the impact of
UWB non-line-of-sight (NLOS) signals and noise uncertainty, the conventional neural net-works (CNNs)
are introduced into the stochastic modelling to improve the resilience and reliability of the integration.
Based on the status that the UWB features are limited, a ‘two-phase’ CNNs structure was designed and
implemented: one for signal classification and the other one for measurement noise prediction. The
proposed resilient FGO method is tested on flighting UAV platform under actual indoor challenging
scenario. Compared to classical FGO method, the overall positioning errors can be decreased from about
0.60 m to centimeter-level under signal block and reflection scenarios. The superiority of resilient FGO
which effectively verified in constrained environment is pretty important for positioning accuracy and
integrity for indoor navigation task.
© 2022 China Ordnance Society. Publishing services by Elsevier B.V. on behalf of KeAi Communications

Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
1. Introduction

Resilient positioning, navigation and timing technology (PNT),
which focuses on the convergence of PNT applications with
emerging technologies to improve the reliability, continuity and
safety of mission-critical applications, is the next frontier of
advanced navigation and positioning technologies [1]. A resilient
navigation system should generate PNT information adaptable to
various complex environments by means of resilient adjustment of
functional models and stochastic models to keep accuracy and
reliability under challenging scenarios [2]. Based on the redundant
information and individualized mechanism, multi-sensor infor-
mation fusion is the mainstream solution for the resilient naviga-
tion [3,4]. In most applications, the implementation of information
ong).
ce Society

services by Elsevier B.V. on behalf
c-nd/4.0/).
fusion theory depends on the nominal performance of sensors,
where the measurement noise is modeled as white Gaussian noise
in system equations and algorithm expression. However, in chal-
lenging environments, the performance of state-of-art sensors are
limited. For example, the global navigation satellite system (GNSS)
receiver in indoor or underground scenarios, the light imaging
detection and ranging (LiDAR) and camera under raining or slip-
pery area, the positioning errors of inertial navigation system (INS)
accumulate exponentially over time without any external correc-
tion [5,6]. What’s worse, the above ideal models are no longer
working in most cases under challenging scenarios [7]. If we still
rely on the nominal model, this model mismatch will cause serious
incorrect positioning results and output hazardous mislead infor-
mation. To reduce vulnerability and ensure reliability, it has
become a consensus in resilient PNT to utilize sensors of
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opportunity and potential advanced information technologies to
meet application-specified navigation requirements in complex
and challenging scenarios.

The requirement of unmanned aerial vehicle (UAV) localization
and navigation technology in indoor environment has received
increasing attentions in recent years as the UAV provides an ideal
mobile platform for simultaneous localization and mapping
(SLAM), wireless communication and context awareness in closed
environment [8,9]. The activities that can benefit from the usage of
this technology include defence and rescues, seamless positioning,
underground mining, warehouse management, wireless base sta-
tions, reconnaissance and surveillance, and so on Refs. [10e13].

The indoor UAV navigation is a classical resilient navigation
application as it need to solve the high precision positioning in
closed complex buildings [14]. On the one hand the mature navi-
gation systems suitable for open environments such as GNSS/INS
integration are not feasible in indoor scenarios due to the lack of
availability of GNSS signals. On the other hand, the unknown closed
scenarios increase the difficulty of high-precision positioning and
leave little room for mistakes. The alternative sensors are required
for providing an absolute localization [15]. Based on the high
positioning accuracy, low light requirements, low cost and low-
power consumption, the ultra-wide band (UWB) technology has
got more attentions recently [16,17]. Actually, the positioning
principle of UWB is similar to that of GNSS, which uses the line-of-
sight (LOS) signals to determine the localization of the receiver. The
INS/UWB integration has beenwidely adopted in indoor pedestrian
localization to restrain the INS error divergence based on the
centimeter-level measurement precision of UWB [18,19]. Unfortu-
nately, the UWB signal is easy blocked or reflected by objects such
as wall and furniture in some unfamiliar or complicated indoor
environment [20]. It will result in non-line-of-sight (NLOS) and
multipath effect which is shown in Fig. 1. The UWB positioning is
susceptible to the above obstructed signals which decreases the
performance of INS/UWB integrated system [21]. Due to the three-
dimensional flight trajectory and uncertainty of signal reflection,
the impact of UWB NLOS and multipath effect on UAV navigation is
much worse compared to that of pedestrian localization. To
implement high-accuracy and continuous navigation, the system
should distinguish the LOS/NLOS signals and adjust the stochastic
models to realize optimal signal processing.

Conventionally, the most common information fusion model for
INS/UWB integration is extended Kalman filter (EKF), which can
deal with the nonlinear models for both UWB positioning and INS
[22]. However, for indoor high precision positioning and navigation
under indoor challenging scenarios, the EKF overall estimations are
suboptimal to meet the performance requirements due to the
Fig. 1. LOS, NLOS and multipath effect for Indoor UWB positioning.
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linearized approximation and the high variance in state estimations
and process modelling [23]. Different from the model linear
approximation solution of EKF, both the unscented Kalman filter
(UKF) and particle filter (PF) are trying to find more accurate esti-
mations through the generation and calculation of a large number
of sigma points. The former chooses samples to capture the pos-
terior mean and covariance accurately through the Gaussian
random variable, which results in higher order for the nonlinearity
[24]. Whereas the latter uses samples to estimate the posterior
probability distribution of the state, which gets rid of the limitation
of Gaussian distribution [25]. However, for the above methods, the
measurements are still limited to the current epoch.

To overcome the challenge of complex indoor environment to
high precision positioning and realize the resilient indoor UAV
navigation, a tightly coupled INS/UWB integrated system based on
resilient factor graph optimization (FGO) structure is proposed in
this paper. Firstly, the information fusion is implemented via factor
graph structure to maximize the utilization of historical informa-
tion and available sensors. Furthermore, to maintain the perfor-
mance resilience to UWB signal uncertainty, the deep learning
method is introduced to the UWB measurements quality control.
Particularly, the challenging scenario in this research includes two
aspects. Besides the positioning accuracy challenge due to the
signal block and reflection, the second one, also the deeper one is
the challenge of UWB signal classification and measurements
modelling due to the limited UWB features. Based on limited fea-
tures, two-phase conventional neural networks (CNNs) are
designed and implemented in this research. The functional aims of
two CNNs are to classify the UWB signal and predict the mea-
surement noise, respectively. The proposed resilient FGOmethod is
tested and effectively verified under actual indoor challenging
scenario. The experiment results of tightly coupled INS/UWB inte-
gration show that the ‘two-phase’ CNNs can classify the signals and
predict the measurement noise well, the proposed resilient FGO
method enhanced by deep learning method can reduce the posi-
tioning errors evidently compared to classic EKF and noise-fixed
FGO methods. It makes it possible to realize resilient and high-
precision UAV navigation in constrained environment. The contri-
butions of this paper can be concluded as follows:

1) Navigation method. For UAV indoor navigation under chal-
lenging scenario, a resilient factor graph optimization method
for tightly INS/UWB integration is proposed;

2) Resilient solution. Under features-limited scenes, a ‘two-phase’
conventional neural network (CNNs) solution was designed and
implemented for resilient stochastic modelling: one for signal
classification and the other one for noise prediction.

3) Constrained environment applicability. The proposed resilient
FGO method is tested on flighting UAV platform and effectively
verified under actual indoor challenging scenario.

The rest of the paper is organized as follows: Section 2 gave a
detailed description of the tightly coupled INS/UWB integration
model based on classic factor graph optimization algorithm. Sec-
tion 3 proposed the resilient factor graph structure enhanced by
CNNs structure, including UWB signals classification and mea-
surement noise prediction. Flighting experiment test and perfor-
mance analysis are given and discussed in Section 4. Finally, Section
5 concluded the research work and contributions.

2. Tightly coupled INS/UWB integration model based on
factor graph optimization

The recently resurgence of FGO formulation has started a new
revolution for multi-sensor information fusion [26,27]. Compared
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to the conventional EKF method, the FGO considers both historical
measurements and system updates to optimize the complete state
set, which shows better performance in accuracy and robustness.
The classical factor graph optimization is described in this section
firstly. The tightly coupled INS/UWB integration based on factor
graph structure is chosen as the core navigation system for indoor
UAV localization in this paper and the navigation system is given in
detail latter.
2.1. Factor graph optimization for information fusion

The multi-sensor fusion problem can be modeled as a typical
maximum a posteriori (MAP) problem to find the optimal posterior
state. Then the probability and corresponding probabilistic rela-
tionship can be modeled as ‘a factor graph’, which is also the origin
of its name. It includes two kinds of nodes: factor node and state
variables node, respectively. With the above definitions, the
factorization of function can be defined as follows:

f ðXÞ¼
Y
i

fiðxiÞ (1)

where xi denotes the set of all state variables nodes involved in
factor nodes.

It can be assumed that the variables nodes in the above graph
are independent of each other. The measurements and process
noise are both modeled as zero-mean Gaussian distribution with
the covariance matrices Sk and Lk, respectively. Based on the
Bayes rules and Gaussian model, the formulation can be expressed
as follows:

f ðxkjxk�1;uk�1Þfpðxkjxk�1;uk�1Þ

fexp
�
� 1
2
kfkðxk�1;ukÞ � xkk2Lk

� (2)

f ðgkjxk;zkÞfp
�
gik
��xk;zk;i�fexp

�
�1
2

��hkðxk;gikÞ�zk;i
��2
Sk

�
(3)

where X ¼ fxkg is estimated state, U ¼ fukg is control input. Z ¼
fzkg represent the measurements between each landmark G ¼ fgig
and estimated state.

Substitute Eq. (1) to Eqs. (2) and (3), the factor graph can be
further express as a MAP optimization problem.

bX ¼ argmax
Y

k
pðxkjxk�1;uk�1Þ

Y
k
p
�
gik
��xk; zk;i� (4)

Transforming the above maximization problem into a minimi-
zation problem, it can be shown as a nonlinear least square
criterion.

bX¼argmin

 XK
k¼1

��hkðxk;gikÞ�zk;i
��2
Sk

þ
XL
i¼1

kfkðxk�1;ukÞ�xkk2Lk

!
(5)

Considering the above nonlinear least square equation, the
measurement can be linearized by the Taylor expansion.

hkðxk;gikÞzhkðbxk; bgikÞþHkðxk � bxkÞ þ Jkðgik � bgikÞ (6)

With two Jacobians:
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Hk ¼
vhðxk;gikÞ

vxk
(7)

Jk ¼
vhðxk;gikÞ

vgik
(8)

Similar to the measurement formula, the process model can be
linearized in the same way.

fkðxk�1;ukÞz fkðxk�1;ukÞþ Fk�1ðxk�1 � xk�1Þ þ Gk�1Wk (9)

With two Jacobians

Fk�1 ¼
vhðxk�1;ukÞ

vxk�1
(10)

Gk�1 ¼
vhðxk�1;ukÞ

vuk
(11)

Solve the bX using Levenberg-Marquardt algorithm (LM) to
iteratively obtain the optimal solution.

2.2. INS/UWB integration based on FGO structure

The tightly coupled INS/UWB integration based on FGO struc-
ture is described in this subsection. The graph solution of the
navigation is shown in Fig. 2. As shown in the figure, the green
blocks and orange blocks denote the IMUpre-integration factor and
IMU bias factor, respectively. The UWB raw measurements are
presented in dark blue circular points. Finally, the purple circular
points represent the IMU bias prior factor and initial state prior
factor, respectively.

Firstly, for the state space of the system, the state vector is
indicated as

xk ¼
�
Xlocal
k ;V local

k ;Jlocal
k ;Bbody

k

	T
(12)

where the right superscript and right subscript represent the

reference coordinate system and positioning epochs. Xlocal
k , V local

k

and Jlocal
k represent the measurements of the UWB receiver, the

velocities and orientations of UAV in local frame at epoch k,

respectively. Bbody
k represents the bias of accelerometer and gyro-

scope of IMU in the body frame at epoch k.
The raw UWBmeasurements are utilized as UWB range factor in

this FGO structure. The predicted measurement zUWB;Range
k;i from the

ith anchor and the corresponding the UWB range factor f RangeUWB ðxkÞ
can be calculated as follows:

zUWB;Range
k;i ¼hRangeðxk;gikÞ¼ kgik � xkk2 þ n UWB

range (13)

f RangeUWB ðxkÞ¼
���zUWB;Range

k;i � hRangeðxk;gikÞ
���2
S

Range
k

(14)

where gik represents the position of the ith anchor at time k. SRange
k

denotes the covariance matrix corresponding to the UWB range
measurement model.

The INS function, usually working as inertial measurement unit



Fig. 2. Tightly coupling UWB/INS integration based on FGO.
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(IMU) in the hardware platforms, contains a three-dimensional
accelerometer and three-dimensional gyroscope that can mea-
sure the rotation and acceleration of the body. For the IMU mea-
surement factor, the output frequency of IMU is much greater than
that of UWB. It will result in a large number of IMU factor nodes
between two UWB factor nodes if the state xk is predicted directly
with the IMU raw measurements and the state estimation of xk�1.
To avoid the difficulties of the implementation of massive factor
nodes and the corresponding undesirable computational burden.
The pre-integration technology is accepted in our tightly coupled
INS/UWB integration method to improve the factor graph optimi-
zation [28,29]. Thus, the IMU pre-integration factor and the time
relationship with UWB factor can be shown in the following figure
(see Fig. 3).

As shown in the figure, the basic principle of pre-integration is
not difficult to understand. Successive IMU measurements are in-
tegrated between two epochs and result in a new IMU pre-
integration factor for FGO. The time synchronization problem
with UWBmeasurements can also be solved in this processing. The
IMU integration can be iterated along all the time duration Dt as
follows:
Fig. 3. Schematic diagram of IMU pre-integration factor.
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Rj ¼ Ri

Yj�1

k¼i

Exp
h�

~uk � bkg � hk
gd

	
Dt
i

vj ¼ vi þ gDtij þ
Xj�1

k¼i

Rk

�
~ak � bka � hk

ad

	
Dt

Pj ¼ Pi þ
Xj�1

k¼i



VkDt þ

1
2
gDt2 þ 1

2
Rk

�
~ak � bka � hk

ad

	
Dt2
�

(15)

where the Ri; vi; and Pi denote the rotation, velocity and position

parameters of IMU in framei, respectively. bkg and bka represent the

biases of angular velocity and acceleration, respectively. hk
gd and hk

ad

denote the random noise of IMU measurement. Then, to further
avoid recomputing the above integration due to the UWB update,
the following relative motion increments are introduced into the
detailed processing to complete the update of IMU measurement
between the two UWB epochs:

DRij ¼
Yj�1

k¼i

Exp
��

~uk � bkg � hk
gd

	
Dt
	

Dvij ¼
Xj�1

k¼i

DRik

�
~ak � bka � hk

gd

	
Dt

DPij ¼
Xj�1

k¼i



DV ikDt þ

1
2
DRik

�
~ak � bka � hk

ad

	
Dt2
�

(16)

where DRik^RT
i Rk and Dvik^RT

i ðvk � vi � gDtikÞ.
About the measurement noise after IMU pre-integration, the

first-order approximation is introduced to calculate the noise
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propagation and biases changes b )bþ db. The cost function in
factor graph optimization of IMU pre-integration model and
observed values are accepted to calculate the residual of IMU pre-
integration factor, which are defined as
rDRij
^lg

0BBB@
0BB@DR

�
ij

�
b
i
g

	
Exp

0BB@v

�
DR
�
ij

�
b
i
g

	�
vbg

dbig

1CCA
1CCA

T

RT
i Rj

1CCCA

rDvij
^RT

i
�
vj � vi � gDtij

��
2664Dv�ij

�
b
i
g ;b

i
a

	
þ
v

�
Dv
�
ij

�
b
i
g ;b

i
a

�
vbg
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�
Dv
�
ij

�
b
i
g ;b

i
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	�
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3775

rDPij
^RT

i

�
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1
2
gDt2ij
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266664DP
�
ij

�
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i
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�
ij
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�
ij

�
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i
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	!
vba

dbi
a

377775

rba ¼ baj � bai rbg ¼ bgj � bgi

(17)
where the D~RijD~vijD~Pij represent the IMU pre-integration rotation,
velocity and position measurements between keyframei andj,
respectively. rDRij

, rDvij
, rDPij

, rba and rbg respectively represent the
corresponding rotation constraint, velocity constraint, position
constraint, the accelerometer and gyroscope biases constraints.
‘Exp’ ‘log’ are the exponential and logarithm map operators,
respectively. The step-by step specification about IMU pre-
integration can be referred to our previous paper [30].
3. Resilient stochastic model for factor graph optimization

One of the characteristics of resilient navigation is that it re-
quires the autonomous navigation system to maintain the system
integrity and continuity under disturbed conditions by means of
redundant information or backup system. To achieve the above
goals, the crucial work is to manage the stochastic model of
Fig. 4. Tightly coupled INS/UWB integration enha
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navigation sensors against model misspecification, signal interfer-
ence and sensor faults [31,32]. For the proposed tightly coupled
INS/UWB FGO structure, the classical solution is that the state
propagation process noise and measurement covariance matrix
corresponding to INS and UWB are fixed values, which allows the
FGO to use the measured values to calculate the new state with
constant weights. When UAV is operating in an empty and unob-
structed indoor environment, the operating state of each sensor is
basically stable. It is normal to employ a fixed weight to update the
new state of UAV. By artificially calibrating the characteristic of
various sensors, the appropriate process noise covariance matrix
and measurement noise covariance matrix can be effectively
designed, which makes it application in most scenarios.

However, when the UAV is operating in a challenging environ-
ment, such as indoor pipeline monitoring and cargo transportation,
it will deal with a more complicated indoor scenario. Although the
IMU has little dependence on the external environment, the UWB
will be highly affected with a poor environment and induce a large
error in range measurement. Therefore, in this case, the UAV may
perform a wrong action, due to the highly large positioning error.
nced by resilient factor graph optimization.
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As a result, in order to obtain a better positioning accuracy and
maintain the navigation continuity in a challenging indoor sce-
nario, the core solution in this research is to distinguish the quality
of UWB signals and predict the value of measurement noise
covariance matrix. Thus a tightly coupled INS/UWB integration
enhanced by resilient factor graph optimization is proposed and
designed in this section. The framework of the proposed method is
shown in Fig. 4. It mainly includes three modules: Sensing signal
pre-processing; factor graph optimization-based navigation and
resilient stochastic model based on two-phase CNNs structure. The
INS and UWB signal pre-processing and tightly coupled INS/UWB
integration based on FGO have been elaborated in the above sec-
tions. The following parts will focus on the implementation of
resilient stochastic model and the corresponding UWB signal
classification and noise prediction.
3.1. UWB receiver output feature

For UWB measurement system, the UWB receiver is connected
to the Intel Up Board, and the measurement can be directly saved in
the form of date packet by Robot Operating System (ROS) to help
user check and operation. Therefore, from the collected data
packets, we can view the output measurement types of UWB, and
further use these measurements to evaluate the quality of the
current environment to achieve signal classification and noise
Table 1
Selected features for UWB signals classification and prediction.

No. Feature Remarks

1 zUWB;Range
k;i

The range measurements between the receiver and ith anchor at
time k

2 fp_rssi First path power level. Unit: dB
3 rx_rssi Received Power level Unit: dB
4 Panch UWB Anchor Position (Unit: m) Panch ¼ ð xanch yanch zanch Þ

Fig. 5. Signal Classification Network structure. ‘Conv’ represents the convolution layer, th
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prediction. Unfortunately, different from the GNSS signals outside,
the basic UWB system cannot provide some raw but important
features such as signal gain, time delay, amplitude and code/carrier
phase. The features for classifying and prediction are pretty limited.

Hence, in consideration of the above limitations, the selected
UWB signal features are listed in Table 1. The UWB range mea-
surement is the first choice as it directly determines the accuracy of
positioning results, The fp_rssi and rx_rssi are the transmitted
power and received power, since the power loss of signal will in-
crease when it is blocked or reflected, thus these features may have
relationship with the type of signals and measurements noise.
Besides that, the anchor base station coordinates are introduced as
feature information to improve the difference between the
features.

After collecting the useable data, the deep learning method is
employed for UWB signal classification and measurement noise
prediction in the following subsections. In the deep learning
methods, based on the characteristics of weight sharing and local
connectivity, the convolutional neural networks (CNNs) have
already got rising attentions and successful applications in many
fields. The CNNs explore the spatial correlation between selected
features. By introducing the operation of convolution kernel, the
number of parameters is greatly reduced. Rectified Linear Unit
(ReLU) activation layer, batch normalization layer (BN) and residual
block have appeared successively and are widely used in target
detection and classification. After the convolutional layer is
completed, all the extracted features will be arranged in a column
vector, and then the classification result is output through the fully
connected layer. Compared with traditional neural networks, CNNs
can achieve weight sharing, thus it has faster learning efficiency. In
our search, the CNNs structure is chosen for UWB measurement
classification and noise prediction.
e green numbers denote the numbers of kernel from Conv1 to Conv 5, respectively.
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3.2. Phase I: UWB measurement classification

Based on the collected UWB measurement information, a brief
assessment of signal quality and operating circumstance can be
conducted, such as clear corresponding to open and interference
corresponding to dense, and further predicting noise based on
classification results. Before correcting different measurement
noise covariance matrix to adapt to various environments to ach-
ieve adaptive adjustment, the first task is to use the UWB mea-
surements to identify the operating scenes and classify the signal.
The proposed signal classification network is shown in Fig. 5. It
contains 5 CLs, 1 dropout layer and 1 fully connected layer. As
shown in the figure, the first three CLs is built of three functional
stages, i.e., convolution, batch normalization and ReLU activation
function. However, the pooling operation is not introduced, due to
the original data is just a row vector with 6 elements (the anchor
Fig. 6. Training process of classification network.

Fig. 7. Noise Prediction Network Structure. ‘Conv’ represents the convolution layer. The
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position is regarded as three elements in the input vector), even if it
is convolved 128 times in one convolutional layer, the extracted
feature information is not inefficiency. In order to retain more valid
data, thus in the first three CLs, pooling operation cannot be
adopted. For the last two CLs, since the number of extracted fea-
tures is sufficient, in order to improve the learning efficiency,
average pooling is employed to down sample. Dropout layer is
similar to the pooling operation, which remove half of parameters
randomly for increasing the training speed. Finally, a fully con-
nected layer is connected to the softmax neuron to output the
classification probability.

After designing the network, the next step is to train and eval-
uate its performance. The loss function is used in this training
processing. For classification problem, the cross-entropy loss is
widely used, which can be expressed as follow:

L ¼ �
X
i

y;i lg ðyiÞ (18)

where y;i is the ground truth label of the ith training date, and yi is
the prediction results of the training data.

As shown in Fig. 6, after 800 iterations, the classification accu-
racy of test set is close to 80%. The ground truth acquisition method
will be described in the experiment section. Actually it is not an
ideal result for signal classification. However considering of the
limited features, it is an acceptable number.
3.3. Phase II: UWB measurement noise prediction

As analyzed in the above subsection, most NLOS signals have
been excluded after signal classification phase, which will improve
the position precision apparently. However due to the limited
features, some NLOS signals still left in the data. Besides the signal
reflection, the measurement noise is another important parameter
green numbers denote the numbers of kernel from Conv1 to Conv 4, respectively.



Fig. 9. Experiment setup and flight path.
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that affects the signal quality of UWBmeasurements. To implement
resilient navigation in challenging scenarios, a noise prediction
network is built in the second phase. The motivation of the second
network includes two aspects: the first one is to obtain the exact
value of UWB measurement noise covariance matrix. The second
aspect is to regard the residual NLOS signals as noise to reduce its
impact on positioning performance.

As shown in Fig. 7, the CNNs in the second phase contains 4 CLs,
1 dropout layer and 1 fully connected layer. Different from the UWB
signal classification network, all the CLs are constructed of three
functional stages, i.e., convolution, batch normalization and ReLU
activation function. For the first CLs, the 64 convolution kernels are
used to extract information from the input data to generate a new
feature map. Then, through batch normalization, the newly
generated feature date becomes Gaussian distribution, which assist
the date in the source space and target space to maintain a
consistent distribution. Subsequently, a nonlinear transformation is
introduced into the model by using the ReLU activation function,
which enables our network to fit the nonlinear relationship be-
tween the input data and output results.

To select suitable parameters, we take Loss and root mean
square error (RMSE) as indicators of concern, conduct several sets
of experiments, and select appropriate parameters. After studying
different combinations of kernel numbers and trying different
combinations of kernel sizes, the case of (64, 128, 128, 256) is
selected as the final parameter finally. The training process of noise
prediction is shown in Fig. 8. It is encouraging that the noise level
predicted in the test set is basically consistent with the ground
truth. The RMSE used for describing the prediction error is as
follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

k¼1ðbyk � ykÞ2
n

s
(19)

where byk denotes the prediction value of UWB measurement noise
and yk represents the labeled value of training set.

4. Experimental tests and results analysis

4.1. Experiment setup and data collection

The experimental setting and UAV flighting tests were con-
ducted in the building indoor environment and the corresponding
experimental scene and UAV platform are shown in Fig. 9. Partic-
ularly, to maintain the system accuracy in vertical direction, the
vertical dilution of precision (VDOP) concept of GNSS is introduced
Fig. 8. Training process of noise prediction network.
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into the location of UWB anchors and the optimal VDOP is carefully
considered in this research to locate the spatial distribution of
anchors [33]. Blackboards and Television are chosen as artificial
obstacles to result in the reflections of the UWB signals. The posi-
tioning performance of EKF and proposed FGO method will be
evaluated under this actual indoor challenging environment.

The specifications of UWB receiver and IMU are shown in Fig. 10,
Tables 2 and 3, respectively. In addition, an eight-camera motion
capture analysis system (VICON), was introduced into the experi-
ments to provide the ground truth of UAV dynamic position and
furthermore the basic criterion for UWB signal classification. Three
integration models: EKF, classical FGO and proposed resilient FGO
are conducted and compared in indoor challenging environment.
4.2. Experiments under indoor open scenario

The UAV experiments under relative open scenario were tested
firstly. The motivations of open scenario test before challenging
scenario included two aspects: to verify the applicability of the
proposed tightly coupled FGO structure for INS/UWB integration
and to tuning the optimal parameter for two methods to show the
nominal performance. As shown in Fig. 11, the flight path begins
from the bottom right corner in experiment scenario and turns
counterclockwise back to the terminal point near the start point.
Fig. 12 and Table 4 show the positioning performance and results
errors. The statistical data related to positioning performance
include error means and standard deviation (STD).

As shown in the figure and table, for the integration based on
EKF, the horizontal and vertical errors are 0.066 m and 0.051 m



Table 3
Xsens Mti-10 specifications.

No. Item Details

1. Input voltage/V 4.5e34 or 3V3
2. Output frequency/kHz Up to 2
3. Latency/ms <2
4. Supply voltage/V (3.6, 5.5)
5. Standard full range gyro/((�)_s�1) 450
6. communication interface USB、UART、CAN
7. In-run bias stability gyro/((�)_h�1) 18
8. Bandwidth acc Bandwidth acc
9. Typical power consumption/mW 400e550
10. Temperature/�C �40 to 85
11. Sampling frequency 10 kHz/channel (60 kS/s)
12. Clock Drift 10 ppm or external reference
13. communication interface RS232/RS485/RS422/UART/USB

Fig. 11. Fight trajectory and positioning results of two methods under open scenario.

Fig. 10. UAV platform and data collection: (a) LinkTrack S UWB receiver; (b) Xsens Mti-
10 IMU; (c) UAV platform.
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with a standard deviation of 0.044 m and 0.085 m, respectively.
Compared to those of EKF, the FGO method has some improve-
ments in both horizontal and vertical directions. The overall error
and standard deviation decrease from 0.092m to 0.088me0.070m
and 0.042 m respectively. Particularly the improvements in
Table 2
Link Track S specifications.

No. Item Details

1. Antenna Types Built-in onboard antenna
2. Product size/mm3 43*31*10
3. Communication distance/m 80
4. Supply voltage/V (3.6, 5.5)
5. Operating frequency band/GHz (3744, 4243.2)

(4243, 4742.4)
(6240, 6739.2)

6. Communication interface USB, UART, CAN
7. One. Two-dimensional positioning accuracy/cm 10
8. Three-dimensional positioning accuracy/cm 30

Fig. 12. Positioning results and errors of two methods under open scenario.
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standard deviations are pretty obvious compared to those in error
means.

It cannot be ignored that there’s an obvious peak in the per-
formance of EKF positioning results near the terminal point. It re-
sults an outlier in the flighting trajectory due to the UWB signal
fault and resulted in a big positioning failure. On the other hand, the
FGO method can effectively reduce the impact of this outlier. It



Table 4
Positioning performance of two methods under indoor open scenario.

Position errors/meters EKF FGO

Overall error Mean 0.092 0.070
Standard deviation 0.088 0.042

Horizontal component Mean 0.066 0.056
Standard deviation 0.044 0.031

Vertical component Mean 0.051 0.036
Standard deviation 0.085 0.035
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shows the superiority of FGO once again that compared to the
approximation of Jacobians every epoch in Kalman filter theory, the
FGO method aims to re-linearize iteratively to minimize the cost
function to search the optimal solution. That is the essential dif-
ference between optimization and filtering. Compared to Kalman
filter, which uses only last-step states and current measurements to
estimate current states, FGO is essentially smoother by using
multiple epochs of measurements and states to estimate current
states, which is effective in resisting the outlier. The improvements
in standard deviations of positioning errors also benefit from this
information processing.
Fig. 14. Positioning results and errors of two methods under challenging scenario.

Table 5
Positioning performance of two methods under indoor challenging scenario.

Position errors/meters EKF FGO

Overall error Mean 0.745 0.627
Standard deviation 0.422 0.196

Horizontal component Mean 0.610 0.519
Standard deviation 0.335 0.206

Vertical component Mean 0.386 0.335
Standard deviation 0.314 0.092
4.3. Experiments under indoor challenging scenario

For the indoor challenging scenario, the UAV flighted through
the blackboard and Television. The UWB signals were blocked and
reflected by the artificial obstacles. Beginning from the lower right
corner, the UAV completed the Arabic number eight-shaped path
and flighted continuously back to the start point. The trajectory and
positioning results under this challenging scenario was shown in
Figs. 13 and 14. The detailed positioning errors are shown in Table 5.

The impact of UWB signal block and reflection on positioning
accuracy is obvious for both EKF and FGO. The horizontal and ver-
tical errors of EKF are 0.610 m and 0.386 m, respectively. On the
other hand, the corresponding values of FGO is 0.519 m and
0.335 m. Compared to EKF, the FGO method shows some resilience
to challenging scenarios and the position trajectory is much
smoother than that of EKF (the standard deviation is 0.196m for the
former and 0.422 m for the latter). However once the faulty ob-
servations exist in almost every epoch, it is difficult to calculate the
optimal solution in cost function model involving so many faulty
measurements. The above sub-meter level position accuracies are
apparently not unacceptable for indoor flight. It is easy to deviate
from the target and even collide with the buildings. Tomaintain the
navigation accuracy of open environment in such complex indoor
Fig. 13. Fight trajectory and positioning results under challenging scenario.
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scenarios, it is necessary to distinguish the quality of limited UWB
signal.
4.4. Resilient FGO under indoor challenging scenario

The above experiments have discussed the necessary of signal
classification and noise prediction. In this subsection, the resilient
FGO method involving the two-phase CNNs structure is tested.
After utilizing the signal classification network to classify the
environment conditions of UWB, the noise prediction network is
used to output the detailed value of UWB measurement noise and
the prediction results is shown in Fig. 15. As the input noise
covariance matrix in FGO is the square of the range measurement
error, to satisfy this demand, the predicted value of measurement
covariance is also the square of the actual noise. It should be noted
that the prediction results also corresponded to the relationship
between anchor location and NLOS signals to some extent. For
example, the reflections of A1 focused on the beginning and the end
of the flight, and the signals of A3 are easy to be blocked or reflected
during the mid-time. As the A4 anchor are located at the top center
of the room, the UAV can receive its signal directly without any
block or reflection during the whole flight. It results a quite small
measurement noise which corresponding to the result in the noise
prediction network.

To evaluate the superiority of resilient FGO method, different
fixedmeasurement noise covariances are employed in classical FGO
for comparison with the resilient FGO. The fixed measurement
noise covariances are from 0.4 to 1.0 m with an interval of 0.2 m.



Fig. 15. Prediction value of measurement noise of INS/UWB integrations using Noise
Prediction Network.

Fig. 17. Positioning performance and errors of FGO methods with different noises
under challenging scenario.
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The trajectory and positioning results under this challenging sce-
nario are shown in Figs. 16 and 17. The detailed statistical data
about the corresponding positioning errors of every FGO method
are shown in Table 6.

As shown in the above figure, on one hand, for those FGO results
with fixed measurement noises, the positioning performance is
different in different period. It is difficult to conclude that which
one is better. A bigger noise covariance could reduce the impact of
fault measurement. However it would decrease the positioning
accuracy in nominal scenario. On the other hand, the positioning
accuracy of resilient FGO method is much better than all those
method with fixed measurement noises.

As show in Table 6, it can be seen that for the classical FGO
methods which with the fixed settings of measurement noise, the
Fig. 16. Fight trajectory and positioning results with different measurement noise
settings.
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positioning performance are basically unchanged and the posi-
tioning errors fluctuate around 0.50m and 0.33m in horizontal and
vertical directions, respectively. It should be addressed that it is
difficult to complete the indoor work based on this positioning
accuracy. After applying the deep learning based resilient stochastic
model, it is encouraging that the positioning error in horizontal and
vertical direction are sharply decreased to 0.027 m and 0.016 m,
respectively. Meanwhile, the overall standard deviation is about
0.017 m, which indicates that the error distribution has become
more precise and compact. The resilient FGO method for tightly
coupled INS/UWB integration is verified in this indoor challenging
scenario. The accuracy improvements can meet the performance
requirements of high precision indoor navigation task.

5. Conclusions

(1) The tightly coupled INS/UWB integrated system based on
resilient factor graph optimization (FGO) structure is pro-
posed in this paper to overcome the challenge of complex
indoor environment to realize the high precision indoor UAV
navigation. The deep learning method is introduced into the
FGO method to identify the UWB NLOS signals and predict
precise measurement noise.

(2) Due to the limited features, the UWB signals classification is
difficult to achieve a desired success rate. Hence the imple-
mentation of resilient stochastic model is designed into two
phases, one for identify the NLOS signals and the other one
for predicting the measurement noises. The residual NLOS
signals in the first phase are regarded as noise in the second
phase to reduce their impact on positioning performance.

(3) The proposed resilient tightly-coupled INS/UWB FGO
method is tested on UAV platform under actual indoor
challenging environment. The experiment results verified its
superiority compared to classical EKF method and noise-
fixed FGO method. Under signal block and reflection sce-
narios, the self-tuning measurement noise covariance can



Table 6
Positioning performance of fgo methods with different noises under challenging scenario.

Position errors/meters Noise-Cov-0.4 Noise-Cov-0.6 Noise-Cov-0.8 Noise-Cov-1.0 Resilient FGO

Overall error Mean 0.645 0.627 0.614 0.601 0.038
Standard deviation 0.225 0.198 0.187 0.181 0.017

Horizontal component Mean 0.540 0.519 0.499 0.484 0.027
Standard deviation 0.228 0.206 0.192 0.181 0.015

Vertical component Mean 0.334 0.335 0.335 0.339 0.016
Standard deviation 0.103 0.092 0.096 0.108 0.013
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effectively enhance the ability of FGO to deal with NLOS
signals and uncertain noises. The overall errors can be
decreased from about 0.60 m to centimeter-level.
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