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A B S T R A C T

The convolution operation is the most critical component in recent surge of deep learning research. Con-
ventional 2D convolution needs 𝑂(𝐶2𝐾2) parameters to represent, where 𝐶 is the channel size and 𝐾 is the
kernel size. The amount of parameters has become really costly considering that these parameters increased
tremendously recently to meet the needs of demanding applications. Among various implementations of the
convolution, separable convolution has been proven to be more efficient in reducing the model size. For
example, depth separable convolution reduces the complexity to 𝑂(𝐶 ⋅ (𝐶 + 𝐾2)) while spatial separable
convolution reduces the complexity to 𝑂(𝐶2𝐾). However, these are considered ad hoc designs which cannot
ensure that they can in general achieve optimal separation. In this research, we propose a novel and principled
operator called optimized separable convolution by optimal design for the internal number of groups and kernel
sizes for general separable convolutions can achieve the complexity of 𝑂(𝐶

3
2 𝐾). When the restriction in

the number of separated convolutions can be lifted, an even lower complexity at 𝑂(𝐶 ⋅ log(𝐶𝐾2)) can be
achieved. Experimental results demonstrate that the proposed optimized separable convolution is able to
achieve an improved performance in terms of accuracy-#Params trade-offs over both conventional, depth-wise,
and depth/spatial separable convolutions.
1. Introduction

Tremendous progresses have been made in recent years towards
more accurate image analysis tasks, such as image classification, with
deep convolutional neural networks (DCNNs) (Krizhevsky et al., 2012;
Srivastava et al., 2015; He et al., 2016; Real et al., 2019; Tan and Le,
2019; Dai et al., 2020). However, the complexity of state-of-the-art
DCNN models has also become increasingly high. This can signifi-
cantly deter their deployment to real-world applications, such as mobile
platforms and robotics, where the resources and networks are highly
constrained (Howard et al., 2017; Dai et al., 2020).

The most resource-consuming building block of a DCNN is the
convolutional layer. There have been many previous works aiming
at reducing the amount of parameters in the convolutional layer.
Network pruning (Han et al., 2015) strategies are developed to re-
duce redundant parameters that are not sensitive to performances.
Quantization and binarization (Gong et al., 2014; Courbariaux et al.,
2016) techniques are introduced to compress the original network by
reducing the number of bits required to represent each parameter.
Low-rank factorization methods (Jaderberg et al., 2014; Ioannou et al.,

∗ Corresponding author.
E-mail address: taowei@buffalo.edu (T. Wei).

2015) are designed to approximate the original weights using matrix
decomposition. Knowledge distillation (Hinton et al., 2015) is applied
to train a compact network with distilled knowledge from a large
ensemble model. However, all these existing methods start from a pre-
trained model. Besides, they mainly focus on network compression and
have limited or no improvements in terms of network acceleration.

In this research, we study how to design a separable convolution
to achieve an optimal implementation in terms of model size (repre-
sentational complexity). Enabling convolution to be separable has been
proven to be an efficient way to reduce the representational complexity
(Sifre and Mallat, 2014; Howard et al., 2017; Szegedy et al., 2016).
Comparing to the network compression related approaches, a well-
designed separable convolution shall be more efficient in both storage
and computation and shall not require a pre-trained model to begin
with.

In the DCNN research, the two most well-known separable con-
volutions are depth separable (Sifre and Mallat, 2014) and spatial
separable (Szegedy et al., 2016) convolutions. Both are able to reduce
the complexity of a convolution. The representational complexity of a
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Table 1
A comparison of the number of parameters and computational complexity of the proposed optimized separable convolution and existing approaches. The proposed optimized
separable convolution is much more efficient in both #Params and FLOPs. In this table, 𝐶 represents the channel size of convolution, 𝐾 is the kernel size, 𝐻 and 𝑊 are the
output height and width, 𝑔 is the number of groups. “Vol. RF” represents whether the corresponding convolution satisfies the proposed volumetric receptive field condition.

Conventional Grouped Depth-wise Point-wise Depth Separable Spatial Separable Optimized Separable Optimized Separable
Conv2D Conv2D Conv2D Conv2D Conv2D Conv2D Conv2D (𝑁 = 2) Conv2D (Optimized 𝑁)

#Params 𝐶2𝐾2 𝐶2𝐾2∕𝑔 𝐶𝐾2 𝐶2 𝐶(𝐶 +𝐾2) 2𝐶2𝐾 2𝐶
3
2 𝐾 𝑒𝐶 log(𝐶𝐾2)

FLOPs 𝐶2𝐾2𝐻𝑊 𝐶2𝐾2𝐻𝑊 ∕𝑔 𝐶𝐾2𝐻𝑊 𝐶2𝐻𝑊 𝐶𝐻𝑊 (𝐶 +𝐾2) 2𝐶2𝐾𝐻𝑊 2𝐶
3
2 𝐾𝐻𝑊 𝑒𝐶𝐻𝑊 log(𝐶𝐾2)

Vol. RF ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓

Note – – 𝑔 = 𝐶 𝐾 = 1 Depth-wise + Point-wise 𝐾2 → 2𝐾 – 𝑒 = 2.71828...
Fig. 1. Volumetric receptive field and the proposed optimized separable convolution. (a) The volumetric receptive field (RF) of a convolution is the Cartesian product of its
(spatial) RF and channel RF. (b) Illustrations of the channel connections for conventional, depth separable, and the proposed optimized separable convolutions. Optimized separable
convolution is sparse-connected, whereas it can be efficiently implemented using a channel shuffle operation.
√

f
a
a
F
2
P
t
t
t
a
p
9
I
c
t
4
7

z
i
p
r

conventional 2D convolution is quadratic with two hyper-parameters:
number of channels (𝐶) and kernel size (𝐾), and its representational
omplexity is actually 𝑂(𝐶2𝐾2). Depth separable convolution is con-

structed as a depth-wise convolution followed by a point-wise con-
volution, where depth-wise convolution is a group convolution with
its number of groups 𝑔 = 𝐶 and point-wise convolution is a 1 × 1
convolution. Spatial separable convolution replaces a 𝐾 × 𝐾 kernel
with a 𝐾 × 1 and a 1 × 𝐾 kernel. Different types of convolutions and
their complexities are summarized in Table 1. From this table, we can
see that, for all convolutions, their computational complexities equal
to the corresponding representational complexity times a constant. We
can also verify that depth separable convolution has a complexity of
𝑂(𝐶 ⋅ (𝐶 + 𝐾2)) and spatial separable convolution has a complexity of
𝑂(𝐶2𝐾).

Both depth and spatial separable convolutions follow an ad hoc
design mode and are non-principled. They are able to reduce the
complexity to some degree but normally cannot achieve an optimal
separation. A separable convolution in general has three sets of hyper-
parameters: the internal number of groups, channel size, and kernel size
of each separated convolution. Instead of setting these hyperparameters
in an ad hoc (manual) fashion, we design a novel and principled (auto)
scheme to achieve an optimal separation. The resulting separable con-
volution is called optimized separable convolution in this research. The
proposed scheme in general performs better than the other convolution
operator counterparts and it also enriches the separable convolution
family.

To prevent the proposed optimized separable convolution from
being degenerated, we assume that the internal channel size is in
an order of 𝑂(𝐶) and propose the following volumetric receptive field
condition. As illustrated in Fig. 1(a), similar to the receptive field (RF) of

convolution which is defined as the region in the input space that
particular CNN’s feature is looking at (or affected by) (Lindeberg,

013), we define the volumetric RF of a convolution to be the volume in
he input space that affects CNN’s output. The volumetric RF condition
equires a properly decomposed separable convolution to maintain the
ame volumetric RF as the original convolution before decomposition.
ence, the proposed optimized separable convolution will be equiva-

ent to optimizing the internal number of groups and kernel sizes to
163

#

achieve the target objective (measured in #Params) while satisfying
the proposed volumetric RF condition. Formally, the objective function
is defined by Eq. (3) under the constraints defined by Eqs. (4)–(10). The
solution to this optimization problem will be elaborated in Section 3.

We shall show that the proposed optimized separable convolution
can be represented with the order of 𝑂(𝐶

3
2 𝐾). This is at least a factor of

𝐶 more efficient than the depth and spatial separable convolutions.
The proposed optimized separable convolution is able to be generalized
into an 𝑁-separable case, where the number of separated convolutions
𝑁 can be optimized further. In such a generalized case, an even lower
complexity at 𝑂(𝐶 ⋅ log(𝐶𝐾2)) may be achieved.

Extensive experiments have been carried out to demonstrate the ef-
ectiveness of the proposed optimized separable convolution over other
lternatives, including conventional, depth-wise, depth and spatial sep-
rable convolutions (Fig. 3(c) and Fig. 4(c)). As further illustrated in
igs. 3 and 4, on the CIFAR10 and CIFAR100 datasets (Krizhevsky et al.,
009), the proposed optimized separable convolution achieves a better
areto-frontier1 than both conventional and depth separable convolu-
ions using the ResNet (He et al., 2016) architecture. To demonstrate
hat the proposed optimized separable convolution generalizes well
o other DCNN architectures, we adopt the DARTS (Liu et al., 2018)
rchitecture by replacing the depth separable convolution with the pro-
osed optimized separable convolution. The accuracy is improved from
7.24% to 97.67% with reduced representational complexity. On the
mageNet dataset (Deng et al., 2009), the proposed optimized separable
onvolution also achieves improved performance. For the DARTS archi-
ecture, the proposed approach achieves 74.2% top1 accuracy with only
.5 million parameters. For MobileNet, the proposed approach achieves
1.1% top1 accuracy with only 3.0 million parameters.

1 In multi-objective optimization, a Pareto-frontier is the set of parameteri-
ations (allocations) that are all Pareto-optimal. An allocation is Pareto-optimal
f there is no alternative allocation where improvement can be made to one
articipant’s well-being without sacrificing any other’s. Here, Pareto-frontier
epresents the curve of the accuracies we are able to achieve for different

Params (or FLOPs).
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2. Related work

There have been many previous works aiming at reducing the
amount of parameters in convolution. Network pruning (Han et al.,
2015) strategies are developed to reduce redundant parameters that
are not sensitive to performances. Quantization and binarization (Gong
et al., 2014; Courbariaux et al., 2016) techniques are introduced to
compress the original network by reducing the number of bits required
to represent each parameter. Low-rank factorization methods (Jader-
berg et al., 2014; Ioannou et al., 2015) are designed to approximate
the original weights using matrix decomposition. Knowledge distilla-
tion (Hinton et al., 2015) is applied to train a compact network with
distilled knowledge from a large ensemble model. However, all these
existing methods start from a pre-trained model. Besides, they mainly
focus on network compression and have limited or no improvements in
terms of network acceleration.

Among various implementations of convolution, separable convo-
lution has been proven to be more efficient in reducing the represen-
tational demand. Depth separable convolution is explored extensively
in modern DCNNs (Howard et al., 2017; Sandler et al., 2018; Howard
et al., 2019; Liu et al., 2018; Tan and Le, 2019). It reduces the represen-
tational cost of a conventional convolution from 𝑂(𝐶2𝐾2) to 𝑂(𝐶 ⋅ (𝐶 +

2)). However, the proposed optimized separable convolution is even
ore efficient than depth separable convolution. It can be represented

t 𝑂(𝐶
3
2 𝐾) and has the full potential to replace the usage of depth

eparable convolutions. A second advantage of the proposed optimized
eparable convolution is that it can be applied to fully connected layers
f we view them as 1 × 1 convolutional layers, whereas depth separable
onvolution cannot. Further, depth separable convolution requires the
iddle channel size to be equal to the input channel size, whereas for

he proposed optimized separable convolution, the middle channel size
an be freely set.

Spatial separable convolution was originally developed to speed up
mage processing operations. For example, a Sobel kernel is a 3 × 3
ernel and can be written as (1, 2, 1)𝑇 ⋅ (−1, 0, 1). Spatial separable will
equire 6 instead of 9 parameters while doing the same operation.
patial separable convolution is also adopted in the design of modern
CNNs. For example, in Szegedy et al. (2016), the authors introduce

patial separation to the GoogLeNet (Szegedy et al., 2015) architecture.
or the proposed optimized separable convolution, there is also a
patial separable configuration.

In the body of literature, separable convolution is also referred as
actorized convolution or convolution decomposition. In this research, the
roposed scheme is called optimized separable convolution following
he naming conventions of depth and spatial separable convolutions.

. The proposed approach

.1. Convolution and its complexity

A convolutional layer takes an input tensor 𝐵𝑙−1 of shape (𝐶𝑙−1,𝐻𝑙−1,
𝑙−1) and produces an output tensor 𝐵𝑙 of shape (𝐶𝑙 ,𝐻𝑙 ,𝑊𝑙), where
∗, 𝐻∗, 𝑊∗ are input and output channels, feature heights and widths.
he convolutional layer is parameterized with a convolutional kernel
f shape (𝐶𝑙 , 𝐶𝑙−1, 𝐾𝐻

𝑙 , 𝐾𝑊
𝑙 ), where 𝐾∗

𝑙 are the kernel sizes, and the
uperscript indicates whether it is aligned with the features in height
r width. In this research, we take 𝐶∗ = 𝑂(𝐶), 𝐻∗ = 𝑂(𝐻), 𝑊∗ = 𝑂(𝑊 ),
nd 𝐾𝐻|𝑊

∗ = 𝑂(𝐾) for complexity analysis. Formally, we have

𝑙(𝑐𝑙 , ℎ𝑙 , 𝑤𝑙) =
∑

𝑐𝑙−1

∑

𝑘𝐻𝑙

∑

𝑘𝑊𝑙

𝐵𝑙−1(𝑐𝑙−1, ℎ𝑙−1, 𝑤𝑙−1) (1)

⋅ 𝐹𝑙(𝑐𝑙 , 𝑐𝑙−1, 𝑘𝐻𝑙 , 𝑘𝑊𝑙 ), (2)

here ℎ𝑙 = ℎ𝑙−1 + 𝑘𝐻𝑙 and 𝑤𝑙 = 𝑤𝑙−1 + 𝑘𝑊𝑙 . Hence, the number of
𝐻 𝑊
164

parameters for convolution is 𝐶𝑙𝐶𝑙−1𝐾𝑙 𝐾𝑙 and its representational a
complexity is 𝑂(𝐶2𝐾2). The number of FLOPs (multiply-adds) for con-
olution is 𝐶𝑙𝐻𝑙𝑊𝑙 ⋅ 𝐶𝑙−1𝐾𝐻

𝑙 𝐾𝑊
𝑙 and its computational complexity is

(𝐶2𝐾2𝐻𝑊 ).
For a group convolution, we have 𝑔 convolutions with kernels of

hape (𝐶𝑙∕𝑔, 𝐶𝑙−1∕𝑔,𝐾𝐻
𝑙 , 𝐾𝑊

𝑙 ). Hence, it has 𝑂(𝐶2𝐾2∕𝑔) parameters and
(𝐶2𝐾2𝐻𝑊 ∕𝑔) FLOPs, where 𝑔 is the number of groups. A depth-wise
onvolution is equivalent to a group convolution with 𝑔 = 𝐶∗ = 𝐶.

point-wise convolution is a 1 × 1 convolution. A depth separable
onvolution is composed of a depth-wise convolution and a point-wise
onvolution. A spatial separable convolution replaces a 𝐾 × 𝐾 kernel
ith 𝐾 × 1 and 1 × 𝐾 kernels. Different types of convolutions are

ummarized in Table 1. From this table, their number of parameters
nd FLOPs can be easily verified. It can also be seen that, for a convolu-
ion, its representational complexity is equivalent to its computational
omplexity for up to a constant (𝐻𝑊 ).

.2. Rethinking convolution and the volumetric receptive field condition

Separable convolution has been proven to be efficient in reduc-
ng the representational demand in convolution. However, existing
pproaches including both depth and spatial separable convolutions
ollow an ad hoc design and are non-principled. They are able to reduce
he complexity to some extent but will not normally achieve an optimal
eparation. In this research, we shall design an efficient convolution
perator capable of achieving the representational objective by optimal
esign of its internal hyper-parameters. The resulting operator is called
ptimized separable convolution.

The proposed optimized separable convolution is called principled
s it optimizes the representational complexity under the following
olumetric receptive field condition. As illustrated in Fig. 1(a), the receptive
ield (RF) of a convolution is defined to be the region in the input
pace that a particular CNN’s feature is affected by Lindeberg (2013).
e define the channel RF to be the channels that affect CNN’s output

nd define the volumetric RF to be the Cartesian product of the RF and
hannel RF of this convolution. The volumetric RF of a convolution
ctually represents the volume in the input space that affects CNN’s
utput. The volumetric RF condition requires that a properly decomposed
eparable convolution at least maintains the same volumetric RF as the
riginal convolution before decomposition. Hence, the proposed optimized
eparable convolution will be equivalent to optimizing its internal
arameters while satisfying the volumetric RF condition. Formally, we
hall have the objective function defined by Eq. (3) and the volumetric
F constraints defined by Eqs. (4)–(10).

The volumetric RF of a convolution needs to be maintained for
echnical, conceptual, and experimental reasons. Technically, if we do
ot pose any restriction to a separable convolution, optimizing the
epresentational complexity will resulting in a separable convolution
eing equivalent to a degenerated channel scaling operator.2 The com-
osition of such operators is not meaningful because the composition
tself is equivalent to a single channel scaling operator. Conceptually,
aintaining the volumetric RF encourages the fusion of channel infor-
ation, which shall contribute to the good performance of a DCNN.

n fact, all modern DCNNs are designed following this rule. Without
his channel information exchange, the performance of a DCNN shall
e significantly degraded (depth-wise vs depth separable convolutions
n Section 4). Finally, the necessity of maintaining the volumetric RF
s experimentally verified. We shall quantize the degree of necessity as
verlap coefficient (𝛾) in Section 3.3 and elaborate the experimental
esults in Section 4.

2 From Table 1, let 𝑔 = 𝐶 and 𝐾 = 1, a convolution will have 𝐶 parameters
nd 𝐶𝐻𝑊 FLOPs. This is in fact a channel scaling operator.
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3.3. Optimized separable convolution

In this section, for ease of simplicity, we first discuss the case
of two-separable convolution. Suppose that the shape of the original
convolutional kernel is (𝐶𝑜𝑢𝑡, 𝐶𝑖𝑛, 𝐾𝐻 , 𝐾𝑊 ), where 𝐶𝑖𝑛, 𝐶𝑜𝑢𝑡 are the input
and output channels, and (𝐾𝐻 , 𝐾𝑊 ) is the kernel size. Let 𝐶1 = 𝐶𝑖𝑛, and
𝐶3 = 𝐶𝑜𝑢𝑡. For the proposed optimized separable convolution, we op-
timize the representational complexity as objective while maintaining
the original convolution’s volumetric RF. Formally, the representational
demand of the proposed separable convolution is

𝑓 (𝑔1, 𝑔2, 𝐶2, 𝐾
𝐻|𝑊
∗ ) =

𝐶2𝐶1𝐾𝐻
1 𝐾𝑊

1
𝑔1

+
𝐶3𝐶2𝐾𝐻

2 𝐾𝑊
2

𝑔2
(3)

In order to satisfy the volumetric RF condition, the following three
conditions need to be satisfied:

(𝑅𝑒𝑐𝑒𝑝𝑡𝑖𝑣𝑒 𝐹 𝑖𝑒𝑙𝑑 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) (4)

𝐾𝐻
1 +𝐾𝐻

2 − 1 = 𝐾𝐻 (5)

𝐾𝑊
1 +𝐾𝑊

2 − 1 = 𝐾𝑊 (6)

(𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) (7)

𝑔1 ⋅ 𝑔2 ≤ 𝐶2∕𝛾 ⇔
𝐶1
𝑔1

⋅
𝐶2
𝑔2

≥ 𝛾𝐶1 (8)

(𝐺𝑟𝑜𝑢𝑝 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) (9)

min(𝐶𝑙 , 𝐶𝑙+1) ≥ 𝑔𝑙 (10)

The channel condition (8) means the product 𝐶1
𝑔1
⋅ 𝐶2
𝑔2

needs to occupy
each node in the input channel 𝐶1 = 𝐶𝑖𝑛 to maintain the volumetric
receptive field. This is further explained for the channel condition
general case (21) in Section 3.4. In order to study the necessity of
the proposed volumetric RF condition, an overlap coefficient 𝛾 is in-
troduced to encourage channel information fusion. It can be verified
that, if 𝛾 ≥ 1, the channel RF shall be maintained, otherwise, it shall
be not. By default, we set 𝛾 = 1 in this research unless the behavior of
𝛾 is particularly concerned.

We have three sets of parameters: the number of groups 𝑔1, 𝑔2,
he internal channel size 𝐶2, and the internal kernel sizes 𝐾𝐻|𝑊

∗ . In
his research, we assume that the internal channel size 𝐶2 is in an

order of 𝑂(𝐶) and is preset according to a given policy. Otherwise,
𝑔1 = 𝑔2 = 𝐶2 = 1 will be a trivial solution. This could lead the
separable convolution to be over-simplified and not applicable in prac-
tice. Typical policies of presetting 𝐶2 include 𝐶2 = min(𝐶1, 𝐶3) (normal
architecture), 𝐶2 = (𝐶1+𝐶3)∕2 (linear architecture), 𝐶2 = max(𝐶1, 𝐶3)∕4
(bottleneck architecture He et al., 2016), or 𝐶2 = 4min(𝐶1, 𝐶3) (inverted
residual architecture Sandler et al., 2018).

The solution to the proposed optimized separable problem shall be
given in Theorem 1 in Section 3.4. By setting 𝑁 = 2 and 𝛾 = 1, we shall
have

𝑔1 =

√

√

√

√

𝐶1𝐶2𝐾𝐻
1 𝐾𝑊

1

𝐶3𝐾𝐻
2 𝐾𝑊

2

∼
√

𝐶, 𝑔2 = 𝐶2∕𝑔1 (11)

(𝐾𝐻
1 , 𝐾𝐻

2 ) = (𝐾𝐻 , 1) or (1, 𝐾𝐻 ) (12)

(𝐾𝑊
1 , 𝐾𝑊

2 ) = (𝐾𝑊 , 1) or (1, 𝐾𝑊 ) (13)

and

min 𝑓 = 2 ⋅
√

𝐶1𝐶2𝐶3𝐾𝐻
1 𝐾𝑊

1 𝐾𝐻
2 𝐾𝑊

2 = 𝑂(𝐶
3
2 𝐾). (14)

One interesting fact is that if we set 𝑔2 = 𝐶2∕𝑔1, 𝑓 ′(𝑔1) = 0, and
𝑓 ′(𝐾1) = 0, assume that kernel sizes aligned in height and width are
equal, one can derive that 𝑔1 is the same as Eq. (11) and 𝐾1 = 𝐾2 =

𝐾+1
2 .

ubstituting them into Eq. (14), one can get 𝑓 (𝑔1, 𝐾1) = 𝑂(𝐶
3
2 𝐾2). This

esults in a higher complexity than 𝑂(𝐶
3
2 𝐾). In fact, the solution to

𝑓 ′(𝑔1) = 0 and 𝑓 ′(𝐾1) = 0 is a saddle point, which is illustrated in
165

Fig. 2. 𝐾
Fig. 2. Given channels 𝐶1 = 𝐶2 = 𝐶3 = 64, and kernel sizes 𝐾𝐻 = 𝐾𝑊 = 5 in Eq. (3),
by setting 𝑓 ′(𝑔1) = 0, 𝑓 ′(𝐾1) = 0. The solution 𝑔1 = 8, 𝐾1 = 3 is a saddle point.

3.4. Optimized separable convolution (general case)

In this section, we shall generalize the proposed optimized separable
convolution from 𝑁 = 2 to an optimal 𝑁 . For ease of analysis, we first
introduce the notation channels per group 𝑛𝑙 =

𝐶𝑙
𝑔𝑙

, which simply means:
channels per group × number of groups = the number of channels.

Theorem 1 (Optimized Separable Convolution: General Case). Suppose
that the shape of the original convolutional kernel is (𝐶𝑜𝑢𝑡, 𝐶𝑖𝑛, 𝐾𝐻 , 𝐾𝑊 ). Let
1 = 𝐶𝑖𝑛, and 𝐶𝑁+1 = 𝐶𝑜𝑢𝑡. The representational demand of an𝑁-separable
onvolution is

({𝑔∗}, {𝐾
𝐻|𝑊
∗ }) =

𝑁
∑

𝑙=1

𝐶𝑙+1𝐶𝑙𝐾𝐻
𝑙 𝐾𝑊

𝑙
𝑔𝑙

(15)

r

({𝑛∗}, {𝐾
𝐻|𝑊
∗ }) =

𝑁
∑

𝑙=1
𝐶𝑙+1𝑛𝑙𝐾

𝐻
𝑙 𝐾𝑊

𝑙 . (16)

nder the proposed volumetric RF condition, we will have:

(𝑅𝑒𝑐𝑒𝑝𝑡𝑖𝑣𝑒 𝐹 𝑖𝑒𝑙𝑑 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) (17)

𝐾𝐻
1 +𝐾𝐻

2 +⋯ = 𝐾𝐻 + (𝑁 − 1) (18)

𝐾𝑊
1 +𝐾𝑊

2 +⋯ = 𝐾𝑊 + (𝑁 − 1) (19)

(𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) (20)

𝑛1 ⋯ 𝑛𝑁 ≥ 𝛾𝐶1 ⇔ 𝑔1 ⋯ 𝑔𝑁 ≤
𝐶2 ⋯𝐶𝑁

𝛾
(21)

(𝐺𝑟𝑜𝑢𝑝 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) (22)

𝑛𝑙 ≥ max(1,
𝐶𝑙+1
𝐶𝑙

) ⇔ 𝑔𝑙 ≤ min(𝐶𝑙 , 𝐶𝑙+1). (23)

Assume that 𝐶∗ = 𝑂(𝐶) and 𝐾𝐻|𝑊
∗ = 𝑂(𝐾). The solution to this constrained

ptimization problem (the proposed optimized separable convolution prob-
em) is given by

𝑙 =
𝑁
√

𝛾𝛱𝑁+1
𝑖=1 𝐶𝑖𝛱𝑁

𝑖=1𝐾
𝐻
𝑖 𝛱𝑁

𝑖=1𝐾
𝑊
𝑖

𝐶𝑙+1𝐾𝐻
𝑙 𝐾𝑊

𝑙

∼ 𝑁
√

𝐶 (24)

𝐾𝐻
𝑙0

= 𝐾𝐻 , 𝐾𝐻
𝑙 = 1 (𝑙 ≠ 𝑙0) (25)

𝑊 = 𝐾𝑊 , 𝐾𝑊 = 1 (𝑙 ≠ 𝑙 ) (26)
𝑙1 𝑙 1
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Algorithm 1 The Algorithm for Optimized Separable Convolution

Input: Input channel 𝐶1 = 𝐶𝑖𝑛, output channel 𝐶𝑁+1 = 𝐶𝑜𝑢𝑡, kernel
size (𝐾𝐻 , 𝐾𝑊 ), number of separated convolutions 𝑁
Optional Input: internal kernel sizes (optional, preset), internal
number of groups (optional, masked values), spatial separable (True
or False), overlap coefficient (𝛾 = 1).
Output: internal channel sizes 𝐶2,⋯ , 𝐶𝑁 , internal kernel sizes
𝐾𝐻|𝑊

1 ,⋯ , 𝐾𝐻|𝑊
𝑁 , internal number of groups 𝑔1,⋯ , 𝑔𝑁

Calculate internal channel sizes 𝐶2,⋯ , 𝐶𝑁 as min(𝐶𝑖𝑛, 𝐶𝑜𝑢𝑡),
max(𝐶𝑖𝑛, 𝐶𝑜𝑢𝑡)∕4, or 4min(𝐶𝑖𝑛, 𝐶𝑜𝑢𝑡), etc. according to a preset
policy.
if internal kernel sizes 𝐾𝐻|𝑊

1 ,⋯ , 𝐾𝐻|𝑊
𝑁 are not given then

if spatial separable then
Set 𝐾𝐻

⌊𝑁∕2⌋ = 𝐾𝐻 , 𝐾𝑊
⌊𝑁∕2+1⌋ = 𝐾𝑊 and all other internal kernel

sizes to 1.
else

Set 𝐾𝐻|𝑊
⌊𝑁∕2⌋ = 𝐾𝐻|𝑊 and all other internal kernel sizes to 1.

end if
end if
Calculate internal channels per group 𝑛𝑙 according to 𝑛𝑙 =
𝑁
√

𝛾𝛱𝑁+1
𝑖=1 𝐶𝑖𝛱𝑁

𝑖=1𝐾
𝐻
𝑖 𝛱𝑁

𝑖=1𝐾
𝑊
𝑖

𝐶𝑙+1𝐾𝐻
𝑙 𝐾𝑊

𝑙
.

Let 𝑔𝑙 = min(⌈𝐶𝑙∕𝑛𝑙⌉, 𝐶𝑙 , 𝐶𝑙+1). If 𝐶𝑙∕𝑛𝑙 < 1 or 𝐶𝑙∕𝑛𝑙 > min(𝐶𝑙 , 𝐶𝑙+1)
for certain 𝑙, re-optimize 𝑔𝑙 with a masked number of groups by
pre-setting 𝑔𝑙 = 1 for 𝑙 ∈ {𝑙 ∶ 𝐶𝑙∕𝑛𝑙 < 1}, 𝑔𝑙 = min(𝐶𝑙 , 𝐶𝑙+1) for
𝑙 ∈ {𝑙 ∶ 𝐶𝑙∕𝑛𝑙 > min(𝐶𝑙 , 𝐶𝑙+1)}.

⊳ Because 𝑛𝑙 ∼
𝑁
√

𝐶, for large channel sizes, we rarely need to
re-optimize.
Return 𝐶2,⋯ , 𝐶𝑁 ; 𝐾𝐻|𝑊

1 ,⋯ , 𝐾𝐻|𝑊
𝑁 ; 𝑔1,⋯ , 𝑔𝑁

and its corresponding representational complexity is

min 𝑓 ({𝑛∗}, {𝐾
𝐻|𝑊
∗ }) = 𝑂(𝑁𝛾

1
𝑁 𝐶1+ 1

𝑁 𝐾
2
𝑁 ). (27)

Furthermore, if the number of separated convolutions 𝑁 can be opti-
mized, we will have

𝑁 = log(𝛾𝐶𝐾2) (28)

and

min 𝑓 ({𝑛∗}, {𝐾
𝐻|𝑊
∗ }) = 𝑂(𝐶 ⋅ log(𝛾𝐶𝐾2)). (29)

In Theorem 1, we keep both notations 𝑔𝑙 and 𝑛𝑙. This is because,
or the channel condition, it is intuitive to see 𝑛1 ⋯ 𝑛𝑁 ≥ 𝐶1 means
hat the product of 𝑛1 ⋯ 𝑛𝑁 needs to occupy each node in the input
hannel 𝐶1 = 𝐶𝑖𝑛. This is equivalent to the less intuitive condition
1 ⋯ 𝑔𝑁 ≤ 𝐶2 ⋯𝐶𝑁 . Similarly, for the group convolution condition,
𝑙 ≤ min(𝐶𝑙 , 𝐶𝑙+1) means the number of groups cannot exceed the input
nd output channels of this group convolution, while 𝑛𝑙 ≥ max(1, 𝐶𝑙+1

𝐶𝑙
)

is less intuitive. A sketch of proof of Theorem 1 is given in Appendix A.
Eqs. (25) and (26) mean that one of the internal kernel sizes should

take 𝐾𝐻 or 𝐾𝑊 and the remaining ones take 1. Hence, the proposed
ptimized separable convolution shall have a spatial separable config-
ration: a single kernel takes (𝐾𝐻 , 𝐾𝑊 ) or two kernels take (𝐾𝐻 , 1)
nd (1, 𝐾𝑊 ). The implementation details of the proposed optimized
eparable convolution scheme is described in Algorithm 1. Finally, the
roposed optimized separable convolution is sparse connected. The
yperparameters of each separated convolution are given by Eqs. (24)–
26) and the proposed scheme can be efficiently implemented using a
hannel shuffle operation (Fig. 1(b)).

. Experimental results

In this section, we carry out extensive experiments on benchmark
atasets to demonstrate the effectiveness of the proposed optimized
166

F

eparable convolution scheme. In the proposed experiments, we use
prefix 𝑑𝑤-, 𝑑-, 𝑠-, 𝑜- or 𝑠𝑜- to indicate that the conventional or

epth separable convolutions in the baseline networks are replaced
ith depth-wise, depth separable (𝑑𝑠𝑒𝑝), spatial separable, the pro-
osed optimized separable (𝑜𝑠𝑒𝑝), or the proposed spatial optimized
eparable convolutions. In this research, we set the number of separated
onvolutions 𝑁 = 2. The details of the training settings for the proposed
xperiments are described in .

.1. Experimental results on CIFAR10

CIFAR10 (Krizhevsky et al., 2009) is a dataset consist of 50,000
raining images and 10,000 testing images. These images are with a
esolution of 32 × 32 and are categorized into 10 object classes. In
he proposed experiments, we use ResNet (He et al., 2016) as baselines
nd replace the conventional convolutions in ResNet with 𝑑𝑠𝑒𝑝 and 𝑜𝑠𝑒𝑝
onvolutions, resulting in 𝑑-ResNet and 𝑜-ResNet.

The proposed 𝑜𝑠𝑒𝑝 scheme can significantly reduce the represen-
ational complexity. In Section 3, we state that this reduction factor
an be

√

𝐶𝐾 in theory.3 As illustrated by the solid lines in Fig. 3(a),
the orange solid curve lies in a region with significantly smaller 𝑥-
alues than the blue solid curve. This indicates that 𝑜-ResNet shall
ave significantly less parameters than the ResNet baseline. For exam-
le, the 110-layered 𝑜-ResNet110 has even fewer parameters (0.180
illion vs 0.270 million) than the 20-layered ResNet20, yet with
oticeable higher accuracy (92.15% vs 91.25%). This demonstrates that
he proposed 𝑜𝑠𝑒𝑝 scheme could significantly reduce the representa-
ional complexity for convolutions. For 𝑑𝑠𝑒𝑝, this reduction factor is

1
1∕𝐾2+1∕𝐶 , which is bounded by 𝐾2. For 3 × 3 kernels, this reduction
can be at most 9. Whereas for the proposed 𝑜𝑠𝑒𝑝 scheme, no such
bounds exist. The advantage of the proposed 𝑜𝑠𝑒𝑝 scheme over 𝑑𝑠𝑒𝑝
is illustrated in Fig. 3(a) by the orange and green solid curves. From
this, we can see the proposed 𝑜𝑠𝑒𝑝 scheme is more efficient with
smaller 𝑥-values. We further plot accuracy-FLOPs curves in Fig. 3(b)
for reference, where similar conclusions can be drawn.

The proposed 𝑜-ResNets can have 10x-18x fewer parameters than
the ResNet baselines in the proposed experiments. For fair comparisons,
we introduce the channel multiplier in order to approximately match
the #Params (or FLOPs).4 We use the suffix ‘‘_m<multiplier>’’
to indicate the channel multiplier. As illustrated in Fig. 3(a), from
which we can see, the proposed 𝑜𝑠𝑒𝑝 scheme is much more efficient
than conventional convolutions. The orange curve, including both solid
and dashed parts, achieved a better accuracy-#Params Pareto-frontier
than the blue curve. Such representation efficiency could result in
a more regularized network with fewer parameters to prevent over-
fitting and possibly contribute to the final performance. In Fig. 3(a),
we also present the 𝑑-ResNet curves in dashed green by replacing the
conventional convolutions with 𝑑𝑠𝑒𝑝 convolutions. As can be seen, 𝑑-
ResNet achieves good accuracy-#Params balances for small networks
(e.g. 𝑑-ResNet20 and 𝑑-ResNet32), but performs comparable or no bet-
ter than conventional convolutions for large ones (e.g. 𝑑-ResNet56 and

-ResNet110). In summary, the proposed 𝑜𝑠𝑒𝑝 scheme achieves better
ccuracy-#Params (and also accuracy-FLOPs as illustrated in Fig. 3(b))
areto-frontiers than both conventional and 𝑑𝑠𝑒𝑝 convolutions.
Other Conv2D Types: Besides conventional and depth separable

𝑑-) convolutions, we compare the proposed 𝑜𝑠𝑒𝑝 (𝑜-) scheme against
the other convolution types, including depth-wise (𝑑𝑤-) and spatial
separable (𝑠-) convolutions. In the following, we shall omit the suffix

3 For optimized separable,
√

𝐶𝐾 = 𝐶2𝐾2

𝐶3∕2𝐾
. For depth separable, 1

1∕𝐾2+1∕𝐶
=

𝐶2𝐾2

𝐶(𝐶+𝐾2)
< 𝐾2.

4 We match both #Params and FLOPs here. If this is not allowed, we
pproximately match for one and make sure the other not to exceed. In
ppendix C, we present experimental results of matching #Params only in
igs. C.5 and C.6. The conclusions we reached in this Section is the same.
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Fig. 3. Experimental results on CIFAR10 for the ResNet architecture (best viewed in color). The proposed optimized separable convolution (𝑜-ResNet) achieves improved (a)
accuracy-#Params and (b) accuracy-FLOPs Pareto-frontiers than both the conventional (ResNet) and depth separable (𝑑-ResNet) convolutions. (c) A comparison for performances
of different convolution schemes.
Table 2
Experimental results on CIFAR10 for different overlap coefficients (𝛾). If 𝛾 ≥ 1, the volumetric RF is maintained, otherwise it is not. Each row of 𝑜-ResNet is channel multiplied.
When 𝛾 < 1, the performance hurts due to discourage of channel information fusion.

Overlap Coef. (𝛾) 𝜀 (Depthwise) 1/16 1/4 1 4 16 64 +∞ (Conventional)

Vol. RF ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓

𝑜-ResNet20 90.2 91.45 92.56 93.37 92.84 93.06 92.16 91.25
𝑜-ResNet32 89.82 92.31 92.8 93.69 93.65 93.03 93.07 92.49
𝑜-ResNet56 89.88 92.71 92.88 93.81 93.8 93.49 92.73 93.03
𝑜-ResNet110 90.26 94.04 94.85 94.88 94.83 94.41 93.95 93.39
Table 3
Experimental results on CIFAR10 for DARTS. The proposed optimized separable convo-
lution (𝑜-DARTS) generalizes well to the DARTS architecture, and achieves improved
accuracy with approximately the same FLOPs and fewer parameters. DARTS uses depth
separable convolution and an optional 𝑑- is prefixed.

Net Arch #Params FLOPs Accuracy Error Rate

(million) (billion) (%) (%)

(𝑑-)DARTS (Liu et al., 2018) 3.35 0.528 97.24% 2.76%
𝑜-DARTS 3.25 0.572 97.67% 2.33%

P-DARTS (Chen et al., 2019) 3.43 0.532 97.50% 2.50%
PC-DARTS (Xu et al., 2019) 3.63 0.557 97.43% 2.57%
GOLD-DARTS (Bi et al., 2020) 3.67 0.546 97.47% 2.53%

of channel multiplier for simplicity, which shall be clear from the
context. From Algorithm 1, the proposed 𝑜𝑠𝑒𝑝 scheme also has a spatial
separable (𝑠𝑜-) variant. A comparison of all these convolutions for the
ResNet architecture is illustrated Fig. 3(c). From this figure, we can
conclude that the proposed 𝑜𝑠𝑒𝑝 scheme is more efficient than all other
alternatives (the orange bar is highest).

Channel Information Fusion: We discuss more about 𝑑𝑤-ResNet
n Fig. 3(c). Recall from Table 1 that a depth separable convolution
s a depth-wise convolution followed by a pointwise convolution. 𝑑𝑤-
esNet allows no channel information exchange while 𝑑-ResNet does.
ig. 3(c) demonstrates that 𝑑𝑤-ResNet performs much worse than 𝑑-
esNet. In fact, 𝑑𝑤-ResNet is the only one that does not maintain

he volumetric RF and performs worst of all these six convolution
chemes. This suggests that channel information fusion could be critical
or the good performance of a DCNN, and hence validates our proposed
olumetric receptive field condition.
Overlap Coefficient: We carry out an ablation study on the overlap

oefficient 𝛾. For 𝛾 ≥ 1, the volumetric RF is maintained, otherwise, it
s not. From Table 2, we can see that, a good-performing 𝛾 takes values
1 ≤ 𝛾 ≤ 4 and 𝛾 = 1 achieves the best. It is reasonable to conjecture
that, for 𝛾 < 1, the volumetric RF is not maintained and the channel
information fusion is compromised, leading to bad performance. For
𝛾 > 4, the representation efficiency is also slightly lower. We argue
that this is because the channel information has already been fused
sufficiently. For larger 𝛾, more overlap introduces more cost yet no
167
additional fusion, hence the efficiency has been degraded accordingly.
In Table 2, we also include the results for 𝑑𝑤-ResNet and ResNet, as
they can be roughly viewed as the limit cases of 𝛾 to be infinitely
small (𝜀) or infinitely large (+∞). The ablation study on the overlap
coefficient in Table 2 clearly demonstrates that we should satisfy the
proposed volumetric RF condition.

Generalization to DARTS: To demonstrate that the proposed 𝑜𝑠𝑒𝑝
scheme generalizes well to other DCNN architectures, we adopt the
DARTS (V2) (Liu et al., 2018) network as the baseline. The DARTS
evaluation network has 20 cells and 36 initial channels, we increase
the initial channels to 42 to match the FLOPs. By replacing the 𝑑𝑠𝑒𝑝
convolutions in DARTS with the proposed 𝑜𝑠𝑒𝑝 convolutions, as illus-
trated in Table 3, the resulting 𝑜-DARTS improved the accuracy from
97.24% to 97.67%, but with fewer parameters (3.25 million vs 3.35
million). It is worth noting that it is very hard to significantly improve
the DARTS search space. In Table 3, we also include three variants
of DARTS, i.e. P-DARTS (Chen et al., 2019), PC-DARTS (Xu et al.,
2019), and GOLD-DARTS (Bi et al., 2020), with more advanced search
strategies for comparison. As can be seen, 𝑜-DARTS can achieve even
higher accuracies than these advanced network architectures.

4.2. Experimental results on CIFAR100

CIFAR100 (Krizhevsky et al., 2009) is a dataset consist of 50,000
training images and 10,000 testing images. These images are with a
resolution of 32 × 32 and are categorized into 100 object classes. We
carry out similar experiments on CIFAR100 as those on CIFAR10, from
which similar conclusions can be drawn.

From Fig. 4(a) and (b), we can conclude that the proposed opti-
mized separable convolution scheme achieves better accuracy-#Params
and accuracy-FLOPs Pareto-frontiers than both conventional and depth
separable convolutions. From Fig. 4(c), we can see that the proposed
𝑜𝑠𝑒𝑝 scheme is more efficient than the other alternative Conv2D types,
including depth-wise, spatial separable, and the proposed spatial opti-
mized separable convolutions. In Fig. 4(c), 𝑑𝑤-ResNet is the only one
that does not maintain the volumetric RF and performs significantly
worse than the other counterparts. In Table 4, the experimental results
indicate the best overlap coefficient takes value 𝛾 = 1. These latter two
observations also demonstrate the validity of the proposed volumetric

RF condition.
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Fig. 4. Experimental results on CIFAR100 for the ResNet architecture (best viewed in color). The proposed optimized separable convolution (𝑜-ResNet) achieves improved (a)
accuracy-#Params and (b) accuracy-FLOPs Pareto-frontiers than both the conventional (ResNet) and depth separable (𝑑-ResNet) convolutions. (c) A comparison for performances
of different convolution schemes.
Table 4
Experimental results on CIFAR100 for different overlap coefficients (𝛾). If 𝛾 ≥ 1, the volumetric RF is maintained, otherwise it is not. Each row of 𝑜-ResNet is channel multiplied.
When 𝛾 < 1, the performance hurts due to discourage of channel information fusion.

Overlap Coef. (𝛾) 𝜀 (Depthwise) 1/16 1/4 1 4 16 64 +∞ (Conventional)

Vol. RF ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓

𝑜-ResNet20 65.46 68.24 70.96 71.03 71.12 70.8 70.08 67.38
𝑜-ResNet32 66.42 70.59 71.05 72.75 70.89 71.91 70.76 68.21
𝑜-ResNet56 65.39 69.23 69.87 73.55 72.4 71.98 70.98 69.34
𝑜-ResNet110 65.98 73.30 74.00 75.48 74.74 73.62 73.01 71.68
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Table 5
Experimental results on full ImageNet for the DARTS architecture. The proposed 𝑜-
DARTS achieves 74.2% top1 accuracy with only 4.5 million parameters and the
proposed 𝑜-MobileNet achieves 70.8% top1 accuracy with only 3.0 million parameters.

Net Arch #Params FLOPs Top1 Top1 Error
(million) (billion) (%) (%)

(𝑑-)DARTS (Liu et al., 2018) 4.72 0.530 73.3% 26.7%
𝑜-DARTS 4.50 0.554 74.2% 25.8%

(𝑑-)MobileNet (Howard, 2017) 4.20 0.575 70.6% 29.4%
𝑜-MobileNet 3.00 0.564 71.1% 28.9%

4.3. Experimental results on ImageNet

We evaluate the proposed optimized separable convolution scheme
on the benchmark ImageNet (Deng et al., 2009) dataset, which contains
1.28 million training images and 50,000 testing images.

4.3.1. ImageNet40
Because carrying out experiments directly on the ImageNet dataset

can be resource- and time-consuming, we resized all the images into
40 × 40 pixels. Due to space limitations, we present the experimental
results on ImageNet40 in Appendix E and Table E.7. We can conclude
that the proposed 𝑜-ResNet achieved 4%–5% (e.g. 49.97% vs 44.93%
for 56-layer and 50.72% vs 46.74% for 110-layer) performance gains
comparing against the ResNet baselines.

4.3.2. Full ImageNet
Similar to the experiments on CIFAR10, we replace the 𝑑𝑠𝑒𝑝 convo-

lutions in the DARTS (V2) network with the proposed 𝑜𝑠𝑒𝑝 convolutions
to demonstrate that the proposed approach is able to generalize to
other network architectures. The experiment is carried out on the
full ImageNet dataset. The DARTS evaluation network has 14 cells
and 48 initial channels, we increase the initial channel size to 56 to
match the original neural net. The resulting network is called 𝑜-DARTS.
Experimental results are illustrated in Table 5. It can be seen that, with
fewer parameters (4.50 million vs 4.72 million), the proposed 𝑜-DARTS
network achieved higher accuracies in both top1 (74.2% vs 73.3%) and
168

top5 (91.9% vs 91.3%) accuracies than the DARTS baseline. Finally, i
we replace the 𝑑𝑠𝑒𝑝 convolution in MobileNet (Howard et al., 2017)
to the proposed 𝑜𝑠𝑒𝑝 convolution. Using only 3.0 million parameters,
he proposed 𝑜-MobileNet is able to achieve 71.1% top1 accuracy
n the ImageNet dataset. This is a great gain comparing against the
riginal MobileNet with 4.2 million parameters. We can conclude
hat the proposed 𝑜𝑠𝑒𝑝 is able to achieve better accuracy-FLOPs and

accuracy-#Params balances than 𝑑𝑠𝑒𝑝 convolutions.

5. Conclusions

In this paper, we have presented yet another novel convolution
scheme called optimized separable convolution to improve efficiency.
Conventional convolution took a costly complexity at 𝑂(𝐶2𝐾2). The
proposed optimized separable convolution scheme is able to achieve
its complexity at 𝑂(𝐶

3
2 𝐾), which is even lower than that of depth

eparable convolution at 𝑂(𝐶 ⋅ (𝐶 + 𝐾2)). Hence, the proposed opti-
ized separable convolution has the full potential to replace the usage
f depth separable convolutions in a DCNN. Examples considered include
esNet, DARTS, and MobileNet architectures. The proposed optimized
eparable convolution also has a spatial separable configuration. A
eneralized 𝑁-separable case can achieve better performance at 𝑂(𝐶 ⋅
og(𝐶𝐾2)).

We believe the proposed optimized separable convolution also has
potential impact on the AutoML community. The proposed novel

perator is able to increase the neural architecture search space. In
multi-objective optimization formulation, where both accuracy and
Params (or FLOPs) are optimized, we expect a more efficient net-
ork architecture can be discovered in the future using the proposed
ptimized separable convolution operator. In the future, we also ex-
ect to carry out experiments on more neural network architectures,
.g. EfficientNet, etc.
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Appendix A. Sketch of proof for Theorem 1

Proof (Sketch of Proof for Theorem 1). For Eq. (16), after applying an
arithmetic–geometric mean inequality, we can get

𝑓 ({𝑛∗}, {𝐾
𝐻|𝑊
∗ }) ≥ 𝑁

𝑁

√

𝐶1𝐶2
2 ⋯𝐶2

𝑁𝐶𝑁+1𝐾𝐻
1 ⋯𝐾𝐻

𝑁 𝐾𝑊
1 ⋯𝐾𝑊

𝑁
𝑔1 ⋯ 𝑔𝑁

(A.1)

≥ 𝑁 𝑁
√

𝛾𝐶1 ⋯𝐶𝑁+1𝐾𝐻
1 ⋯𝐾𝐻

𝑁 𝐾𝑊
1 ⋯𝐾𝑊

𝑁 (A.2)

he equality holds if and only if

2𝑛1𝐾
𝐻
1 𝐾𝑊

1 = ⋯ = 𝐶𝑁+1𝑛𝑁𝐾𝐻
𝑁 𝐾𝑊

𝑁 .

et 𝑛𝑙 = 𝛽𝑙𝑛1, where 𝛽𝑙 =
𝐶2𝐾𝐻

1 𝐾𝑊
1

𝐶𝑙+1𝐾𝐻
𝑙 𝐾𝑊

𝑙
. Let 𝛽 = 𝛱𝛽𝑖, we can solve

1 = 𝑁
√

𝛾𝐶1
𝛽 =

𝑁
√

𝛾𝛱𝐶𝑖𝛱𝐾𝐻
𝑖 𝛱𝐾𝑊

𝑖
𝐶2𝐾𝐻

1 𝐾𝑊
1

and

𝑛𝑙 =
𝑁
√

𝛾𝛱𝑁+1
𝑖=1 𝐶𝑖𝛱𝑁

𝑖=1𝐾
𝐻
𝑖 𝛱𝑁

𝑖=1𝐾
𝑊
𝑖

𝐶𝑙+1𝐾𝐻
𝑙 𝐾𝑊

𝑙

∼ 𝑁
√

𝐶. (A.3)

Note that the inequality (A.2) holds for arbitrary 𝐾𝐻|𝑊
∗ . We need

o further optimize 𝐾𝐻|𝑊
∗ . Again, from the arithmetic–geometric mean

nequality again, we can get

𝐻
1 ⋯𝐾𝐻

𝑁 ≤ (
𝐾𝐻

1 +⋯ +𝐾𝐻
𝑁

𝑁
)𝑁 = (𝐾

𝐻 +𝑁 − 1
𝑁

)𝑁

and the equality holds if and only if 𝐾𝐻
1 = ⋯ = 𝐾𝐻

𝑁 = 𝐾𝐻+𝑁−1
𝑁 .

However, we want the inequality reversed, instead of finding the
maximum of this product, we expect to find its minimum. This still
gives us a hint, the maximum is achieved when the internal kernel sizes
are as even as possible, so the minimum should be achieved when the
internal kernel sizes are as diverse as possible. In the extreme case, one
of the internal kernel sizes should take 𝐾𝐻 and all the rest takes 1,
i.e. Eqs. (25) and (26). A formal proof of this claim can be derived.
Hence, we have

𝑓 ({𝑛∗}, {𝐾
𝐻|𝑊
∗ }) ≥ 𝑁 𝑁

√

𝛾𝐶1 ⋯𝐶𝑁+1𝐾𝐻𝐾𝑊 (A.4)

= 𝑂(𝑁𝛾
1
𝑁 𝐶1+ 1

𝑁 𝐾
2
𝑁 ). (A.5)

By setting 𝑓 ′(𝑁) = 0, we can derive that

= log(𝛾𝐶𝐾2), (A.6)

and

min 𝑓 ({𝑛∗}, {𝐾
𝐻|𝑊
∗ }) = 𝑒𝐶𝐻𝑊 ⋅ log(𝛾𝐶𝐾2) (A.7)

= 𝑂(𝐶𝐻𝑊 ⋅ log(𝛾𝐶𝐾2)), (A.8)

where 𝑒 = 2.71828... is the natural logarithm constant. □

ppendix B. Training settings

xperiments on CIFAR10 and CIFAR100 for the ResNet architecture. The
mages are padded with 4 pixels and randomly cropped into 32 × 32

to feed into the network. A random horizontal flip with a probability
of 0.5 is also applied. All the networks are trained with a standard SGD
optimizer for 200 epochs. The initial learning rate is set to 0.1, with a
decay of 0.1 at the 100 and 150 epochs. The batch size is 128. A weight
decay of 0.0001 and a momentum of 0.9 are used.

Experiments on CIFAR10 for the DARTS architecture. We follow the same
training settings in Liu et al. (2018): the network is trained with a
standard SGD optimizer for 600 epochs with a batch size of 96. The
initial learning rate is set to 0.025 with a cosine learning rate scheduler.
A weight decay of 0.0003 and a momentum of 0.9 are used. Additional
enhancements include cutout, path dropout of probability 0.2, and
auxiliary towers with weight 0.4.
169
Table D.6
Experimental results on CIFAR10 for the ResNet with inference time on a Windows 10
Intel i5-8250 CPU or Nvidia GeForce RTX 2080 Ti GPU.

Net Arch Channel #Params FLOPs Accuracy CPU Infer GPU Infer
Multiplier (million) (billion) (%) Time (s) Time (s)

ResNet20 – 0.270 0.04055 91.25 0.0310 0.0057
𝑜-ResNet20 3.625 0.221 0.04070 93.37 0.0468 0.0120
𝑑-ResNet20 2.72 0.250 0.0400 92.66 0.0468 0.0060

ResNet32 – 0.464 0.06886 92.49 0.0469 0.0067
𝑜-ResNet32 3.75 0.367 0.06726 93.69 0.0937 0.0185
𝑑-ResNet32 2.75 0.429 0.06565 92.98 0.1154 0.0092

ResNet56 – 0.853 0.12548 93.03 0.0938 0.0101
𝑜-ResNet56 3.875 0.682 0.12574 93.81 0.1562 0.0330
𝑑-ResNet56 2.75 0.786 0.11890 92.69 0.1875 0.0181

ResNet110 – 1.728 0.25289 93.39 0.1563 0.0178
𝑜-ResNet110 3.875 1.337 0.24763 94.88 0.3216 0.0671
𝑑-ResNet110 2.75 1.590 0.23870 93.40 0.3462 0.0317

Experiments on ImageNet40 for the ResNet architecture. Each network is
trained with a standard SGD optimizer for 20 epochs with the initial
learning rate set to 0.1, and a decay of 0.1 at the 10 and 15 epochs.
The batch size is 256, the weight decay is 0.0001 and the momentum
is 0.9.

Experiments on full ImageNet for the DARTS architecture. We follow
the training settings in Chen et al. (2019) for multi-GPU training: the
images are random resized crop into 224 × 224 patches with a random
scale in [0.08, 1.0] and a random aspect ratio in [0.75, 1.33]. Random
horizontal flip and color jitter are also applied. The network is trained
from scratch for 250 epochs with batch size 1024 on 8 GPUs. An SGD
optimizer with an initial learning rate of 0.5, a momentum of 0.9, and
a weight decay of 3e-5. The learning rate is decayed linearly after each
epoch. Additional enhancements include label smoothing with weight
0.1 and auxiliary towers with weight 0.4.

Experiments on full ImageNet for the MobileNet architecture. The images
are random resized crop into 224 × 224 patches with a random scale
in [0.08, 1.0] and a random aspect ratio in [0.75, 1.33]. Random
horizontal flip is also applied (no color jitter). The network is trained
from scratch for 200 epochs with batch size 1024 on 8 GPUs. An SGD
optimizer with an initial learning rate of 0.064, a momentum of 0.9,
and a weight decay of 1e-5. The learning rate is decayed with a rate of
0.973 for every 0.8 epoch.

Appendix C. Experimental results for matching #params

In this section, we report experimental results of matching #Params
only, instead of matching both #Params and FLOPs. In Figs. C.5 and
C.6, we illustrate the experimental results on CIFAR10 and CIFAR100
for the ResNet architecture. As can be seen, the observations in these
two figures are consistent with those in Figs. 3 and 4. Hence, the
conclusions we reached in Sections 4.1 and 4.2 are not affected. Please
refer to these two sections for a detailed description of the experimental
results.

Appendix D. Inference time for the proposed optimized separable
convolution

In this research, we focus on the representational efficiency of
the proposed optimized separable scheme. The representational com-
plexity is measured with the number of parameters (#Params) and
is hardware-independent. For the proposed experiments, we included
both #Params and FLOPs. In this section, we further report the wall-
clock inference time of the proposed optimized separable convolution
scheme for reference reasons. It is important to keep in mind that FLOPs

measures the theoretical speed we are able to achieve. The wall-clock
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Fig. C.5. Experimental results on CIFAR10 for the ResNet architecture (best viewed in color, same as Fig. 3 except networks are channel multiplied to match #Params). The
proposed optimized separable convolution (𝑜-ResNet) achieves improved (a) accuracy-#Params and (b) accuracy-FLOPs Pareto-frontiers than both the conventional (ResNet) and
depth separable (𝑑-ResNet) convolutions. (c) A comparison for performances of different convolution schemes.
Fig. C.6. Experimental results on CIFAR100 for the ResNet architecture (best viewed in color, same as Fig. 4 except networks are channel multiplied to match #Params). The
roposed optimized separable convolution (𝑜-ResNet) achieves improved (a) accuracy-#Params and (b) accuracy-FLOPs Pareto-frontiers than both the conventional (ResNet) and

depth separable (𝑑-ResNet) convolutions. (c) A comparison for performances of different convolution schemes.
i
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time reported in this section is hardware dependent. Slowness can occur
due to an inefficient hardware implementation.

From Table D.6, we can see that, under approximately the same
FLOPs, both 𝑜-ResNet and 𝑑-ResNet take a longer inference time than
conventional ResNet. This is because the current implementation of
grouped convolution in PyTorch is not optimized. From Table D.6, we
can also conclude that, under approximately the same FLOPs, 𝑜-ResNet
is slightly faster than 𝑑-ResNet (e.g. 𝑜-ResNet32 takes 0.0937s while
𝑑-ResNet32 takes 0.1154s) on a CPU and yet the former is about twice
slower than the latter (e.g. 𝑜-ResNet32 takes 0.0185s while 𝑑-ResNet32
takes 0.0092s) on a GPU. The better wall-clock timing of the proposed
𝑜𝑠𝑒𝑝 scheme over 𝑑𝑠𝑒𝑝 on a CPU may suggest that it also has advantages
for ARM CPU architectures. Hence, the proposed 𝑜𝑠𝑒𝑝 scheme could be

ore efficient for mobile applications.
There are good reasons for the slowness of the proposed 𝑜𝑠𝑒𝑝 on

GPU. In fact, there are two extra copies of blobs in our current
ython implementation of the proposed 𝑜𝑠𝑒𝑝 convolution (one for group
onvolution if the number of groups does not divide the input or
utput channels, and the other one for the channel shuffle operation).
hese two extra copies of blobs can actually be avoided for an efficient

mplementation. However, optimizing this code shall require a careful
weak of the CUDNN library. It is known that on a GPU, the memory
ccess cost can dominate over the computational cost (Ma et al., 2018).
ence, the slowness of the proposed 𝑜𝑠𝑒𝑝 scheme shall occur. On a
PU, the computational cost dominates over the memory access cost.
ence, the proposed 𝑜𝑠𝑒𝑝 is faster than 𝑑𝑠𝑒𝑝. In the future, we expect

he bottleneck of memory access for a GPU could be addressed and the
all-clock timing of the proposed 𝑜𝑠𝑒𝑝 scheme could be greatly sped
p.
170
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Table E.7
Experimental results on ImageNet40 for the ResNet architecture. The proposed opti-
mized separable convolution (𝑜-ResNet) achieves 4%–5% performance gain over the
ResNet baseline.

Net Arch Channel #Params FLOPs Accuracy Error Rate
Multiplier (million) (billion) (%) (%)

ResNet20 – 4.58 0.162 40.28 59.72
𝑜-ResNet20 5.375 5.13 0.160 44.94 55.06

ResNet32 – 7.68 0.275 42.98 57.02
𝑜-ResNet32 5.75 7.78 0.278 47.88 52.12

ResNet56 – 13.88 0.502 44.93 55.07
𝑜-ResNet56 6.0 12.55 0.497 49.97 50.03

ResNet110 – 27.83 1.012 46.74 53.26
𝑜-ResNet110 6.25 23.79 1.027 50.72 49.28

Appendix E. Experimental results on ImageNet40

Because carrying out experiments directly on the ImageNet dataset
can be resource- and time-consuming, we resized all the images into
40 × 40 pixels. A 32 × 32 patch is randomly cropped and a random hor-
zontal flip with a probability of 0.5 is applied before feeding into the
etwork. No extra data augmentation strategies are used. The baseline
esNet architecture is a modified version of that used on the CIFAR10
ataset, except that the channel sizes are set to be 4× larger, the features
re calculated on scales of [16, 8, 4], and the last fully-connected (FC)
ayer outputs 1000 categories for classification. We make this modi-
ication because the ImageNet dataset has significantly more training
amples than the CIFAR10 dataset. Experimental results are illustrated
n Table E.7, as can be seen, by substituting conventional convolutions
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with the proposed optimized separable convolutions, the resulting 𝑜-
esNet achieved 4%–5% (e.g. 49.97% vs 44.93% for 56-layer and
0.72% vs 46.74% for 110-layer) performance gains comparing against
he ResNet baselines. This demonstrates that the proposed optimized
eparable convolution scheme is much more efficient. For 𝑜-ResNet56
nd 𝑜-ResNet110, they also have fewer parameters which could con-
ribute to a more regularized model. For 𝑜-ResNet20 and 𝑜-ResNet32,
hey have slightly more parameters because the last FC layer accounts
or a great portion of overhead for 1000 classes.
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