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Abstract 10 

Robotic building inspection is gaining popularity as a way to increase the security, productivity, and cost-effectiveness 11 

of traditional inspection tasks. Despite the development of numerous building inspection robotic platforms, their 12 

motions still require manual control. To facilitate full automation, there is a need to explore autonomous navigation 13 

strategies for building inspection robots. Although various autonomous navigation strategies have been developed in 14 

the robotics field, few of them are suitable for building structural inspection behavior. In accordance with the 15 

responsibilities of professional inspectors, the robot is required to follow the structural components within a desired 16 

distance and dynamically avoid obstacles to conduct in-depth scanning. This navigation task becomes more difficult 17 

when providing smooth following path in special building scenarios, such as narrow corners. Motivated by this need, 18 

the present study aimed to explore autonomous navigation for building inspection robots. To save the cost of map 19 

construction, the local navigation strategies, which control the robots’ travel in unknown environments, were targeted. 20 

Specifically, the objective is to develop a robust fuzzy logic controller (FLC) for wall-following behavior. The inputs 21 

are the distances within the designed interval ranges, which were measured with a 360-degree laser. The membership 22 

functions and the decision-making rules were designed based on robot and camera configurations, building designs, 23 

and structural inspection criteria. The outputs are the real-time angular and linear velocities. Tested in both simulation 24 

and real-world environments, the novelty of the designed FLC is: 1) enabling “finding wall,” “wall-following,” 25 

“turning,” and “obstacle avoidance” behaviors in various unknown building scenarios; 2) preventing wavy motions; 26 

and 3) preventing path deviations for arbitrary surfaces. The results can be employed to perform daily structural 27 

inspections, and they are dedicated to automating the building inspection tasks. However, the FLC is sensitive to the 28 

reflective components because of the limitations of the position sensors. 29 
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1. Introduction  32 

Building inspection is essential to ensure the quality of building structures in compliance with legal regulations 33 

and construction codes. Effective and routine building inspection contributes to a smooth construction process and 34 

high-quality construction deliverables.  35 

Building inspections are necessary for both new and aging buildings. For new buildings, including newly 36 

constructed buildings that have green building designs, quality inspection takes place during the whole construction 37 

stage, from project commencement to completion. Authorized site inspectors are hired to work on-site and are 38 

responsible for the regular inspection tasks, such as witnessing tests, monitoring construction progress, assessing 39 

defects, and providing quality reports. For existing buildings, quality inspection is mostly required for aged buildings 40 

or before buying a new home. Professional inspectors are hired to fully examine quality defects that exist in the 41 

building's interior and exterior. All the building components, such as foundations, structural and non-structural 42 

components, and plumbing, should be inspected. 43 

In the inspection process, visual examination is applied most frequently to inspect defects such as cracks, stains, 44 

and spalling. However, traditional visual inspection has several drawbacks, including 1) Unsafe. Sometimes, visual 45 

inspection is dangerous because inspectors need to reach hazardous locations, such as high roofs or narrow pipelines, 46 

to see whether defects exist in building surfaces. 2) Costly. Considering the professional and risky nature of building 47 

inspections, the cost of hiring inspectors is relatively high. For example, the average annual salary of site inspectors, 48 

last updated on Feb. 20, 2021, is HK $408k, according to statistics from Payscale, Inc (PayScale, 2022). 3) Lack of 49 

efficiency. Manual inspection is inefficient since there are various types of defects that can appear in any building 50 

component, such as walls and columns, as well as at any construction stage, such as in the structural or decorative 51 

stage. 52 

To solve the problems, inspection robotics is constantly being developed and employed. Using robotic systems 53 

to autonomously complete inspection works contributes to 1) improving productivity and reducing reliance on manual 54 

labor. Constant or 24/7 work on a repetitive cycle can be autonomously demonstrated. 2) Increasing precision. By 55 

executing tasks with mathematical programming and electronic sensors, the precise inspection can be guaranteed. 3) 56 

Reducing safety hazards. Robotic systems can be utilized to conduct hazard inspections without human intervention, 57 

such as examining defects in high-rise buildings’ external walls. 58 
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Therefore, various inspection robotic systems have been invented in response to the trend of technological 59 

advancement. For example, snake-shaped robotic mechanisms for sewer pipe inspection (Baba et al., 2010, 60 

Selevarajan et al., 2019, Wakimoto et al., 2003), novel adhesion mechanisms of wall-climbing robots for high-rise 61 

building inspection (Faruq and Sattar 2015, Hillenbrand et al., 2008, Nguyen and La, 2021), and mobile robots for 62 

tunnel defect inspection (Yu et al., 2007). Cameras installed on inspection robotic systems are used to capture images 63 

or videos of buildings. By computing the captured photographs with the advanced computer vision algorithms (Chen 64 

and Jahanshahi 2017, Cho et al., 2014, Chen and Gupta 2017, Redmon et al, 2016), automated and remote 65 

demonstrations of building defects can be received in real-time instead of inspecting them manually on-site.  66 

While a lot of research has been devoted to developing computer-vision algorithms for automated defect 67 

recognition, little research has been given to suggesting navigation approaches for building inspection robots. As a 68 

result, the robotic systems are required to be manually controlled to the inspection spots before inspecting building 69 

components. The motion of the teleoperated building inspection robot, for example, is controlled by operators using 70 

joysticks and virtual reality (Tang and Yamada 2011). Therefore, this study aims to develop a navigation strategy for 71 

building inspection robots to move autonomously in unknown environments.  72 

In the robotic field, various autonomous navigation algorithms have been developed. Among them, this study 73 

focused on the wall-following algorithm (Yata and Yuta, 1998), a significant robotic control method, since it aids in 74 

controlling the robot to follow the inspection items and then perform detailed inspection scanning. While the other 75 

algorithms, such as the Kalman filtering approaches (Ayache and Faugeras 1989, Crowley 1989) and the Occupancy 76 

grids approach (Moravec 1985), focus more on robots’ navigation from the start locations to the target locations, 77 

which may cause inaccurate inspection. However, because of the simple designs, the existing wall-following 78 

algorithms are not efficient enough for the building inspections, especially for buildings components with arbitrary 79 

shapes, such as curved interior walls. The wavy motions are also difficult to avoid, which affects the accuracy of the 80 

computer vision-based defect recognition.  81 

Motivated by this research gap, the present study designed a fuzzy logic controller (FLC) to enhance the wall-82 

following navigation of building inspection robots. Particularly, we focused on the structural inspection of both new 83 

and aging buildings because: 1) structural inspection provides vital proof for building safety (Hoskere et al., 2018); 84 

and 2) the repetitive and tedious behaviors of structural examination can be easily imitated by a mobile robot equipped 85 

with cameras. Automating structural inspections with robots increases efficiency and effectiveness. Meanwhile, the 86 
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designed navigation strategy is feasible for a wide range of building types, including residential, commercial, and 87 

industrial buildings. Validated in both simulation and on-site building environments, the designed FLC system 88 

successfully controls the robot to conduct “finding wall”, “turning”, “wall-following”, and “obstacle avoidance” 89 

behaviors in various unknown building scenarios, including irregular regions, such as concave and convex walls and 90 

narrow aisles. In addition, the FLC controls the robot to follow walls straight within a desired distance and the path 91 

deviation problem can be effectively avoided. The novelty of the present study is the robust FLC design for the wall-92 

following behavior of building inspection robots. The outcomes can be easily coded into the robotic systems for their 93 

autonomous navigation therefore contribute the industry with a fully automated robotic inspection system for daily 94 

building inspection work. The paper demonstrates the following contributions: 1) A literature review on navigation 95 

strategies for building inspection robots, wall-following algorithms, and FLCs for wall-following navigation. 2) A 96 

novel FLC design to improve the wall following algorithm. 3) Testing the designed FLC in simulation and on-site 97 

building environments. 98 

2. Literature review  99 

The basic theory, advantages, and limitations of the robot’ autonomous navigation, wall-following behavior, and 100 

designing FLCs for the wall-following behavior of building inspection robots are discussed to highlight research 101 

significance. 102 

2.1 Navigation method for building inspection robot  103 

One of the key research fields for achieving fully automated robot control is autonomous navigation. Various 104 

strategies have been explored so far to achieve autonomous navigation (Mantha et al., 2022, Demiral et al., 2021). For 105 

example, the visual marker-based indoor navigation developed for user-centered interactive applications (Naheem et 106 

al., 2022). By continuously acquiring and computing the position data stored in the markers, such as RFID and fiducial 107 

markers, autonomous navigation is achieved. Although autonomous navigation strategies have been widely developed 108 

in the robotics field, few of them are suitable to control the motions for building inspection behaviors, such as 109 

following the walls to conduct detailed quality scanning. As a result, human interventions are still required for the 110 

majority of inspection robots to control their movements and speeds (Bui et al., 2020). For example, operators remotely 111 

control the movement and speed of the building inspection robots using joysticks (Özaslan, T et al., 2017, Kaiwart et 112 

al., 2022). Specifically, operators employ joysticks to control the robots to move forwards, backwards, and turn after 113 

observing the visions of the surrounding environments, which are provided by cameras or virtual reality models. 114 
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Even so, some of the popular algorithms have begun to be integrated into the building inspection robots to 115 

gradually achieve autonomous navigation. Among them, the simultaneous localization and mapping (SLAM) 116 

technique (Durrant and Bailey 2006) has been frequently implemented for building inspection robots to conduct on-117 

site quality inspections (Asadi et al., 2021, McLaughlin and Narasimhan 2020). In SLAM, an environmental map is 118 

needed in advance to obtain the positions of surrounding objects and the robots to plan their moving paths. For that 119 

reason, it is not convenient to employ SLAM for continuous building inspection work, although it contributes to 120 

autonomous and accurate navigation. For example, it is common to place or move objects in buildings, such as 121 

wardrobes, while the robot is operating. Because of the high computation cost of map construction, it is easy for the 122 

SLAM algorithm to fail to generate new path plans when objects change places, and a collision may occur.  123 

To save the computation capacity of map construction, local navigation strategies, which directly process real-124 

time sensor-provided position information (Gul and Nazli 2019), have also been employed to navigate mobile robots 125 

(Lee et al., 2021) in unknown building environments. For example, the navigation method, developed based on 126 

feedback control, was used to control the mobile robot to negotiate building corridors (Shi et al., 2006). The fiducial 127 

marker-based strategy was developed to navigate the mobile robot to travel from the initial position to the goal position 128 

in buildings (Mantha et al., 2018). For a structural inspection robot, it is worthwhile to investigate autonomous 129 

navigation in unknown environments because: 1) it is better suited to changing building environments; and 2) it is 130 

challenging to create maps of specialized building environments, such as aging nuclear power plants. Although the 131 

mentioned strategies realize the autonomous navigation in an unknown indoor building environment, they were not 132 

planned for structural inspection behaviors, which require the robot to follow the structural components within the 133 

desired distance to conduct detailed quality scanning. Motivated by the gaps, the present study aimed to investigate 134 

appropriate autonomous navigation strategies for building structural inspection robots in unknown environments. 135 

2.2 Wall following algorithm  136 

The present study focused on the wall-following algorithm (Saman and Abdramane, 2013), one of the significant 137 

ideas of robotics (Che et al., 2022, Wu et al., 2021), among various local navigation strategies because it is an 138 

appropriate local navigation solution for autonomous inspection tasks and has been continuously implemented in the 139 

inspection robotic platforms (Wei et al., 2017). Other local navigation strategies, on the other hand, place a greater 140 

emphasis on generating a moving path from the start points to the goal points (Altman 1992, Katoch et al., 2021), or 141 
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obstacle avoidance (Poli and Blackwell 2007). Controlled by the wall-following behavior, the robots can constantly 142 

follow building components within a desired distance to conduct detailed inspection scanning.  143 

Initially, wall-following behavior was developed as an efficient way to achieve autonomous navigation in maze 144 

environments (Saman, 2013). By computing the position data, obtained by sensors, with decision-making loops, the 145 

wall-following behavior guides the robot to turn right, left, and straight to follow the maze walls until it reaches the 146 

goal location. The principle is depicted in Fig. 1.  147 

However, because of the simple logic, the initial wall-following behavior is ineffective for real-life building 148 

environments. Especially for the building components with arbitrary shapes, such as curved columns, concave and 149 

convex corners. For example, when the robot follows the rounded columns, the second rule "IF front is open, Then 150 

go_forward" may be triggered to control the robot to go forward instead of following the rounded columns, which 151 

generates path deviations. In addition, the traditional wall-following algorithm fails to keep the robot following walls 152 

in a straight line and within a desired distance, which makes it hard to capture distinct pictures for computer-vision 153 

based defect recognition. Therefore, the present study intends to improve the robustness of the wall-following logic 154 

for building inspection robots. The purpose is to ensure the building inspection robots to smoothly follow building 155 

components in various unknown building environments within a desired distance. 156 

2.3 Fuzzy logic controller 157 

The significance of wall-following behavior has made it a worthwhile topic to discuss its optimization strategies 158 

(Xue et al., 2020). Several ways have been proposed to enhance wall-following behavior, including machine learning 159 

algorithms (Hammad et al., 2019, Teng et al., 2020) and the fuzzy logic controller (FLC) (Omrane et al., 2016, Fatmi 160 

et al., 2006, Malhotra and Sarkar 2005, Faisal et al., 2013). The present study employs the fuzzy logic controller (FLC) 161 

for the following reasons: 1) FLC has been proven as an effective tool and is widely used for improving wall-following 162 

behavior because of its outstanding ability to deal with complex uncertainty, such as various decision-making rules 163 

(Suwoyo et al., 2020). 2) FLC is more applicable because it can be simply coded and computed. It is an efficient 164 

navigation strategy for most robotic systems that are controlled with CPUs, such as the Raspberry PI. Powerful GPUs 165 

are needed to compute a hundred million parameters in the machine learning process. 166 

Similarly to the wall-following algorithm, the FLC generates navigation commands for robots based on input 167 

data and linguistic decision-making rules. Differently, the output of the FLC is more precise by computing precise 168 

input data with comprehensive decision-making rules and the membership functions (Novák et al., 2012). Instead of 169 
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directly employing a developed FLC, we designed a new one for the wall-follow navigation of building inspection 170 

robots because: 1) it is hard to find a suitable one for building inspection robots. Majority FLCs were designed for the 171 

navigation problem of traveling from the start points to the goal points with obstacle avoidance instead of the wall-172 

following behavior (Aouf et al., 2019, Singh and Thongam, 2018). 2) Because of the inappropriate design of the ranges 173 

of input data, the ranges and types of membership functions, and the decision-making rules, existing FLCs designed 174 

for wall-following behavior are not accurate enough for building environments. For example, path deviation happens 175 

in concave regions and wavy motion occurs in the FLC designed by (Muthugala et al., 2020). 176 

In summary, the objective is to design a robust FLC for the wall-following behavior of building inspection robots. 177 

The ranges of the input data, the membership functions, and the decision-making rules were detailed based on camera 178 

and robot configurations, building designs, and inspection criteria. The outcomes contribute to achieving autonomous 179 

building inspection behaviors, including “finding wall,” “wall following,” “turning,” and “obstacle avoidance,” in 180 

various unknown building scenarios, especially for components with arbitrary shapes. Meanwhile, keep the robot 181 

following walls at a desired distance and avoid path deviation and wavy motions. 182 

3. Research methodology  183 

3.1 Robot kinematic model 184 

In this study, the Turtlebot3 burger was employed as the testing robot. The Turtlebot3 burger is a three-floor 185 

octagon-shaped platform. The distance between the left and right wheels is 160mm ( L ), and its radius is 33mm ( R ). 186 

A 360-degree laser is installed on the top floor to obtain position information. The scanning distance ranges from 187 

120mm to 3,500mm. A simplified depiction of the robotic platform is shown in Fig. 2. 188 

Here, the established world frame and body frame are presented as { }W and { }B , respectively. bx , by refer to the 189 

heading directions of the robot, α refers to its orientations. lV  and rV  refer to the velocities of the left and right wheels, 190 

respectively. V and ω , referring to the linear and angular velocity, are directly used to control robot’s movement. 191 

The kinematic dynamics can be explained using the mentioned variables as equation 1: 192 
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Here rV  and lV  can be expressed using V and ω as equation 2: 193 
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Equation (2) 

Based on the right-hand rule (Widnall and Peraire 2008), both linear velocity V  and angular velocity ω  have 194 

three dimensions , ,x y z . Because the robot is expected to conduct 2-dimension navigation, only the x dimension of 195 

V , and z dimension of ω  for both right and left wheels are considered, namely linear.velocity.x, angular.velocity,z.  196 

3.2 Fuzzy logic controller design 197 

The research framework is shown in Fig. 3 based on the operation flow of FLC. Four groups of parameters should 198 

be designed rationally to meet the requirements of building inspection work: input data, membership functions, 199 

decision-making rules, and defuzzification functions. Based on the mentioned kinetic model, linear velocity and 200 

angular velocity are used as the FLC outputs to control the speed and direction, respectively. 201 

The designs were detailed based on the following requirements. It is expected that, controlled by the FLC designs, 202 

the robot can successfully perform “finding wall,” “wall following,” “turning,” and “obstacle avoidance” behaviors 203 

in various building scenarios, as well as avoid wavy motions and path deviations. As mentioned, the building 204 

inspection robots employ computer-vision based object recognition techniques to realize automated defect inspection. 205 

Therefore, in the “wall following” process, the robot is also expected to move straight while keeping a desired distance 206 

from the building components to provide distinct views. 207 

Because a behavior-based strategy is the principle for designing FLC (Cai et al., 2008), the requirements were 208 

established based on manual inspection behaviors. In a real-world inspection case, site inspectors basically walk along 209 

the edges of buildings within an appropriate distance and examine whether defects exist. The inspectors will come to 210 

a stop until all of the building elements have been fully inspected. In most cases, inspectors will naturally avoid frontal 211 

obstacles such as sand piles and hydrants. 212 

3.2.1 Design of input data  213 

Based on the principle of wall-following behavior, the left, front, and right distances between the robot and the 214 

nearby objects are employed as the input data. We did several experiments to define the most appropriate ranges of 215 

the input distances. According to (Muthugala et al., 2020) and (Schiffer et al., 2012), we first tested the separate (left: 216 

-90°, front: 0°, right: 90°) and continuous ranges (left: -45°~-135°, front: -45°~45°, right: -225°~-315°). The results 217 
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showed that the robot fails to respond timely or responds too frequently when using the separate and continuous ranges, 218 

respectively. For example, when using the separate ranges, it is possible for the robot to collide with obstacles that are 219 

located obliquely ahead, such as those located at 15° instead of 0°. When using continuous ranges, it is possible to 220 

constantly alternate motion commands. For objects at the dividing lines of ranges, such as -315°, the robot is 221 

ambiguous between the “turning” command, to avoid forehead obstacles, or the “wall-following” command, to move 222 

straight, because distances of -315° belong to the “front” and “right” ranges at the same time.  223 

Therefore, instead of separate and continuous ranges, we defined the interval ranges for the left, front, and right 224 

distances: [150°-180°], referring to the left distance, [60°-120°], referring to the front distance, [0°-30°], referring to 225 

the right distance, which yielded optimal commands after testing. The defined interval ranges are in line with the 226 

findings in (Cherroun et al., 2019). A 360-degree laser mounted on the top floor of the testing robot was used to 227 

acquire distance data within a particular range. 228 

3.2.2 Design of membership functions 229 

To link the inputs to the decision-making rules, membership functions (MFs) were employed to transform the 230 

crisp inputs to their respective fuzzy degrees of each linguistic decision-making rule. Fuzzy sets (computing variables), 231 

types of MFs (computing functions), and linguistic labels (computing limits) of MFs were detailed to design the 232 

membership functions.  233 

(1) Design of fuzzy sets 234 

Based on the inputs and outputs, three fuzzy sets were determined as the computing variables for the designed 235 

MFs: 1) the distance set, contains the left, front, and right distances as well as their fuzzy degrees; the speed set, 236 

contains the linear velocity as well as its fuzzy degree; and the rotation set, contains the angular velocity as well as its 237 

fuzzy degree.  238 

(2) Design of MF types  239 

The triangular MFs, trapezoidal MFs, and singleton MFs, which are the most extensively used MF types, were 240 

employed (Ali et al., 2015). The fuzzy degree ( Aµ , A  refers to the fuzzy set) in triangular MFs, trapezoidal MFs, 241 

and singleton MFs are calculated using equations 3 to 5, respectively.  242 

( ) max(min( ,  ),0)A
x a b xx
i a b i

µ − −
=

− −
 Equation (3) 
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Here, x  is the input value, a and b are the lower and upper limit of the triangle, i  is the average of a  and b , 243 

a i b< < . 244 
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Equation (4) 

Here, x  is the input value, a and d are the lower and upper limit of the trapezoid, b and c are the lower and upper 245 

support limit of the trapezoid, a b c d< < < . 246 

1     
( )

0   A

if x a
x

otherwise
µ

=
= 


，

，
 Equation (5) 

Here, x  is the input value, a is the limit. 247 

(3) Design of linguistic labels and their limits and ranges 248 

(i) MFs for distance fuzzy set 249 

The linguistic labels and their limits and ranges for the distance fuzzy set is shown in Fig. 4.  250 

The linguistic labels for the distance fuzzy set were designed to report the status of robot positions. Referring to 251 

Antonelli et al., 2007, linguistic labels were defined as N: “Near,” A: “Appropriate,” F: “Far,” VF: “Very Far” (as 252 

shown in Fig. 3). We additionally designed a “VF” label to achieve the “finding wall” behavior, which enables the 253 

building inspection robots to locate inspection items at a fast speed and, therefore, to save time and energy. 254 

As the building inspection robots employ cameras to receive defect vision, the lower limit was determined as 20 255 

cm according to the minimum focus distance of cameras (Witt et al., 2022). If the shooting distance is closer than the 256 

minimum focus distance, blurred images may be shown because cameras are unable to focus on the subject properly. 257 

The minimum focus distance is varied for different focal lengths. In this study, we used a USB camera with a 4mm 258 

focal length as it is one of the most common camera types and has been frequently used in object recognition studies 259 

(Sagawa et al., 2004, Okazaki et al., 2008, Ren et al., 2021). The minimum focus distance for a lens with a 4mm focal 260 

length is typically around 20 cm.  261 

According to the inspection regulations, for example, the mandatory building inspection scheme (MBIS), site 262 

inspectors are obliged to inspect defects from a close distance (Chan et al., 2014). If inspectors work beyond a close 263 

distance, they may miss minor defects (such as cracks). Therefore, the required close distance was employed as the 264 

upper limit. According to previous studies (Brown et al., 2001), the least distance of distinct vision of human eyes is 265 
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25 cm (Maclnnes and Smith 2010). The vision of objects’ details gets blurred when the distance increases. Therefore, 266 

25 cm was determined as the upper limit. This rule can be deemed feasible because images captured by cameras have 267 

a similar resolution to images perceived by human eyes when gazing at close objects (Skorka and Joseph 2011). Image 268 

resolution has a direct impact on how clear images are displayed (Patti et al., 1994).  269 

For the Turtlebot 3, the inspection camera and laser were mounted at the right edge and in the centre of the robot’s 270 

top floor, respectively. Because the distance MF is designed for the inspection camera (employed as a human eye) and 271 

the distance is measured starting from the laser, a supplemented distance of 8 cm, between the centre of the laser and 272 

the camera, was also considered. For different robots, the supplementary distance, the distance between the inspection 273 

cameras and the laser, can be varied. In summary, the desired distance between the robot and inspection elements is 274 

28 to 33 cm, with a 1 cm margin of error. The ranges were fine-tuned in several experiments to realize the expected 275 

movements.  276 

(ii) MFs for speed and rotation fuzzy sets 277 

The designed linguistic labels and their limits and ranges for the speed and rotation fuzzy sets are shown in Fig. 278 

5.  279 

The linguistic labels for the speed and rotation fuzzy sets were designed based on the behavior-based strategy 280 

(Seraji and Howard 2022), seen as a design principle for membership functions. To realize the expected behaviors 281 

detailed in section 3.2.3, the linguistic speed labels were designed as Z: “Zero,” L: “Low,” M: “Middle,” H: “High” 282 

(as shown in Fig. 5 (a)). The rotation labels were defined as TRF: “Turn right far,” TRN: “Turn right near,” GS: “Go 283 

straight,” TLN: “Turn left near,” TLF: “Turn left far” (as shown in Fig. 5 (b)). The performances of the “L”, “M”, 284 

“H”, “TRN”, “TRF”, “GS”, “TLF”, “TLN” labels have been proven in (Hagras 2004) and (Lee et al., 2017), 285 

respectively. We additionally designed the “Z” label to realize the safely travel of the building inspection robots in 286 

special building environments, such as “turning in ground” in narrow building corners.  287 

The limits of the speed and rotation fuzzy sets were determined based on the robot’s configurations. The ranges 288 

were determined based on the relationship between the robot’s turning radius, speed, and rotation (shown in equation 289 

6). To control the robot to slightly adjust movements (using “L” or “M” with “TRN” or “TLN”) when it is near to the 290 

following objects, the turning radius is required to be within the designed distance limits (0.28m~0.34m). To achieve 291 

the “finding wall” behavior at a fast speed (using 100% “H” with 100% “TRF” or 100% “TLF”) when the robot is far 292 

from the following objects, the turning radius is required to be around 2m, half of the average size of building rooms 293 
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(Lead C, 2022), to make sure the robot can locate a building component instead of turning in the ground. It should be 294 

noted that the designed linguistic labels, limits, and ranges are feasible for most of the building inspection robots 295 

because the Turtlebot3 configurations are set at an average level. Whereas they can be adjusted for particular 296 

inspection tasks and robot specifications. 297 

vR
ω

=  Equation (6) 

Here: R  is the turning radius, v  is the linear velocity, ω  is the angular velocity.3.2.3 Design of decision-making 298 
rules  299 

Fuzzy rules are accountable for establishing decision-making logic. Modus ponens, the most essential expression 300 

of fuzzy rules (McGee 1985), was employed to design fuzzy rules. The form of a modus ponens rule is: IF x is A 301 

THEN y is B. Specifically, x and y refer to the variables in the distance fuzzy set and the speed and rotation fuzzy sets, 302 

respectively. A and B refer to the linguistic labels of the three fuzzy sets. The t-norms (Gupta and Qi 1991), used as 303 

an AND connector, were employed to connect the multiple conditions.  304 

Based on the design principle: fuzzy rules are defined based on both the sensor input and the robot’s launching 305 

scenarios (Dias et al., 2018), we defined the specific connections of x, y, A, B based on the possible launching scenarios. 306 

Fig. 6. shows the representative sensing and launching scenarios for building inspection robots according to the 307 

architectural layout designs (Rahbar et al., 2022). A typical building layout was used as a showcase. In Fig. 6, the 308 

dotted lines on the robot split the obtained distance data into left, front, and right distance; the arrows refer to the 309 

expected moving directions (suppose the camera is mounted on the right side).  310 

The eight representative situations can be interpreted as Table 1. Avoiding forehead obstacles can be considered 311 

sub-scenarios of Scenario F, in which the robot can detect front elements. Examples are shown as F’ and F’’.  312 

Table 1. Interpretation of representative launching scenarios 313 
Interpretations Building element is located on Next direction 

Scenarios Left Front Right 
Scenario A √ × × Turn right in place 
Scenario B × × × Turn right 
Scenario C × × √ Go straight 
Scenario D √ √ × Turn left in place 
Scenario E × √ √ Turn left 
Scenario F × √ × Turn left in place 
Scenario G √ × √ Go straight 
Scenario H √ √ √ Turn left in place 

As shown in Table 2, to realize the expected behaviors, the fuzzy rules were determined by considering every 314 

possible combination of the eight representative scenarios with the designed membership functions in section 3.2.2. 315 
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The modus ponens rule and t-norms were used to combine and connect the fuzzified variables. For example: IF Left 316 

is N AND Front is VF AND Right is VF, THEN Linear velocity is H AND Angular velocity is TRN. The minimum 317 

operator was used to decide rules’ the entries (Hellman 2001).  318 

Table 2. Fuzzy rules 319 
Scenarios Rules Left Front Right Linear velocity Angular velocity 

A 
A1 N 

VF VF 
Z TRN 

A2 A Z TRN 
A3 F Z TRN 

B B VF VF VF H TRF 

C 
C1 

VF VF 
N L TLN 

C2 A M GS 
C3 F L TRN 

D 

D1 

N 

N 

VF 

Z TLN 
D2 A Z TLN 
D3 F Z TLN 
D4 VF Z TLN 
D5 

A 

N 

VF 

Z TLN 
D6 A Z TLN 
D7 F Z TLN 
D8 VF Z TLN 
D9 

F 

N 

VF 

Z TLN 
D10 A Z TLN 
D11 F Z TLN 
D12 VF Z TLN 

E 

E1 
VF N 

N Z TLN 
E2 A Z TLN 
E3 F Z TLN 
E4 

VF A 
N Z TLN 

E5 A Z TLN 
E6 F Z TLN 
E7 

VF F 
N Z TLN 

E8 A Z TLN 
E9 F Z TLN 

F 
F1 

VF 
N 

VF 
L TLN 

F2 A L TLN 
F3 F L TLN 

G 

G1 
N VF 

N M GS 
G2 A M GS 
G3 F L TRN 
G4 

A VF 
N M GS 

G5 A M GS 
G6 F L TRN 
G7 

F VF 
N M GS 

G8 A M GS 
G9 F L TRN 

H 

H1 N F N M GS 
H2 A M GS 
H3 N N N Z TLN 
H4 A N A Z TLN 
H5 A N F Z TLN 

3.2.4 Design of defuzzification method 320 

After the fuzzification and decision-making process, linguistic labels of output linear and angular velocities are 321 

obtained. The defuzzification process contributes to converting the linguistic labels to crisp numbers of outputs. The 322 
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most commonly used defuzzification method, the centroid method (Chakraverty et al., 2019), was employed. As 323 

shown in equation 7 and equation 8. 324 
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 Equation (7) 

Here: *v  is the crisp linear velocity, ( )ivµ  is the fuzzy degree of the i th−  membership function in the speed fuzzy 325 

set, iv  is the centroid position of the i th−  membership function. 326 
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 Equation (8) 

Here: *ω  is the crisp linear velocity, ( )iµ ω  is the fuzzy degree of the i th−  membership function in the rotation 327 

fuzzy set, iω  is the centroid position of the i th−  membership function. 328 

3.2.5 Heading adjust algorithm 329 

After several tests in Robot Operating System (ROS) simulation (Mittler 2017), we observed that when following 330 

the wall, the robot still moved in an S-curve rather than a straight path (scenario C), which causes difficulties for defect 331 

recognition. This may happen because the robot needed to adjust its heading timely in order to stay within the desired 332 

distance. Therefore, a heading adjust (HA) algorithm was designed to optimize the designed FLC by sending correct 333 

commands to control the robot to follow walls in a straight line. 334 

The objective of the proposed HA algorithm is to keep the robot’s heading parallel to the following elements. As 335 

shown in Fig. 7, right-angled triangles with the hypotenuse side a  (distance from30° ) and the other two sidesb , c  336 

(distance from 0° , and the following elements) are established in real-time. The HA algorithm requires the distance 337 

from 0°  (side b ) and 30°  (side a ) maintain a ration of 3 / 2  ( cos30° ), which keeps the robot’s heading parallel 338 

to the following elements according to the Pythagorean theorem (Agarwall 2020). To avoid noise, a range of -0.07 to 339 

+0.09 is adopted. 340 

In summary, if the ratio remains between [0.80, 0.97], the robot could follow a straight path by keeping its 341 

heading parallel to the following elements. The main concept of the proposed HA algorithm is presented below: 342 

Algorithm 1 Heading adjust algorithm 
Result: Heading (H) 
Input: Distance from 0° D0, distance from 30° D30, right distance Dr 
# Initialization 
Randomly initialize D0, D30, Dr  
1: dc: 0.28, df: 0.33 ← lower and upper limits of right distance 
2: if dr ≤ dc then 
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3:      H is Turn left 
4: if dc ≤ dr ≤ df then 
5:      if 0.80 ≤ D0/D30 ≤0.95 then 
6:             H is Go straight 
7:      else 
8:             H is Adjust heading slowly 
9:      end if 
10: if dr ≥ df then 
11:     H is Turn right 
12: end if 
13: return H 

3.2.6 Behavior distinguish algorithm 343 

Another problem for the designed FLC is that the path deviation problem may happen during the “obstacle 344 

avoidance” behavior. Because of the designed fuzzy rule B, when the robot reached the end of an obstacle’s side, the 345 

“finding wall” behavior was triggered because the left, front, and right distances all belong to “VF” instead of “turning” 346 

and “following” the obstacle. Therefore, a behavior distinguish (BD) algorithm was developed to improve the FLC 347 

system by preventing path deviation.  348 

The behind-right distance from [-135°-0°], and the behind-left distance from [180°-225°] shown in Fig. 8 were 349 

used to achieve this. When the left, front, and right distances are “VF”, the robot is required to first consider the 350 

behind-left/right distance. If the behind left/right distance is within 0.36m, the robot is expected to turn right/left 351 

slowly for a short distance to keep following the obstacle and return to the initial path. On the other hand, the robot is 352 

expected to speed up to find new walls. The main concept of the proposed BD algorithm is shown as follows: 353 

Algorithm 2 Behavior distinguish algorithm 
Result: Moving state (M) 
Input: Distance from 180° to 225° br, distance from -135° to 0° bl, left distance from 160° to 180° l, front distance 
from 60° to 120° f, right distance from 0° to 20°r.  
# Initialization 
Randomly initialize br, bl, l, f, r  
1: VF: very far, A: appropriate ← distance level 
2: if l, f is VF and r is A then 
3:      M is Following the obstacle 
4: if l, f, r is VF then 
5:      if br or bl <= 0.36 then 
6:             M is Following the obstacle 
7:      elif br or bl is VF then 
8:             M is finding new elements 
9:      end if 
12: end if 
13: return M 

 354 

 355 
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4. Results 356 

4.1 Simulation in ROS 357 

The feasibility of the designed FLC system was first validated in ROS simulation. The eight launching scenarios, 358 

typical and curved, square-shaped building layouts, are included in the simulation environments. 359 

4.1.1 Performance in various building scenarios 360 

(1) Performance of “finding wall”, “turning”, “wall following” behaviors in eight individual building scenarios 361 

The navigation paths, crisp values of distance, and linear and angular velocities of robot navigation in eight 362 

individual scenarios are shown in Fig. 9.  363 

It can be observed that in scenario A and D, the robot was located at the left corner with different towards. The 364 

robot properly recognized the position by computing the fuzzy degree of left, front, and right distance. In scenario A, 365 

the FLC system first output “VF”: 0.51m~ 3.5m for the front distance. “N”: 0.22m~0.27m, “A”: 0.29m~0.32m, and 366 

“F”: 0.32m~0.34m for the left distance, and “VF”:0.34m~3.5m for the right distance. In that case, the FLC system 367 

sent the angular velocity as “TRN”: -0.3rad/s and the linear velocity as “Z”: 0 m/s to control the robot to first slowly 368 

turn right in place. When the robot properly turned its direction, the FLC system output “VF”: 0.38m~3.5m for both 369 

front and left distance. “F”: 0.31m~0.33m and “A”: 0.29m~0.31m for the right distance. In that case, the FLC system 370 

output the angular velocity as “GS”: 0rad/s, and linear velocity as “M”: 0.1m/s to control the robot to follow the wall 371 

at a normal speed. 372 

In scenario D, the FLC system output “N”: 0.28m~0.32m, “A”: 0.28m~0.31m, “F”: 0.31m~0.34m first for the 373 

front distance. “A”: 0.28m~0.32m, “F”:0.32m~0.34m for the left distance. “VF”: 0.39m~0.66m for the right distance. 374 

In that case, the FLC system output the same velocity command as in scenario A to control the robot to first turn its 375 

heading in place. When the front and left distance changed to “VF”: 0.34~3.5m, right distance changed to “N”: 376 

0.15m~28m and “A”: 0.30m~0.32m, the FLC system output “GS” and “M” to command the robot to follow the wall 377 

within 0.30~0.33m. 378 

Scenario B refers to the “finding wall” behavior. In that case, the robot was located far away from the inspection 379 

elements. The FLC system sent both the left, front, and right distance as “VF”: 0.36m~3.5m. In that case, the robot 380 

was expected to turn right quickly over a long distance to find the wall as soon as possible. To achieve this, the FLC 381 

system sent the angular velocity as “TRF”: -0.1rad/s, linear velocity as “H”: 0.25m/s. When the robot found the wall, 382 
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the FLC system sent the angular velocity as “TLN”: 0.3rad/s, and linear velocity as “L” and “M”: 0.05m/s~0.1m/s to 383 

control the robot to adjust its position and follow the wall. 384 

Scenario C refers to the “wall following” behavior. In that case, the FLC system sent the fuzzy degree of the front 385 

and left distance as “VF”: 0.58m~3.5m. “N”: 0.25m~0.28m, “F”: 0.31m~0.33m for the right distance. To conduct 386 

inspection work within a desired distance, the FLC system sent the angular velocity as “TLN” and “TRN”: -387 

0.3rad/s~0.3rad/s and linear velocity as “L”: 0.05m/s to control the robot to adjust position by turning to the left and 388 

right slowly. When the right distance was changed and kept to “A”: 0.31m~0.32m and the robot’s heading was parallel 389 

to the wall, the angular velocity was turned to “GS”: 0rad/s and linear velocity to “M”: 0.1 m/s to control the robot to 390 

follow the wall straight at normal speed.  391 

In scenario E, the robot was located in the right corner. The FLC system sent “VF”: 0.59m~3.5m for the left 392 

distance. “N”: 0.21m~0.27m for the front distance. “A”: 0.28m~0.31m for the right distance. In that case, the FLC 393 

system sent the angular velocity as “TLN”: 0.3 rad/s and linear velocity as “Z”:0 m/s to control the robot to first turn 394 

left in place to avoid collision with forehead walls. When the front and left distance changed to “F”: 0.32m~0.33m 395 

and “VF”: 0.36m~3.5m. The right distance changed to “N”: 0.25m~0.28m and “A”: 0.28m~0.32m, the “wall 396 

following” behavior was activated. The FLC system then output the angular and linear velocity in scenario C. 397 

When the robot launched in scenario F, the FLC system sent the same velocity command as in scenario E. The 398 

variation of the left and front distance fuzzy degree in scenario F was similar to that in scenario E. Because there were 399 

no blocks on the robot’s right side in scenario F, the FLC sent the right distance as “VF”: 0.35m~0.5m first, then 400 

changed to “N”, “A” as in scenario E.  401 

Scenario G and H usually represent the narrow spaces in buildings. In scenario G, the fuzzy degree of both the 402 

left and right distances was “N”:0.17m~0.27m and “A”:0.27m~0.28m, and the front distance was “VF”:0.37m~0.40m. 403 

In that case, the FLC system sent angular velocities as “GS”: 0rad/s, and “L”: 0.05m/s to control the robot to go 404 

straight slowly in narrow places. Similar navigation was conducted in scenario H. The only difference is that in 405 

scenario H, fuzzy degree of the front distance was “N”:0.23m~0.28m first, and then changed to “VF”: 0.36m~0.5m 406 

after the robot turned around. In that case, the robot was expected to first turn around slowly in place, with an angular 407 

velocity as “TLN”: 0.3 rad/s and linear velocity as “Z”: 0m/s. Then go straight slowly by changing the angular and 408 

linear velocity to “GS”: 0rad/s, and “L”: 0.05m/s. When the right or left distance was “F”: 0.31m~0.36m, the FLC 409 
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system also output the angular velocity as -0.3rad/s~0.3 rad/s to control the robot to turn left or right slowly to keep 410 

following the wall within the desired distance.  411 

The above-mentioned robot initial positions, expected behaviors, velocity commands, and changes of sensed 412 

distance in each scenario are briefly summarized in Table 3. 413 
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Table 3. Robot initial positions, expected behavior, velocity commands, changes of sensed distance in each scenario 414 

Building 
scenario 

Initial 
position 

Expected 
behavior 

Velocity command Changes of sensed distance 
Linear 
(m/s) 

Angular 
(rad/s) 

Left Front Right 
Before(m) After(m) Before(m) After(m) Before(m) After(m) 

A Left 
corner 

Turn right 
in place “Z”:0  “TRN”:-0.3 

“N”:0.22~0.27 
“A”:0.29~0.32 
“F”:0.32~0.34 

“VF”:0.38~3.5 “VF”:0.51~ 3.5 “VF” 0.38~3.5 “VF”: 
0.34~3.5 

“F”:0.31~0.33 
“A”:0.29~0.31 

B 
Far 

away to 
the wall 

Turn right 
quickly 

“H”: 
0.25 “TRF”:-0.1 “VF”:0.36~3.5 “VF” 0.38~3.5 “VF”:0.36~3.5 “VF” 0.38~3.5 “VF”:0.36~3.5 “A”: 0.29~0.31 

C Near to 
the wall 

Slowly 
adjust and 
go straight 

“L”: 
0.05 
Then 
“M”: 
0.1 

“TLN” and 
“TRN”: 
-0.3 ~0.3 

Then 
“GS”:0 

“VF”:0.58~3.5 “VF”:0.58~3.5 “VF”:0.58~3.5 “VF”:0.58~3.5 “F”:0.31~0.33 
“N”:0.22~0.27 “A”: 0.31~0.32 

D Left 
corner 

Turn right 
in place  “Z”:0  “TRN”:-0.3 “A”:0.28~0.32 

“F”:0.32~0.34 “VF”: 0.34~3.5 
“N”:0.28~0.3 

“A”:0.28~0.31 
“F”:0.31~0.34 

“VF”:0.34~3.5 “VF”:0.39~0.66 
“N”: 

0.15~0.28 
“A”:0.30~0.32 

F Right 
corner 

Turn left 
in place “Z”:0 “TLN”:0.3  “VF”:0.59~3.5 “F”:0.32~0.33 

“VF”:0.36~3.5 “N”:0.21~0.27 “F”:0.32~0.33 
“VF”:0.36~3.5 “A”:0.28~0.31 “N”:0.25~0.28

“A”: 0.28~0.32 

F Facing 
the wall 

Turn left 
in place “Z”:0  “TLN”:0.3  “VF”: 0.59~3.5 “F”:0.32~0.33 

“VF”:0.36~3.5 “N”:0.21~0.27 “F”:0.32~0.33 
“VF”:0.36~3.5 “VF”: 0.35~0.5 “N”:0.25~0.28

“A”: 0.28~0.32 

G 
In 

narrow 
places 

Slowly go 
straight  

“L”: 
0.05 “GS”:0 “N”:0.17~0.27  

“A”:0.27~0.28 
“N”:0.17~0.27 
“A”:0.27~0.28 “VF”:0.37~0.40 “VF”:0.36~0.5 “N”:0.17~0.27 

“A”:0.27~0.28 
“N”:0.17~0.27  
“A”:0.27~0.28 

H 
In 

narrow 
places 

Slowly 
turn 

around in 
place and 

adjust 

“Z”:0 

First 0.3, 
Then  

“GS”:0 and 
“TLN” and 

“TRN”: 
-0.3~0.3 

“N”:0.17~0.27  
“A”:0.27~0.28 

“N”:0.17~0.27  
“A”:0.27~0.28 “N”:0.23~0.28  “VF”:0.36~0.5 “N”:0.17~0.27 

“A”:0.27~0.28 
“N”:0.17~0.27  
“A”:0.27~0.28 

 415 
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(2) Performance of “finding wall”, “turning”, “wall following” behaviors in integral building layers 416 

As seen from Fig. 10, a typical building layer with four rooms, eight external walls, and four internal walls, as 417 

well as special building layers with curve-shaped and square-shaped walls, were established to see if the robot could 418 

achieve autonomous navigation in the integral unknown building layers without collisions. The lines in Fig.10(a) – 419 

Fig.10(c) present the travelling path. 420 

As seen from Fig. 10(a), the results revealed that the FLC system successfully controlled the robot to complete 421 

navigation in typical building layers. The navigation path followed a sequence of rooms A, D2, B, C, D1, and exterior 422 

walls, covering all interior and external walls. The distance fuzzy degree, linear, and angular velocities in scenarios B, 423 

F, C, and E were combined to accomplish this. Outputs in scenario B were first used to control the robot to find the 424 

wall at a fast speed. When the robot detected the forehead walls, the outputs from scenario F were utilized to command 425 

the robot to turn left and adjust its position. Outputs from scenario C were then used control the robot to maintain 426 

following walls within a certain distance. When the robot reached the left corner, the outputs from scenario E were 427 

utilized to command the robot to turn left first to avoid collision and then continue the “wall following” behavior.  428 

As shown in Fig. 10 (b) and (c), the FLC system can also control the robot to conduct inspection work in special-429 

shaped building layers. In the same way, the outputs of the FLC system in scenarios B, F, C, and E were integrated. 430 

When the robot approached the corner of a curve or a square, the FLC system would sometimes report all of the left, 431 

front, and right distances as “VF.” Different from “finding wall” cases, the robot was still located near the inspection 432 

elements, and there was no need to turn right fast to find new walls. In that case, the proposed BD algorithm assisted 433 

the robot in turning right slowly for a short distance and continuing the same inspection path.  434 

(3) Performance of “obstacles avoidance” behavior 435 

As shown in Fig. 11, the robot successfully avoids both curved and square-shaped obstacles during the navigation 436 

process. The lines in Fig. 11 present the travelling path. The FLC system output distance fuzzy degrees and crisp 437 

velocities in scenarios E or F and C, respectively, to control the robot to turn first and continue “wall following.” 438 

Similarly, when the robot reached the end of one side of the obstacles, the FLC system reported all of the left, front, 439 

and right distances as “VF.” Instead of “finding wall,” the robot was expected to keep following the barriers and return 440 

to the initial inspection path. In that case, the proposed BD algorithm also assisted in avoiding path deviations. 441 

Specifically, when the robot moved to the end of one side of an obstacle, the distance from three directions was 442 

all rated as “VF,” as shown in Fig. 12 (c). The “finding wall” behavior was then triggered, causing the path deviation. 443 
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Apart from reporting the left, front, and right distances as “VF,” the FLC additionally reported the “right-behind” 444 

distance after applying the BD algorithm, as shown in Fig.12 (d). According to the BD algorithm, the FLC system 445 

reported velocities as “TRN” and “L” instead of “TRF” and “H” when the “right-behind” distance was less than 0.36m. 446 

In that way, the FLC system controls the robot to keep the following behavior by constantly turning right slowly over 447 

a short distance rather than turning right fast over a large distance to find new walls. The green lines in Fig. 11 present 448 

the travelling path. 449 

4.1.2 Performance of designed HA and BD algorithm 450 

It should be noted that the robot may turn too often during the “wall following” stage to maintain a certain 451 

distance, as seen in Fig. 12 (a). The HA algorithm assists in providing the robot with a straight wall following path. 452 

Specifically, the FLC system sent the velocities “TRN” or “TLN” and “L” initially to command the robot’s left or 453 

right turn. According to the HA algorithm, instead of continually adjusting orientations, the FLC system gives “GS” 454 

and “M” commands to tell the robot to go straight without turning at a normal speed when its heading is parallel to 455 

the following elements.  456 

It’s also worth noting that we attempted to have the FLC system output velocity as “GS” and “Z,” to control the 457 

robot to turn straight while stationary. Although the robot’s heading may be adjusted more precisely in that way, it 458 

tends to stop and move frequently, which also causes camera shake. Therefore, adjusting direction at a slow speed is 459 

a better option. After using the proposed HA algorithm to optimize the FLC system, it is clear that the robot could 460 

move in a relatively straight path in the “wall following” stage, as shown in Fig. 12 (b). The lines in Fig. 12 present 461 

the travelling path. 462 

4.2 On-site validation 463 

On-site validation was conducted inside the Hong Kong Polytechnic University to validate the designed FLC in 464 

real-world environments.  465 

4.2.1 Feasibility and efficiency in unknown environment 466 

To validate the advantages of the local navigation strategy in unknown environments, discussed in the literature 467 

review section, the performance of the designed FLC and the SLAM algorithm (a global navigation strategy) was 468 

compared. Fig. 13 (a) shows the initial map prepared for SLAM navigation. As can be seen, by navigating using the 469 

initial map, the robot successfully reached the goal position (Fig. 13 (b)). However, when placing a box obstacle later, 470 

the robot was blocked (Fig. 13 (d)) because the environmental map was not updated in real-time and the SLAM 471 
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algorithm failed to calculate new path (Fig. 13 (c)). Differently, when navigated using the designed FLC, the robot 472 

can successfully pass obstacles that are placed at any time and reach the goal position without collision (Fig. 13 (e)).  473 

4.2.2 Feasibility and efficiency in various building scenarios 474 

Special locations, including concave and convex regions, curve-shaped columns, and narrow aliases, were 475 

selected to highlight the robustness of the designed FLC. 476 

As seen from Fig.14, it was validated that the designed FLC successfully controlled the robot to navigate in 477 

concave and convex regions without collision. As expected, the robot firstly conducted “wall following” behavior 478 

using the velocities in scenario C. Velocities in scenario E was then triggered to control the robot to turn left first and 479 

continue following the wall. When the robot moved to the convex region, velocities in scenario B were sent and the 480 

designed BD algorithm was activated to control the robot to adjust its heading without deviating from the path. 481 

As seen from Fig.15, the FLC system was proven to be suitable for navigation in narrow regions and curve-482 

shaped columns. When the robot was close to both the right and left walls, velocities in scenario G were delivered to 483 

control the robot to slowly move straight. When the robot reached the end of the narrow regions, velocities in scenario 484 

H were delivered to control the robot to turn around in place and then continue wall following. When the robot met 485 

curve-shaped columns, velocities in scenario C and B were sent alternately to control the robot’s movement in a 486 

curving path. The BD algorithm helped to avoid path deviation. 487 

As seen from Fig. 16, it is validated that the FLC system successfully controlled the robot to pass through the 488 

forehead obstacles. The robot started with the “wall following” behavior first. The designed HA algorithm helped to 489 

control the robot’s movement straight and keep a desired distance. Similarly, when the robot met forehead obstacles, 490 

the navigation strategies in scenario E, B, and C were activated respectively to make the robot avoid the obstacles and 491 

keep following the wall. 492 

In summary, the designed FLC system is validated as feasible for the wall-following navigation of building 493 

inspection robots in various unknown building environments. To achieve this, the basic “finding wall”, “wall 494 

following,” “turning,” and “obstacle avoidance” behaviors can be realized, which are correlated to the findings in 495 

(BraunstingI et al., 1995, Nadour et al., 2019).  496 

This study outperforms the existing algorithms from: 1) The designed FLC is suitable for various unknown launch 497 

situations. The robot can navigate properly in eight different launch scenarios, including narrow spaces and building 498 

corners. If the robot is launched far from the inspection elements, the designed “finding wall” behavior enables the 499 
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robot to quickly locate the inspection region. 2) Optimized by the proposed HA algorithm, the designed FLC ensures 500 

a relatively straight wall-following trajectory and keeps the robot following within a desired distance. 3) Optimized 501 

by the proposed BD algorithm, the path deviation problem can be effectively avoided for complex environments, such 502 

as concave and convex regions, curved or square-shaped building elements. 503 

5. Conclusions and Limitations 504 

Employing robotics for automated building inspection is becoming a new trend. Navigation strategies are 505 

essential for autonomous movements of building inspection robots but still lack development. Although autonomous 506 

navigation strategies have been widely proposed in the robotics field, fewer of them are suitable for the building 507 

structural inspection behavior, which requires the inspectors to follow the building components within the desired 508 

distance and dynamically avoid obstacles. Therefore, this study aimed to explore an autonomous navigation algorithm 509 

for the following behavior. To achieve this, the objective was to design a novel FLC for the wall-following behavior. 510 

The FLC empowered wall-following algorithm are the local navigation strategy, which enables autonomous 511 

navigation in unknown environments. We focused on exploring autonomous navigation in unknown environments 512 

because 1) it is better suited to changing building environments; and 2) it is challenging to create maps of specialized 513 

building environments, such as aging nuclear power plants. 514 

The designed FLC enables robots to conduct basic inspection behaviors: “finding wall”, “wall following”, 515 

“turning” and “obstacle avoidance” without referring to prepared maps. The designed FLC is robust, it ensures safe 516 

travel in various building environments. Inserted with the proposed optimization algorithms, the FLC provides straight 517 

following path within a desired distance. The path-deviation problem can be effectively addressed. 518 

In the FLC system, the inputs are the left, front, and right distances within the designed interval ranges: [150°-519 

180°], referring to the left distance, [60°-120°], referring to the front distance, [0°-30°], referring to the right distance. 520 

The outputs are the angular and linear velocity. Three fuzzy sets (distance, speed fuzzy, and rotation fuzzy set) and 521 

membership functions were established based on robot configuration, camera configuration, building designs, and 522 

building inspection criteria to transform crisp distance data to linguistic fuzzy degrees and crisp velocity data in the 523 

fuzzification and defuzzification process. 45 fuzzy rules are defined for the robot’s decision-making based on every 524 

possible sensing and launching situation. Two optimization algorithms were also proposed based on the Pythagorean 525 

theorem and the distances between the behind-right and left ranges. 526 
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The FLC system was validated in both simulation and real-world environments using the Turtlebot3 burger robot. 527 

It is validated that the designed FLC realizes the autonomous navigation of building inspection robots in unknown 528 

environments. It is feasible to control robots to conduct inspection work in eight different building scenarios, such as, 529 

building corners, narrow alias. By integrating the output velocities of the eight individual scenarios, the robot 530 

successfully navigated in integral typical, curved, and square-shaped building layers and avoided collision with 531 

forehead obstacles. The proposed HA and BD algorithms effectively assisted in generating straight wall following 532 

paths within a desired distance and avoiding path deviation in complex regions, such as, concave and convex regions.  533 

However, there are still some limitations: 1) Because of the shortcomings of the distance laser, the FLC tends to 534 

generate wrong commands when the robot meets transparent and reflective building materials, such as glass walls, 535 

and metal doors. This problem needs to be solved because the FLC is sensitive to the input distance data and glass 536 

walls, or metal doors are widespread in modern buildings. Therefore, developing multi-sensor-based path planning 537 

algorithms for more accurate robot navigation, such as, integrating lasers, lidar, or cameras, can be considered a 538 

potential research topic for our future study. 2) The designed FLC can be directly coded in any wheeled mobile robots 539 

to conduct building inspection works in various buildings, such as residential and public buildings. Because the fuzzy 540 

sets, types, ranges, and limits of the membership functions, and the fuzzy rules were designed based on robot and 541 

camera configurations, building designs, and inspection criteria, the designs are feasible for most of the building 542 

inspection robots. It should be noted that although the ranges of distance membership functions are feasible for 543 

different cameras, the supplementary distances may be various for different platforms. The specific number depends 544 

on the distance between the laser and the camera. Another concern is that the designed FLC is not feasible to control 545 

the robot to go up stairs. The simplest way to solve this problem is to enhance the mechanism designs, such as installing 546 

crawlers on wheels to enable the wheeled mobile robot to go up or down stairs. In that case, the designed parameters 547 

can still work, but the lasers need to be installed higher to distinguish forehead obstacles and stairs. 548 
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