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A B S T R A C T   

The successful launch of Sustainable Development Science Satellite 1 (SDGSAT-1) complements the existing 
nighttime lights (NTL) data with high spatial resolution in the three visible bands (40 m) and the panchromatic 
band (10 m). This study aimed to evaluate the potentiality of the new NTL imagery – SDGSAT-1 – in revealing the 
spatial variation in NTL intensity. We compared the NTL image from SDGSAT-1 with other existing NTL datasets: 
the Visible infrared Imaging Radiometer Suite-Day Night Band (VIIRS-DNB), Luojia1-1 (LJ1-01), and photo-
graphs from the International Space Station (ISS-P) at spatial resolutions of 500 m, 130 m, and 10 m, respec-
tively. Then, we investigated the intraurban NTL spatial variability of eleven urban land-use types with analysis 
of variance (ANOVA). In addition, we used random forest (RF) regression to analyze the relationship between 
explanatory factors and NTL variation. The results showed the following: (1) The quality of the SDGSAT-1 NTL 
image was comparable with ISS-P and better than VIIRS-DNB and LJ1-01 imagery in spectral and spatial reso-
lution. (2) The ability of the RGB bands and grayscale brightness of the SDGSAT-1 NTL image to distinguish 
various land use types outperformed that of the ISS-P, LJ1-01, and VIIRS-DNB images. (3) The NTL spectral index 
SONDI, combined with three visible bands, could improve the ability of a single band to show the lighting 
differences in intraurban areas. (4) The nine variables explained 39.20%–42.30% of the NTL intensity variability 
in the four RF models. Road density and public POI density were the most important variables in the red-green 
and blue bands, indicating that high-pressure sodium and lighting-emitting diode lamps were primarily deployed 
in the road and public areas, respectively. Meanwhile, the potential applications of SDGSAT-1 NTL imagery were 
further discussed. Our findings indicate the great potential of SDGSAT-1 NTL imagery for supporting sustainable 
urban development.   

1. Introduction 

Night-time lights (NTL) could be regarded as the novel footprints of 
urbanization in extent and intensity. Numerous studies have shown that 
NTL data can be applied in multiple aspects, including mapping urban 
areas (Li et al., 2018b; Zhou et al., 2018), estimating urban socioeco-
nomic parameters (Chen et al., 2022; Zhao et al., 2020), and monitoring 
armed conflicts (Li et al., 2017). Moreover, there are large-scale lighting 
facilities that transition from low-pressure sodium (LPS) and high- 
pressure sodium (HPS) to light-emitting diodes (LED) in urban areas. 
This produces more blue lighting (Elvidge et al., 2007). Some research 
has noted that overdue lighting adversely impacts human health and the 

ecosystem, especially blue lighting (Gaston and de Miguel, 2022; 
Sánchez de Miguel et al., 2022). Given the global light transformation 
and its significant influence (Levin et al., 2020), it is imperative to 
develop a more effective technique for accurately observing NTL in 
spatial and spectral information. 

Currently, there are diverse approaches to capturing the intensity 
and extent of NTL. The first free NTL remote sensing data were from the 
Defense Meteorological Satellite Program-Operational Linescan System 
(DMSP-OLS) sensor in 1992 (Elvidge et al., 1997). Subsequently, two 
datasets with higher spatial resolutions, wider dynamic ranges, and 
fewer issues (saturation and blooming) were acquired from the Visible 
Infrared Imaging Radiometer Suite-Day Night Band (VIIRS-DNB) and 
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Luojia1-01 (LJ1-01) in 2012 (Elvidge et al., 2013) and 2018 (Li et al., 
2018b), respectively. These satellite NTLs with a single spectral band 
provide valuable information to describe the spatial–temporal charac-
teristics of urban human footprints at large scales (Zhang et al., 2013; 
Zheng et al., 2021). However, three issues need to be taken into 
consideration: (1) the lack of multispectral bands, (2) the DMSP-OLS 
composite product including visible and near-infrared (NIR) ranges 
(400–1100 nm) but with 1 km spatial resolution, and (3) LJ1-01 
(460–980 nm) and VIIRS-DNB (505–890 nm) imagery with higher 
spatial resolution but missing information from blue lighting. Therefore, 
we need new NTL data with multiple spectra and high spatial resolution 
to complement the existing NTL data and collect more comprehensive 
and finer artificial lighting radiance information. 

Photography from the International Space Station (ISS-P) and JL1-3B 
can collect colorful lights in contrast to the three NTLs above (Elvidge 
et al., 2007). These two multispectral NTLs have been successfully 
applied in population estimation (Li et al., 2018a), lighting pollution 
monitoring (Sánchez de Miguel et al., 2019), lighting source classifica-
tion (Zheng et al., 2018), and analyzing NTL spatial variability in land 
uses (Guk and Levin, 2020). Although these two multispectral NTL 
datasets have been applied in finer urban studies, they still face some 
drawbacks to overcome. ISS-P imagery (https://eol.jsc.nasa.gov/) lacks 
the stability of image time, geographic information, and radiation 
correction. JL1-3B NTL imagery (https://www.jl1mall.com/Satellit 
eImagery/NightLight) is geared more toward commercial than broad 
scientific needs. Therefore, using suitable multispectral NTL imagery at 
a low cost and stability is essential for urban applications. 

A novel free satellite-derived NTL, Sustainable Development Science 
Satellite 1 (SDGSAT-1), has three visible bands and a panchromatic band 
with spatial resolutions of 40 m and 10 m, respectively (Guo et al., 
2023). The SDGSAT-1 satellite was launched by the Chinese Academy of 
Sciences on November 5, 2021. SDGSAT-1 is in a sun-synchronous orbit 
with an orbit altitude of 505 km and a swath of 300 km. Recently, it was 

used to evaluate public perception of urban NTL and found to be 
negatively correlated with the proportion of blue lighting in Beijing (Lin 
et al., 2023). In addition, some studies have demonstrated that SDGSAT- 
1 NTL has the potential to quantify nighttime aerosols (Wang et al., 
2023) and extract road information (Chang et al., 2022). According to 
the concept of Nightsat (Elvidge et al., 2007), NTL data with three to five 
spectral bands and fine spatial resolution (50–100 m) would enable 
more quantitative applications and the detection of lighting type con-
versions. Therefore, the potential of SDGSAT-1 NTL data is worthwhile 
to investigate on finer urban scales. 

One important urban development policy, urban renewal, has 
resulted in profound changes in intraurban environments in China (Fu 
et al., 2019; Liu et al., 2020). Notably, the urban renewal process results 
in changes in land use types, as in Yongqingfang, Guangzhou, where 
residential areas are converted into commercial and public spaces owing 
to this urban policy (Wang et al., 2022). Therefore, urbanization, 
especially intraurban renewal, significantly shapes land-use functions, 
as well as the NTL pattern therein. However, existing studies have 
mainly examined the relationship between panchromatic NTL bright-
ness and land use types (Jin et al., 2019; Ma, 2018). The intraurban 
variations in NTL properties across land use types have not been studied 
thoroughly. 

Therefore, this study aimed to analyze the intraurban spatial vari-
ability in multispectral NTL intensity and spectra at parcel-level land use 
scales using SDGSAT-1 NTL imagery with high spatial resolution, taking 
the capital of China, Beijing, as the study area. First, we compared 
SDGSAT-1 NTL imagery with other existing NTL data in terms of their 
spatial pattern and pixel brightness to assess the data quality of SDGSAT- 
1. Second, we applied the analysis of variance (ANOVA) technique to 
test the potentiality of SDGSAT-1 NTL imagery to investigate the spatial 
variability in NTL across land-use types. Third, we used the random 
forest (RF) regression method to analyze the explanatory factors un-
derlying the NTL variations. 

Fig. 1. SDGSAT-1 NTL image (a), Landsat 8 OLI image (b), VIIRS-DNB NTL image (c), the location of the study area (d), and subsets of selected areas (e-f) in the 
SDGSAT-1 NTL image. The three visible bands (red, green, and blue, RGB) are used to composite the SDGSAT-1 NTL image. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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2. Study area and datasets 

2.1. Study area 

Our study area focused on the metropolitan region (the 5th Ring 
Road area), which included seven districts in Beijing, China: Xicheng 
(XC), Dongcheng (DC), Haidian (HD), Chaoyang (CY), Shijingshan 
(SJS), Fengtai (FT), and Daxing (DX) (Fig. 1). The metropolitan region 
covers an area of 667.21 km2 and accommodates almost half of the 
residential population of Beijing. Meanwhile, there are diverse human 
activities at night, including commercial, political, educational, recre-
ational, and cultural events (Fig. 1a). Since various lighting lamps were 
distributed in different human activity zones, there was multicolor 
lighting, dominated by yellow lights, with minor green, white, blue, and 
magenta areas. 

2.2. Datasets and preprocessing 

The SDGSAT-1 NTL imagery had high spatial resolution and multi-
spectral bands. The significant advancements brought about by 
SDGSAT-1 compared with the two multispectral NTLs, ISS-P and LJ1-3B, 
are listed in Table 1 below: (1) wider spectral range, including 430–520 
nm (blue), 520–615 nm (green), 615–900 nm (red), and 450–900 nm 
(panchromatic band); (2) higher radiometric resolution (16 bits); and 
(3) earlier overpass time (approximately 21:00). To date, owing to 
limited data availability, only one high-quality, cloud-free, and stripe- 
free scene was acquired for Beijing on 26 November 2021 via the In-
ternational Research Center of Big Data for Sustainable Development 
Goals (https://data.casearth.cn/thematic/brics_2022_china/143). The 
SDGSAT-1 NTL images did not perform radiance correction, mainly 
because the parameters of the radiance correction are not yet unreliable. 
Additionally, the study does not involve explicit physical parameter 
estimation; therefore, it is reasonable to use digital number (DN) values 
for analyzing NTL variability (Guk and Levin, 2020). 

Additionally, three cloud-free NTL scenes, ISS-P (ISS061-E-123062, 
22:25:00 overpass time), LJ1-01, and version 1 monthly VIIRS-DNB, 
were acquired on 12 January 2020, 27 September 2018, and 
November 2020, respectively. These three NTL data were used to 
examine the quality of SDGSAT-1 NTL data. Importantly, the land use 
map covering 11 types at the parcel level (Fig. 2) was obtained from 
Gong et al. (2020). Moreover, a Landsat OLI 8 image on 12 December 
2021 was used to generate the normalized difference vegetation index 
(NDVI). Points of interest (POIs) in 2022 were crawled from Amap (htt 
ps://www.amap.com/). Road network and building vector data in 2021 
were obtained from the Open Street Map. These three datasets were used 
to explain the spatial variability of SDGSAT-1 NTL in intensity and 
spectrum. Table 2 shows all the data used and their preprocessing. 

All data were reprojected to the WGS_1984_UTM_zone_50N coordi-
nated system. Then, two multispectral NTL datasets, SDGSAT-1 and ISS- 
P, need to compute the grayscale brightness (Eq. (1) to quantify the 
magnitude of NTL, which is effective at enhancing contrast and avoiding 
noise, contouring, and halo artifacts (Grundland and Dodgson, 2007). 

Table 1 
Comparison of three multispectral NTL datasets.  

Type ISS-P JL1-3B SDGSAT-1 

Satellite launch 
time 

— 2017–01–09 2021–11–5 

Availability 2003– 2017– 2021– 
Spectral resolution — Blue:430–512 nm 

Green:489–585 
nm 
Red:580–720 nm 

Panchromatic:450–900 
nm 
Blue:430–520 nm 
Green:520–615 nm 
Red:615–900 nm 

Spatial resolution 5–200 m 0.92 m 40 m (Visible bands) 
10 m (Panchromatic 
band) 

Free Yes No Yes 
Overpass（local 

time） 
— ~22:00 ~21:00 

Temporal 
resolution 

Irregular 4.5 days 11 days 

Radiometric 
Resolution 

8–14 bits 8 bits 16 bits  

Fig. 2. Parcel-level land use map (Gong et al., 2020).  
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Brightness = 0.2989 × Red + 0.5870 × Green+ 0.1140 × Blue (1)  

where Brightness denotes the grayscale brightness of multispectral NTL 
images, and Red, Green, and Blue are the DN values of each corre-
sponding band. The primary reason for not using the panchromatic band 
of SDGSAT-1 NTL data was to reduce information loss from blue light 
owing to the blue spectral range of the panchromatic band (450–900 
nm) being shorter than that of the blue band (430–520 nm, Table 1). 

The ISS-P and LJ1-01 images were subjected to a geometric correc-
tion (Jiang et al., 2018; Li et al., 2018a). Their correction accuracy was 
measured by the root mean standard error (RMSE) of 9.65 m and 19.48 
m, respectively. Meanwhile, radiometric correction (Li et al., 2019) was 
used to obtain radiance intensity from the DN value on LJ1-01 NTL (Eq. 

(2). Noise elimination was performed in the monthly VIIRS-DNB NTL to 
overcome the background and abnormally high noises using a back-
ground mask (version 2 annual lit mask in 2020) and local median filter, 
respectively (Elvidge et al., 2021) 

L = DN3
2 × 10− 10 × w × 105 (2)  

where w is the bandwidth, ranging from 460 to 980 nm, w was set to 
0.52 µm, and L denotes the absolute radiance brightness value (nW/ 
cm2/sr). 

POI data were reclassified into five classes, including residential 
land, commercial land, industrial land, public management and service 
land, and greenspace. Road network data were chosen into four classes, 
e.g., primary, secondary, tertiary, and trunk. Then, POI and road 
network data were performed for kernel density analysis to generate a 
smooth raster surface, which reflected the density of various POIs and 
roads. Building polygon data were rasterized into building height and 
density raster data. The above raster data were in 40 m correspondence 
with SDGSAT-1 NTL data. 

3. Methods 

In this study, we develop a framework for investigating the potential 
of SDGSAT-1 NTL to reveal the spatial variability of NTL intensity across 
11 land use types using multisource geography and remote sensing data. 
The flowchart for this investigation is shown in Fig. 3. The entire process 
consisted of three steps: (1) Quality analyses of the SDGSAT-1 NTL with 
the other three NTLs using two criteria: spatial pattern and pixel-level 
correlation. (2) Using the ANOVA method, we computed mean NTL 
values and three NTL spectral indexes to explore the spatial variability of 
each visible band and the combination of two or three bands. (3) We 
modeled the relationship between the nine explanatory variables and 
the response variable using the RF algorithm to identify the suitable 
reasons for NTL variability. 

Table 2 
Properties of the data and related preprocessing.  

Type Time Spatial 
resolution 

Preprocessing 

SDGSAT-1 
(RGB) 

26/11/2021 
(DD/MM/ 
YYYY) 

40 m Grayscale brightness 

ISS-P 12/01/2020 
(DD/MM/ 
YYYY) 

10 m Geometric correction and 
grayscale brightness 

LJ1-01 27/09/2018 
(DD/MM/ 
YYYY) 

130 m Radiometric and geometric 
correction 

VIIRS-DNB 11/2020 
(MM/YYYY) 

500 m Noise elimination 

Landsat 8 OLI 12/12/2021 
(DD/MM/ 
YYYY) 

30 m True color composite/NDVI 
composition 

Land use map 2018 
(YYYY) 

– – 

POI 2022 
(YYYY) 

– Reclassify/density analysis 

Road 
network 

2021 
(YYYY) 

– 

Building 
polygon 

2021 
(YYYY) 

– Rasterization  

Fig. 3. Schematic view for evaluating the potential of SDGSAT-1 NTL in revealing the spatial variability of NTL intensity at the land use parcel level.  
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3.1. Comparison analyses examining the quality of SDGSAT-1 NTL 
imagery 

We conducted a series of comparisons, including spatial patterns and 
correlations between SDGSAT-1 and other NTL data, to examine the 
quality of the SDGSAT-1 glimmer imagery. First, we compared single- 
band NTL data, i.e., VIIRS-DNB and LJ1-01, with SDGSAT-1. The pixel 
sizes of SDGSAT-1 NTL data were resampled to 500 m and 130 m using 
the mean aggregation method. The SDGSAT-1 NTL brightness was then 
calculated using the mean values of the red and green bands (Guk and 
Levin, 2020). Since VIIRS-DNB and LJ1-01 do not include the blue 
spectrum, the blue band was not included during the procedure (Elvidge 
et al., 2013; Li et al., 2018b). The values from the three NTL data were 
extracted using fishnet points at 500 m and 130 m scales, and the 
Pearson correlation coefficient (r) was computed at two spatial scales. 
Second, the comparison of multispectral NTL data, i.e., SDGSAT-1 and 
ISS-P, was performed by resampling the cell size of ISS-P to 40 m. Then, 
they both have three visible bands and grayscale brightness at the same 
spatial resolution. The values from these two NTL datasets were also 
extracted by the fishnet points at 40 m. The r was then determined for 
each cell size between identical bands. 

r =

∑n
i=1(Xi − X)(Yi − Y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Xi − X)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n
i=1(Yi − Y)2

√ (3)  

where n is the number of all the pixels; Xi and Yi denote SDGSAT-1 and 
the other NTL data values at the i-th pixel; and X and Y denote the 
average value of SDGSAT-1 and the other NTL data in all the pixels. The 
other NTL data denote VIIRS-DNB, LJ1-01, and ISS-P. The higher the r- 
value, the higher the similarity between SDGSAT-1 NTL and other NTL 
data. 

3.2. Analysis of spatial variability in NTL 

To examine the spatial variability in SDGSAT-1 NTL imagery at 
parcel-level land uses, ANOVA was conducted. First, the mean values for 
the three bands (RGB) and the grayscale brightness of SDGSAT-1 NTL at 
a spatial resolution of 40 m at the parcel level were calculated using the 
zonal statistical method. Then, ANOVA was conducted on the mean 
brightness in 11 land use types to examine the differences between 
various land use types. The differences in NTL were analyzed from 
intertypes and intratype, i.e., the ANOVA letters of mean NTL value of 
all the land-use types and the relative ranks of three visible bands in the 
same land-use type. Furthermore, ISS-P, LJ1-01, and VIIRS-DNB were 
subjected to ANOVA to illustrate their ability to distinguish land uses 
and further show the advantages of SDGSAT-1. 

To improve the NTL variations between different land use types, 
three NTL spectral indexes were proposed, including the Normalized 

Difference Index between Greens and Reds (NDIGR, Eq. (4), the 
Normalized Difference Index between Blues and Greens (NDIBG, Eq. (5), 
and the sum of NDIGR and NDIBG (SONDI, Eq. (6). 

NDIGR = (Green − Red)/(Green+Red) (4)  

NDIBG = (Blue − Green)/(Blue+Green) (5)  

SONDI = NDIGR+NDIBG (6)  

where Red, Green, and Blue denote the corresponding bands of the 
SDGSAT-1 NTL image. 

3.3. Explaining factors of spatial variability in NTL 

Nine factors spanning physical nature, human activity, and infra-
structure (Table 3) were utilized to explain the mean values of RGB 
bands and brightness at the parcel level in 40 m SDGSAT-1 NTL data. 
Additionally, each response variable underwent a logarithmic modifi-
cation to make the data closer to a normal distribution (Guk and Levin, 
2020). The relationships between the explanatory factors and the 
response variable were established using the RF model. It has been 
demonstrated that the RF model outperforms traditional machine 
learning algorithms in geospatial and remote sensing applications like 
regression and classification (Belgiu and Drăgu, 2016; Yang et al., 
2022). Four models in total were conducted to understand the causes of 
NTL variability in spectrum and intensity. In four RF models, 90% of the 
parcels were chosen randomly to be trained, and the remaining 10% 
were left to validate the model’s performance. R2 (Eq. (7) and RMSE (Eq 
(8) were used to assess how well the RF models worked. In the process of 
training RF models, importance scores were used to illustrate the asso-
ciation between the response variable and explanatory variables (Hu 
et al., 2022), to quantify the contribution of each variable to NTL vari-
ability and to identify the main contributors: 

R2 = 1 −

∑m
i=1(ŷi − yi)

2

∑m
i=1(yi − y)2 (7)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m

∑m

i=1
(yi − ŷi)

2

√

(8)  

where m is the total number of land use parcels, yi and ŷi denote the 
brightness values of the i-th parcel in the SDGSAT-1 NTL and predicted 
NTL from the RF models, and y denotes the mean value of SDGSAT-1 DN 
for m parcels. 

4. Results 

4.1. Comparability analysis of SDGSAT-1 NTL imagery 

4.1.1. Comparison of single-band NTL and SDGSAT-1 NTL imagery 
The spatial pattern and correlations were compared between the two 

single-band NTLs and the SDGSAT-1 NTL image. Visually, SDGSAT-1 
maintained a similar trend with VIIRS-DNB and LJ1-01. From the 
urban center region to the outskirts, the NTL intensity decreased at a 
scale of 500 m (Fig. 4a-b). The urban structure could be depicted more 
clearly in LJ1-01 and SDGSAT-1 at a 130 m scale (Fig. 4c-d) than in 
Fig. 4(a-b). Furthermore, with the fine spatial resolution, more dark 
pixels could be observed in urban areas. This illustrates the spatial scale 
effect of remote sensing observation data to some degree. Because the 
differences between the two NTL data were enlarged with the finer 
resolution, the correlation of SDGSAT-1 and VIIRS-NDB (r = 0.57, 
Fig. 4e) was higher than that of SDGSAT-1 and LJ1-01 (r = 0.51, Fig. 4f). 
In addition, the structure of urban elements, such as road networks, was 
more apparent in the SDGSAT-1 images than in the other two NTLs with 
the same resolution (Fig. 4a-d). Therefore, the quality of SDGSAT-1 NTL 

Table 3 
The explanatory factors related to NTL intensity.  

Type Factor Number 

Physical nature Normalized Difference Vegetation Index (NDVI) 1 
Human activity Residential POI Density (RPOID)     5 

Commercial POI Density (CPOID) 
Industrial POI Density (IPOID) 
Public POI Density (PPOID) 
Greenspace POI Density (GPOID) 

Infrastructure Building Density (BD)   3 

Building Height (BH) 
Road Density (RD)  

B. Guo et al.                                                                                                                                                                                                                                     
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imagery was higher than that of VIIRS-DNB and LJ1-01 in discerning 
urban morphology. 

4.1.2. Comparison of ISS-P and SDGSAT-1 NTL imagery 
The comparisons of two multispectral NTLs, ISS-P and SDGSAT-1, at 

40 m are shown in Fig. 5. In terms of the spatial distribution of red, 
green, and blue channels, SDGSAT-1 NTL displayed good correspon-
dence with ISS-P. Moreover, their differences were represented in three 
bands’ lit area and intensity values (Fig. 5a-f). Owing to the atmospheric 
scattering of the blue band, the brightness of the blue band (Fig. 5e-f) 

was weaker than that of the red (Fig. 5a-b) and green (Fig. 5c-d) bands. 
The spatial distribution area of the blue band in bright was also less than 
that of the other two bands. This may correlate with the distribution of 
LED lamps because they are the primary source of blue light (Guk and 
Levin, 2020; Zheng et al., 2018). In the multispectral NTL, the colors of 
the SDGSAT-1 image (Fig. 5g) and ISS-P (Fig. 5h) exhibited obvious 
differences owing to the variability of imaging with different sensors. 
The correlation degree of SDGSAT-1 and ISS-P in different bands ranged 
from 0.46 to 0.60 (Fig. 5i-m). The linear correlations in the blue band 
and red band were weakest (r = 0.46, Fig. 5k) and strongest (r = 0.60, 

Fig. 4. Comparison of VIIRS-DNB, LJ1-01, and SDGSAT-1 NTL. Spatial pattern (a-d) of VIIRS-DNB, SDGSAT-1 at 500 m, LJ1-01, and SDGSAT-1 at 130 m. Scatter plot 
between SDGSAT-1 at 500 m and VIIRS-DNB (e) and between SDGSAT-1 at 130 m and LJ1-01 (f). The symbol ** indicates that the correlation is significant at the 
0.01 level (two-tailed). 

B. Guo et al.                                                                                                                                                                                                                                     



International Journal of Applied Earth Observation and Geoinformation 119 (2023) 103313

7

Fig. 5i), respectively. Combining the three bands’ characteristics, the 
grayscale brightness correlation reached 0.57 between SDGSAT-1 and 
ISS-P (Fig. 5m). Overall, the quality of SDGSAT-1 NTL imagery was 
comparable to that of ISS-P. 

4.2. Characteristics of spatial variability in NTL 

We examined the differences in the NTL patterns of 4199 parcels in 
Beijing across 11 land-use types. The top two brightest areas were 
discovered to be commercial service and business offices, with mean 
values of 905 (DN) and 761 (DN), respectively (Fig. 6a). Interestingly, 
the sports and cultural areas had a mean value of 609 (DN), which was 
due to lighting from the essential sports facilities (Nest-type Beijing 
Olympic Stadium and Water Cube) and cultural facilities (National 
Theatre). The darkest areas belonged to the industrial area, with a mean 
value of 211 (DN). Most land use types in the red, green, blue, and 
brightness bands showed distinct differences. However, the land use 
regions with low NTL intensity were similar in the blue band, especially 
in industrial areas and greenspaces. Meanwhile, most land uses had the 
highest red brightness, followed by green brightness and then blue 
brightness. Importantly, by comparing Fig. 6a-b, the land use differen-
tiation ability of the red, green, and blue bands of ISS-P was significantly 

weaker than that of SDGSAT-1, especially in the commercial area and 
business offices. This indicates that the satellite NTL data with higher 
radiometric resolution (16 bits) can better distinguish land use types in 
high-intensity areas than the spaceborne NTL data (8–14 bits) at the 
same resolution. 

Spectral indexes can be used to enhance spectral features and further 
improve the differentiation of features (Verstraete and Pinty, 1996). The 
NDIGR significantly enhanced the contrast between greenspace and 
industrial areas (Fig. 7a), distinguishing them better using a single band 
image (Fig. 6a). The NDIBG further improved the differentiation of 
greenspace, educational, and commercial areas (Fig. 7b). Moreover, 
these two NTL indexes complemented each other. For example, the 
NDIBG cannot distinguish between residential and educational areas 
(Fig. 7b, Fig. 8b-I), which can be distinguished in the NDIGR (Fig. 7a, 
Fig. 8a-I). Thus, SONDI combines the advantages of these two indexes 
and can further improve its distinguishability in residential and educa-
tional areas (Fig. 7c and Fig. 8c-I). Similarly, the NDIGR cannot distin-
guish between business offices and administrative areas (Fig. 7a and 
Fig. 8a-II), which can be achieved in the SONDI (Fig. 7c and Fig. 8c-II). 
Therefore, selecting the appropriate SDGSAT-1 NTL index can provide 
support for land use classification. 

Fig. 5. Spatial comparison of SDGSAT-1 and ISS-P in the red (a-b), green (c-d), and blue bands (e-f) and multispectral NTL imagery (g-h) at a spatial resolution of 40 
m. Scatter plot between SDGSAT-1 at 40 m and ISS-P (e) in red (i), green (j), blue (k) and grayscale brightness (m). The symbol ** denotes that the correlation is 
significant at the 0.01 level (two-tailed). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 6. ANOVA of the mean brightness for 11 land use types within the 5th Ring Road area of Beijing from the SDGSAT-1 (a) and ISS-P (b) NTL images. The label of 
each histogram denotes the ANOVA letters for each band and grayscale brightness. Land use categories not sharing the same letter were significantly different in their 
NTL brightness. 
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4.3. The explanatory factors of the spatial variability in NTL 

Table 4 and Fig. 9 present the results of the RF regression models for 
the RGB bands and grayscale brightness of parcel-level land-use areas as 
the response variables. A total of nine independent variables, including 
NDVI, RPOID, CPOID, IPOID, PPOID, GPOID, BD, BH, and RD, were 
found to explain 42.30% (R2 = 0.423) of the brightness variability 
(Table 4). In the relative contribution of these independent variables to 
grayscale brightness, RD and IPOID were the most important and 

weakest factors, accounting for 24.23% and 7.33%, respectively. The 
remaining seven factors’ contributions were almost 10% (Fig. 9). In the 
RGB models (Table 4), the blue band showed the lowest R2 with a value 
of 0.392 and the highest RMSE with a value of 0.408 (DN). Meanwhile, 
the most important factor, i.e., PPOID (15.26%), in the blue band 
(Fig. 9) differed from the other two bands, i.e., RD (24.11% in the red 
light and 22.26% in the green light, Fig. 9). Therefore, blue light had the 
closest relationship with public facilities, and the other two colors of 
light showed the tightest correlation with road infrastructure. 

5. Discussion 

5.1. The quality of SDGSAT-1 NTL imagery 

NTL brightness is dynamic owing to two groups of factors. The first 
category included external environmental factors such as human activ-
ity, vegetation phenology, surface albedo, atmospheric conditions, 
cloudiness, and the phase of the moon (Chen et al., 2019; Levin, 2017; 

Fig. 7. ANOVA test of differences in mean index values of three NTL spectral indexes, i.e., NDIGR (a), NDIBG (b), and SONDI (c), for different land use types.  

Fig. 8. The spatial pattern of three NTL spectral indexes at the parcel level. (a) NDIGR, (b) NDIBG, and (c) SONDI. The legend of land use (d) is the same as that 
of Fig. 2. 

Table 4 
The performance of four RF models in explaining SDGSAT-1 NTL spatial 
variability.  

Metrics Red Green Blue Brightness 

R2  0.410  0.413  0.392  0.423 
RMSE (DN)  0.265  0.253  0.408  0.254  
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Román et al., 2018). The second group was sensor imaging factors, such 
as spatial, radiometric, and spectral resolution, view angles, orbit 
height, and overpass time, which showed critical impacts on the pixel 
values of NTL (Guk and Levin, 2020; Li et al., 2020; Tan et al., 2022). 

In this study, we tested the quality of the SDGSAT-1 NTL image via 
comparison analysis between it and existing NTL data, i.e., VIIRS-DNB, 
LJ1-01, and ISS-P data. Overall, the spatial pattern and pixel correlation 
of SDGSAT-1 maintained good consistency with the existing NTL data. In 
Fig. 4, the correlation between VIIRS-DNB and SDGSAT-1 (r = 0.57) was 
higher than that between LJ1-01 and SDGSAT-1 (r = 0.51). This result 
was similar to the findings of Guk and Levin (2020). There were two 
possible explanations for this result. The main reason is that the pixel- 

level NTL spatial variation becomes apparent with increasing spatial 
resolution (Wiens, 1989). The following reason is the intra-variation of 
the NTL. The VIIRS-DNB and SDGSAT-1 were in the same season 
(winter), but the LJ1-01 was not (autumn, Table 2). The comparison 
analysis between ISS-P and SDGSAT-1 fully demonstrated the quality of 
SDGSAT-1 (Fig. 5). Remarkably, the correlation between them was 
lowest in the blue band (r = 0.46) compared to the red (r = 0.60) and 
green (r = 0.55) bands. The reason for this is most likely due to atmo-
spheric Rayleigh scattering, a detailed principle illustrating that light 
with shorter wavelengths is scattered more (Kocifaj et al., 2019). Thus, it 
is a daunting task to capture blue light accurately. Moreover, transect 
analysis was added to further confirm the ability of the SDGSAT-1 NTL 

Fig. 9. The importance of explaining factors to SDGSAT-1 NTL mean value in red, green, blue bands, and gray brightness at the land use parcel level. The position of 
the red dotted box indicates the most important factor. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 10. Transect fluctuations of the pixel values between SDGSAT-1 (first row) and the other three NTL data (second row), including VIIRS-DNB (a, 500 m), LJ1-01 
(b, 130 m), and ISS-P (c, 40 m) in Beijing. 
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image to capture detailed intraurban information (Fig. 10). The pixel 
values of the two NTL datasets both increased toward the core urban 
area and decreased toward the periphery (Fig. 10a-c). The variability of 
SDGSAT-1 was higher than that of VIIRS-DNB and LJ1-01 and similar to 
that of the ISS-P image. Therefore, the above results suggest that the 
quality of the SDGSAT-1 image is better than most existing NTLs in 
reflecting intraurban variability. 

5.2. Spatial variability in NTL and explaining factors behind it 

Following an examination of the quality of SDGSAT-1 data, the 
spatial variability in the NTL of land uses was investigated to fully utilize 
its high spatial resolution and RGB bands. Our results showed that 

Table 5 
The ratio of primary, secondary, and tertiary sectors to GDP in Beijing from 2014 
to 2020.  

Year Primary sector (%) Secondary sector (%) Tertiary sector (%) 

2014  0.69  19.34  79.97 
2015  0.57  17.84  81.60 
2016  0.48  17.25  82.27 
2017  0.41  16.90  82.69 
2018  0.36  16.55  83.09 
2019  0.32  15.99  83.69 
2020  0.30  15.83  83.87  

Fig. 11. Distribution of SDGSAT-1 brightness DN values of 11 parcel-level land use types.  

Fig. 12. ANOVA of differences in the mean brightness of VIIRS-DNB (a) and LJ1-01 (b) NTL for different land use classes.  
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SDGSAT-1 NTL grayscale brightness exhibited apparent differentiation 
in all land uses (Fig. 6a), which outperformed ISS-P (Fig. 6b). This result 
was in good accordance with the results of Guk and Levin. (2020). Some 
inconsistencies existed in the relative ranks between red-green bands 
and the lowest brightness of the industrial area. The possible reasons for 
this phenomenon were as follows: (1) these two study areas had 
different lighting patterns owing to the socioeconomic level, building 
features, and type of lighting facilities (Zheng et al., 2018); (2) most low- 
end industrial factories in Beijing have been removed to the adjacent 
city to relieve the noncapital function. This could be demonstrated in the 
ratio of the secondary sector to gross domestic product (GDP), which 
decreased by 3.51% from 2014 to 2020 (Table 5); and (3) The local 
overpass times of the SDGSAT-1 and JL-3B imagery were 9:00 pm and 
10:00 pm. 

The NTL value distribution of 11 land use types of SDGSAT-1 
brightness reflected obvious variations in skewness ranging from 0.88 
to 3.42 and kurtosis from − 1. 62 to 19.35 (Fig. 11). This could further 

illustrate the intraurban variability of SDGSAT-1 NTL intensity across 
various land use parcels. Notably, the blue band of SDGSAT-1 repre-
sented poor distinguishability in low-light areas, i.e., industrial areas 
and greenspaces. This problem was also seen in the LJ1-01 NTL 
(Fig. 12b). By comparison, the VIIRS-DNB NTL could represent vari-
ability in these two land uses (Fig. 12a). The VIIRS-DNB performs better 
in dimly lit areas because its low light detection limit is 2E-10 W/cm2/sr 
(Elvidge et al., 2013). Moreover, the NTL spectral index of SDGSAT-1 
could further improve the capability of classifying land use types 
(Figs. 7-8). Therefore, the ability of SDGSAT-1 NTL imagery to reflect 
spatial variability in various land use parcels outperformed most of the 
previous NTL data. 

The explanatory factors behind the spatial variability in the SDGSAT- 
1 NTL brightness were analyzed via RF regression models. The R2 of the 
four models ranged from 39.20% to 42.30%, showing different levels of 
explaining NTL variability with existing studies (41%–50%) using JL1- 
3B data in Jerusalem (Guk and Levin, 2020). The differences between 

Fig. 13. SDGSAT-1 (left panel), LJ1-01 (middle panel) and Google images (right panel) of four selected regions, including residential area (a), cultural facilities (b), 
educational area (c), and industrial area (d). 

B. Guo et al.                                                                                                                                                                                                                                     



International Journal of Applied Earth Observation and Geoinformation 119 (2023) 103313

13

these two can be attributed to several reasons: the difference in the NTL 
features (spatial resolutions and overpass times of LJ1-3B and SDGSAT-1 
(Elvidge et al., 2013)) and explanatory factors may result in different 
interpretation capabilities. Meanwhile, the highest importance score of 
the red and green bands as RD was different in the blue band, i.e., 
PPOID. From this result, HPS and LED lamps may be important lighting 
sources on roads (Fig. 1a) and in public areas, respectively. 

5.3. Potential applications based on SDGSAT-1 NTL imagery 

Based on the spatial variability of SDGSAT-1 NTL image in intensity 
and spectra, it could be applied to classify land use types combined with 
auxiliary data, extract the location of the lighting sources and distin-
guish their categories, i.e., HPS and LED (Fig. 13). It also suggests that 
NTL images derived from SDGSAT-1 could be used for other applica-
tions, such as mapping offshore fishing (Huang et al., 2022) and gas 

Fig. 14. Scatter plot between the sum of total light (SOTL) and socioeconomic parameters, i.e., population (POP) and electricity consumption (EC), at the district 
level in Beijing. 

Fig. 15. SDGSAT-1 light brightness hotspots and coldspots. The legend of land use types is the same as in Fig. 2.  

B. Guo et al.                                                                                                                                                                                                                                     



International Journal of Applied Earth Observation and Geoinformation 119 (2023) 103313

14

flares (Levin et al., 2020). Moreover, the ability of SDGSAT-1 NTL im-
agery to estimate socioeconomic parameters was evaluated by linear 
regression in Fig. 14. The relationship between the sum of total light 
(SOTL) and two socioeconomic parameters (population (POP) and 
electricity consumption (EC)) was significantly positive, with R2 values 
of 0.761 (Fig. 14a) and 0.837 (Fig. 14c). The accuracy between LJ1-01 
NTL and the two parameters was higher than that of SDGSAT-1 
(Fig. 14a-d), which may be explained by spatial scale effects in esti-
mating socioeconomic parameters by remote sensing data (Wu and Li, 
2009). It has been well documented that high-quality NTL data can 
better reveal the heterogeneity of urban economic activities (Gibson 
et al., 2021). Therefore, using SDGSAT-1 NTL images to estimate so-
cioeconomic parameters could better reveal the inequity of socioeco-
nomic development. 

Notably, the SDGSAT-1 NTL image can be used to analyze the 
environmental impacts of blue lighting (Gaston and de Miguel, 2022) 
and further investigate urban lighting pollution (Jiang et al., 2018) at 
finer scales. The hotspot analysis was adopted to identify the priority 
areas for controlling lighting pollution at the parcel level. Fig. 15 shows 
that (1) hotspots were primarily distributed in the interior of the Fourth 
Ring Road (Fig. 15b), and (2) residential areas, business offices, 
administrative areas, and greenspace were the most common land use 
types in hotspot areas (Table 6). Therefore, some methods for mitigating 
light pollution need to be implemented in these priority areas, such as 
replacing lighting types, increasing lighting shielding, limiting the 
number of lights, and reducing the lighting duration (Gaston and de 
Miguel, 2022). 

6. Limitations 

It is also necessary to discuss the limitations of this study. First, the 
data quality of SDGSAT-1 sometimes needs to be further improved due 
to stripe effects. Although the image derived from SDGSAT-1 in this 
study was of high quality, the stripe problem of L1A NTL images greatly 
affects its applications (Zhang et al., 2022). This problem could be 
mitigated by the anomaly detection and spectral similarity restoration 
algorithm proposed by Zhang et al. (2022). Second, the quality exami-
nation of SDGSAT-1 NTL data lacks temporal imagery and field obser-
vations. Temporal NTL quality analysis is limited by data availability. 
The field observation of urban lighting will be conducted in the 
following work. Third, the study area is limited to Beijing. Therefore, the 
application area could be considered other typical cities in developed 
and developing regions. 

6. Conclusions. 
In this study, the capability of SDGSAT-1, new-generation NTL data 

with 40 m spatial resolution in multispectral bands, was examined, 
taking the capital of China, Beijing, as the study area. First, the quality of 
SDGSAT-1 NTL imagery was checked by comparison with two single- 
band NTLs, i.e., VIIRS-DNB and LJ1-01, and one multispectral NTL, 
ISS-P data. Second, intraurban spatial variability in NTL intensity and 
spectra at parcel-level land uses was analyzed by the ANOVA method. 

Third, the explanatory factors of NTL variability across different land 
uses were explored via RF regression. The results showed the following: 

(1) The quality of the SDGSAT-1 NTL imagery remained consistent 
with that of previous NTL imagery. The correlation between VIIRS-DNB 
and SDGSAT-1 with an r-value of 0.57 was larger than LJ1-01 (r = 0.51). 
Moreover, there was a poor correlation in the blue band (r = 0.46) be-
tween ISS-P and SDGSAT-1, probably owing to atmospheric scattering. 

(2) The effectiveness of SDGSAT-1 NTL imagery in distinguishing 
various land uses was demonstrated. Most land uses had different ranks 
of NTL intensity in three bands and grayscale brightness, which is better 
than the previous NTLs. Meanwhile, the NTL spectral index could 
further enhance the contrast of different land uses. 

(3) The nine factors could explain the NTL intensity variability in 
three visible bands ranging from 39.20% to 41.30%. The most important 
factors in the red-green and blue bands were RD and PPOID. This is 
probably related to the distribution of HPS and LED lamps. 

The above results illustrate the superiority of the SDGSAT-1 NTL 
product and the potentiality of SDGSAT-1 in reflecting intraurban 
spatial variability at parcel-level land use. It is anticipated that SDGSAT- 
1 NTL will enable advances in urban applications that have shown 
promise using previous NTL products, such as mapping urban areas and 
estimating socioeconomic parameters. Moreover, it could be beneficial 
to promote sustainable urban development by mapping land use for 
urban planning and analyzing urban artificial lighting pollution and the 
environmental impacts of blue lighting at a finer scale. 
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