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Memristor based on 2D MoSe2 nanosheets as artificial synapse 
and nociceptor for neuromorphic computing  
Huan Duan,a Dehui Wang,a Jingxi Gou,a Feng Guo,b,c Wenjing Jie*a and Jianhua Hao*b,c 

Neuromorphic computing inspired by the human brain is highly desirable in the artificial intelligence age. Thus, it is essential 
to comprehensively investigate the neuromorphic characteristics of artificial synapse and neurons which are the unit cells 
in the artificial neural network (ANN). Memristor is considered to be an ideal candidate to serve as artificial synapse and 
neurons in the ANN. Herein, two-terminal memristors based on two-dimensional (2D) MoSe2 nanosheets are fabricated, 
demonstrating analog resistive switching (RS) behaviors. Unlike the digital RS behaviors with the sharp transition between 
the two resistance states, the analog RS provides a series of tunable resistance states, which is more suitable for the 
realization of synaptic plasticity. Thus, the fabricated memristors successfully implement the synaptic functions, such as 
paired-pulse facilitation, long-term potentiation and long-term depression. The analog memristors can be utilized to 
construct the ANN for image recognition, leading to the high recognition accuracy of 92%. In addition, the synaptic 
memristors can emulate the “learning-forgetting” experience of human brain. Furthermore, to demonstrate the ability of 
single neuron learning in our devices, the memristors are studied as an artificial nociceptor to recognize noxious stimuli. Our 
research provides comprehensive investigations on the neuromorphic characteristics of artificial synapses and nociceptors, 
suggesting a promising prospect for applications in neuromorphic computing based on 2D MoSe2 nanosheets. 

Introduction 
With the increasing need for rapid development of artificial 
intelligence (AI), the traditional Von Neumann architecture with 
the separation of memory and computing unit is challenged.1,2 
Neuromorphic computing inspired by the human brain can 
eliminate the barrier and provide an efficient alternative for 
bioinspired in-memory computing.3 Memristors have 
demonstrated enormous potential for applications in such 
brain-like neuromorphic computing by utilizing the 
simultaneous realization of memory and computing in one 
device.4-6 Moreover, memristor with synaptic functions is 
considered to be an ideal candidate to construct the artificial 
neural network (ANN).7-9 Recently, memristors based on two-
dimensional (2D) materials have received much attention in 
simulating synaptic functions.10,11 Transition metal 
dichalcogenides (TMDCs) as the typical 2D materials have been 
widely studied in memristive devices.12,13 For example, gate-
tunable MoS2 memristor was reported in 2015 and MoS2 
synapse with ultra-low variability and implementation in 
Boolean logic was achieved in 2022.14,15 On the other hand, the 
resistive switching (RS) properties of MoSe2 have been 
constantly studied recently. In 2015, Yan et al. reported the RS 

properties of MoSe2 nanorods.16 The light-controlled RS 
behavior was observed by Han et al. in 2016.17 The 
temperature-controlled RS behavior was reported by Li et al. in 
2017.18 In 2019, Wang et al. reported a memristor based on a 
MoSe2/Bi2Se3 heterostructure.19 The device achieved threshold 
switching behaviors and emulated synaptic plasticity under 
near-infrared irradiation. In 2021, Jian et al. synthesized MoSe2 
clusters by hydrothermal method and fabricated memristors 
with low SET/RESET voltage of 0.5/− 0.75 V.20 In 2022, Liu et al. 
constructed a MoSe2/MoS2 heterostructure which exhibited 
good bipolar RS behaviors and emulated synaptic plasticity.21 
Very recently, Bala et al. constructed a Mo/MoSe(x < 2)/MoSe2 
stacking structure in which excellent RS properties were 
realized by using controlled diffusion of Se.22  
As a RS layer in memristive devices, MoSe2 exhibited marvelous 
RS behaviors, offering a promising prospect for applications in 
synaptic device. And more importantly, memristors have been 
recently studied not only as artificial synapses for potential 
applications in neuromorphic computing, but also as single 
neuron, such as artificial nociceptors to recognize noxious 
stimuli for applications in AI and in-memory computing.23 Acting 
as a unique receptor of sensory neurons, nociceptors can 
recognize noxious stimuli above a pre-set noxious threshold, 
and then warn the central nervous system and decrease the 
threshold,24,25 which is different from some general sensory 
receptors that typically decrease their sensitivity after 
subjected to external stimuli for a long time. At current stage, 
artificial nociceptors are seldom reported based on 2D layered 
nanosheets.26,27 Considering the suitable RS behaviors of MoSe2 
in synaptic devices, it is meaningful to explore the synaptic 

a. College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 
610066, China. 

b. Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 
999077, China. 

c. The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 
518057, China. 

*. Email: wenjing.jie@sicnu.edu.cn; jh.hao@polyu.edu.hk. 

This is the Pre-Published Version.

mailto:wenjing.jie@sicnu.edu.cn


ARTICLE Journal Name 

2 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

functions, neuromorphic computing and nociceptive emulators 
based on 2D MoSe2 nanosheets.  
In this work, we synthesized 2D MoSe2 nanosheets by the salt-
assisted chemical vapor deposition (CVD) method and prepared 
two-terminal Pt/MoSe2/Pt memristors with analog RS behavior 
which is very conducive to the realization of synaptic plasticity. 
The fabricated memristors demonstrated various synaptic 
functions, such as short-term plasticity represented by paired-
pulse facilitation (PPF) and long-term plasticity represented by 
long-term potentiation (LTP) and long-term depression (LTD). 
Based on the synaptic memristor, three-layer ANN can be 
constructed and the image recognition accuracy can reach up to 
92%. In addition, the synaptic memristor can be used to 
simulate the “learning-forgetting” experience of human brain. 
More importantly, the device can serve as an artificial 
nociceptor to recognize noxious stimuli, suggesting potential 
applications in future for in-memory computing and AI.  

Experimental 
Material Synthesis  

The hexagonal 2D layered MoSe2 nanosheets were synthesized 
on SiO2/Si substrates by salt-assisted CVD method, as 
schematically shown in Fig. 1a. Selenium (Se) and molybdenum 
trioxide (MoO3) powders were used to provide Se and Mo 
sources, respectively. Potassium chloride (KCl) was added as a 
catalyst mixed with MoO3 to lower its melting point. The CVD 
growth was carried out in a tube furnace with two independent 
temperature zones where a gas mixture of 90% argon (Ar) and 
10% hydrogen (H2) was employed as the carrier gas with the gas 
flow rate of 60 standard cubic centimeters per minute (sccm). 
During the experiment, 200 mg of Se powders were placed on 
the upstream side of tube furnace and then heated to 350 °C. 
While, 100 mg of MoO3 powders mixed with KCl were placed 17 
cm downstream from the Se powder and heated to 750 °C for 
growth. After 12-min reaction, the furnace was cooled naturally 
to room temperature.  
Device Fabrication  
hexagonal 2D layered MoSe2 nanosheets were achieved on 
SiO2/Si substrates. Two-terminal Pt/MoSe2/Pt horizontal device 
was fabricated through the standard photolithography 
technique. Firstly, the synthesized MoSe2 nanosheets were 
transferred onto the target SiO2/Si substrate for device 
fabrication. Then, the electrode patterns were well prepared 
directly on the MoSe2 nanosheets by photolithography. After 
that, 100 nm Pt thin film was deposited as the electrodes by 
sputtering method. Then, the redundant photoresist and Pt 
were removed by ultrasonic cleaning with acetone. Finally, the 
Pt/MoSe2/Pt devices were dried at 100 °C for 1 min on a heater. 
Characterizations and Measurements  
Atomic force microscopy (AFM, Asylum Research MFP-3D) was 
used to characterize the thickness and surface morphology of 
the synthesized MoSe2 nanosheets. Photoluminescence (PL) and 
Raman characterizations were performed using a high-
resolution confocal-Raman/PL system (Witec alpha 300 R) with 
a 532 nm laser source. All electrical tests were performed using 

the double channel Keithley 2636B source meter equipped with 
a home-made four-probe station system at room temperature 
in air. A three-layer ANN was constructed based on a software 
algorithm to recognize handwritten digits of small images with 
8 × 8 pixels from the dataset of Optical Recognition of 
Handwritten Digits and large images with 28 × 28 pixels from 
the dataset of Modified National Institute of Standards and 
Technology (MNIST). The neural network simulations were 
performed through CrossSim platform. According to the back 
propagation algorithm, the program code was written in 
Python. 

Results and discussion  
2D MoSe2 nanosheets with hexagonal shape can be successfully 
synthesized by the CVD method, as shown in the optical image 
Fig. 1b. AFM image (Fig. 1c) suggests that the MoSe2 nanosheet 
possesses a smooth surface and the thickness is of ~ 1.9 nm. It 
is approximately two unit layers by considering the 0.8 nm 
thickness of monolayer MoSe2 nanosheet.28,29 Fig. 1d shows the 
Raman spectrum of the synthesized MoSe2 nanosheets. There 
are two Raman characteristic peaks located at 238.3 cm−1 and 
285.4 cm−1, corresponding to out-of-plane A1g and in-plane E2g 
mode, respectively.30,31 In particular, a characteristic peak 
located at 248.4 cm−1 may be caused by the Se vacancies, which 
was reported in previous work.30 Fig. 1e and 1f show the A1g 
intensity of Raman mapping image and emission peak intensity 
of PL mapping image of the hexagonal nanosheet indicated by 
the white dashed line in Fig. 1b, respectively. Clear and 
homogeneous hexagonal morphology can be observed in both 
mapping images, suggesting the 2D MoSe2 nanosheet can be 
synthesized by the salt-assisted CVD method. The inset of Fig. 
1f shows the PL spectrum of the MoSe2 nanosheet with an 
intense emission peak located at 790 nm, which can be ascribed 
to the direct bandgap emission of A-exciton.31 
For the RS performance measurements, two-terminal 
Pt/MoSe2/Pt device has been fabricated, as schematically shown 
in Fig. 2a. Fig. S1 shows the optical microscope image of the 
memristor with the channel length of 5 μm. The 
current−voltage (I−V) curve of Pt/MoSe2/Pt device is 
demonstrated in Fig. 2b. A hysteresis loop under continuous 
direct current (DC) voltage sweeping (with the scanning 
direction: 0 V → 5 V → 0 V → − 5 V → 0 V) can be observed for 
the device without the electroforming process. The device 
exhibits analog RS behavior, which is suitable for synaptic 
functions compared with digital RS in which a sharp transition 
from the high to low resistance state can be observed.32,33 
When a series of consecutive positive voltage sweepings (0 V → 
5 V → 0 V) are applied to the device, the current increases with 
the increase of scanning times, as shown in Fig. 2c. The observed 
analog RS behaviors can be ascribed to the existence of Se 
vacancies which can be confirmed by the Raman spectrum (Fig. 
1d). The absence of the sharp transition from the high to low 
resistance state suggests that conductive bridges can not be formed 
to connect the two electrodes. However, the Se vacancies may form 
some discrete conductive filaments which can slightly decrease the 
resistance of the device and consequently give rise to the observed
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Fig. 1 Characterizations of MoSe2 nanosheets synthesized by the salt-assisted CVD method. (a) Schematic of the salt-assisted CVD growth process. (b) Optical image of 
the synthesized hexagonal MoSe2 nanosheets on SiO2/Si substrate. (c) AFM image of a typical MoSe2 flake. (d) Typical Raman spectrum of the MoSe2 flake indicated by 
the white dash line in (b). (e) Intensity mapping image of A1g mode for the MoSe2 flake indicated by the white dash line in (b). (f) Intensity mapping image of the emission 
peak for the MoSe2 flake indicated by the white dash line in (b). Inset is a typical PL spectrum of the flake. 

 

 
Fig. 2 RS performance of the Pt/MoSe2/Pt memristor. (a) Schematic of the fabricated two-terminal memristor. (b) The typical I−V curve of the memristor. (c) The I−V 
curves of the memristor for a series of consecutive (11 times) positive voltage sweepings (0 V → 5 V → 0 V). The inset shows the current value at 5 V as a function of 
the sweeping times (from the 1st to the 11th). (d) The current and the applied DC sweeping voltage as a function of time.

increase of current as the sweeping times.34-36 When a positive 
voltage is applied to the device, the selenium vacancies 
gradually migrate to the opposite electrode and shorten the 
distance between the two electrodes, resulting in the gradual 
increase of current. The inset in Fig. 2c shows that the current 
value at 5 V increase with the sweeping times. The current of 

the device at 5 V increases steadily as the sweeping times 
increase, suggesting the potentiation effects of the positive 
voltages. The variation of current and the applied sweeping 
voltages with time is shown in Fig. 2d. It is obvious that the 
current gradually increases as the scanning time increase in the 
same scanning voltage scale. 
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Fig. 3 Neuromorphic computing based on the synaptic memristor. (a) PPF index as a function of the time interval between two sequential pulses. Inset shows the 
schematic of an artificial synapse. (b) Repeatable 5 sets of LTP-LTD circles. (c) The schematic of the three-layer ANN. The training results for image recognition of the 
small dataset (d) and large dataset (e). 

The devices with analog switching behaviors are highly 
desirable for applications in artificial synapse. A synapse, as 
schematically shown in the inset of Fig. 3a, consists of the 
presynaptic membrane, the synaptic gap and the postsynaptic  
membrane, which plays the role for information transfer 
between two neurons.37 The presynaptic membrane releases 
neurotransmitters that can be accepted by the postsynaptic 
membrane. Synaptic plasticity refers to the temporal 
correlation of synaptic weights after different stimuli.38,39 An 
artificial synapse is capable of responding dynamically to 
external successive stimuli. The synaptic weights in an artificial 
synapse can be indicated by the postsynaptic current (PSC). The 
PPF is a typical type of the short-term plasticity.33 When 
stimulated by two successive voltage pulses, an enhancement 
effect of the former stimulus on the latter one can be observed. 
Fig. 3a shows the PPF index as a function of the pulse interval 
(Δt) when the artificial synapse is stimulated by two consecutive 
voltage pulses with the pulse amplitude (V) of 1.5 V and width 
(W) of 50 ms. The PPF index can be described as (A2 − A1)/A1 × 
100%, where A1 and A2 are the PSCs after the first and the 
second pulse stimulation, respectively.13,40 The PPF index can be 
fitted to show an exponential decay with the Δt, which is 
consistent with the biological synaptic behavior. Furthermore, 
the long-term plasticity of LTP and LTD are studied when the 
device is stimulated by 25 consecutive positive voltage pulses (V 
= 3 V, W = 50 ms, Δt = 50 ms) followed by 25 negative voltage 
pulses (V = − 3 V, W = 50 ms, Δt = 50 ms). Fig. 3b shows the 5 
cycles of the LTP and LTD with good repeatability. For positive 
voltage pulses, the device conductance is gradually increased, 
corresponding to the LTP, which is consistent with the 
potentiation behaviors under consecutive positive DC voltage 
sweeping. Fig. S2 shows the potentiation behaviors depending 
on the pulse width. As the pulse width increases from 20 to 80 

ms, the potentiation effects are enhanced in the LTP behaviors. 
For negative voltage pulses, LTD functions can be emulated with 
the steadily decreased conductance. Next, our synaptic 
memristors can be used to simulate a three-layer neural 
network with the input, hidden and output layers, as shown in 
Fig. 3c. The conductance states of the synaptic memristors are 
used as a weight update for performing back propagation 
simulation of neuromorphic computing. The neural network 
simulations are performed through Crosssim platform. Fig. S3 
shows consecutive 20 sets of LTP/LTD circles, suggesting good 
repeatability of the LTP/LTD for image recognition. 
Furthermore, to describe the linearity of LTP and LTD 
quantitatively, the LTP and LTD curves are fitted (as shown in 
Fig. S4), suggesting relatively good linearity of the LTP and LTD. 
With good repeatability and linearity in the LTP and LTD 
behaviors, the constructed ANN based on a software algorithm 
can be trained to recognize handwritten digits of small images 
with 8 × 8 pixels and large images with 28 × 28 pixels.41,42 The 
recognition accuracy of our device can reach up to 92% for the 
small images, as shown in Fig. 3d. The variation of recognition 
accuracy with training cycles for large images is depicted in Fig. 
3e. The recognition accuracy can reach up to 85% for the large 
images, suggesting the potential applications in neuromorphic 
computing based on our synaptic memristor with analog RS 
behaviors. 
Furthermore, our synaptic device is also capable of simulating the 
“learning-forgetting” process of the human brain. Fig. 4a shows three 
successive “learning-forgetting” processes where 25 consecutive 
positive voltage pulses (V = 4 V, W = 50 ms, Δt = 50 ms) are employed 
to stimulate the device followed by the decay process of the current 
after removing the pulses. The current of the device gradually 
increases, which is analogous to the learning process of the human 
brain by considering the cognitive level can be enhanced by the 
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Fig. 4 The “learning-forgetting” process based on the Pt/MoSe2/Pt memristor. (a) The “learning-forgetting” process of three cycles. (b) Detailed view of the first two 
cycles in (a). (c) The “learning-forgetting” curve with pulse amplitude of 3, 4 and 5 V respectively. (d) The fitted forgetting curves with pulse amplitude of 3, 4 and 5 V, 
respectively. 

learning process. After removing the voltage pulses, the current 
demonstrates a decay process analogous to the forgetting 
process. It should be mentioned that the current does not 
recover to the initial level (before learning) after the decay 
process of 2500 ms. Through the “learning-forgetting” process, 
the current increased by Δ I1, as indicated in Fig. 4a. And more 
importantly, the increased current is steadily enhanced after 
the subsequent second and third “learning-forgetting” process, 
i.e. Δ I3 > Δ I2 > Δ I1, implying the cognitive level can be further 
enhanced by the relearning process. Typically, the “learning-
forgetting” process can be introduced by the Ebbinghaus 
Forgetting Curve where the cognitive level is enhanced by 
repetitive learning, which is analogous to previously reported 
“learning-forgetting” processes.43,44 Fig. 4b shows a detailed 
view of the first two “learning-forgetting” processes of Fig. 4a. 
It can be clearly seen that only 13 pulses are needed in the 
relearning process when the same cognitive level can be 
reached in the first learning process where 25 pulses are 
needed. This suggests that less time is needed for the relearning 
process to achieve same learning effects to the first learning 
process, which is consistent with the human learning 
experience. Fig. 4c shows the “learning-forgetting” process 

stimulated by voltages pulses with different amplitudes of 3, 4 
and 5 V. The higher the pulse amplitude, the higher the current 
level can be reached, suggesting higher learning intensity can 
generate higher cognitive level. Moreover, after removing the 
pulses, higher current level can be retained for the higher pulse 
magnitude in the forgetting process. This fits well with the fact 
that the higher intensity of learning, the higher cognitive level 
that can be eventually achieved after same forgetting time. To 
describe the forgetting process quantitatively, the three 
forgetting curves in Fig. 4c were fitted using the exponential 
decay function 𝐼𝐼(𝑡𝑡) = 𝐼𝐼𝑜𝑜 + 𝐴𝐴𝐴𝐴−𝑡𝑡/𝜏𝜏, where I is the recorded current, 
I0 is the initial current of decay, A is the pre-factor, and τ is the 
relaxation time,45 as illustrated in Fig. 4d. The relaxation time τ 
is 512, 540 and 826 ms when the pulse amplitude is 3, 4 and 5 
V, respectively. The amplitude dependent “learning-forgetting” 
process indicates that a better learning effect (higher current 
level) and a longer forgetting time (larger relaxation time) can 
be obtained by a higher learning intensity (higher the pulse 
amplitude). Thus, the synaptic device is capable of simulating 
the “learning-forgetting” experience of human brain. 
Moreover, the synaptic device can be used to implement the 
emulation of nociceptor, as schematically illustrated in Fig. 5a. 
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Fig. 5 The emulation of nociceptor based on the synaptic memristor. (a) Schematic of the nociceptor when stimulated by the innocuous and noxious stimuli as well as 
the innocuous stimulus after a noxious stimulus. (b) The current response of the device to the innocuous stimuli with the V = 2 V. (c) The current response of the device 
to the noxious stimuli with the V = 7 V. (d) The current response of the device to the innocuous stimuli with the V = 2 V after the device is respectively subjected to the 
noxious stimuli with different pulse width (0.5, 1, 1.5 and 2 s, V = 7 V). (e) Extraction of spike current value to clearly show the emulation of nociceptor. 

Acting as a unique receptor of sensory neurons, nociceptors can 
be used to detect noxious stimuli, such as external injury and 
high temperature.46 The nociceptor can recognize noxious 
stimuli above a pre-set noxious threshold, and then warn the 
central nervous system via generation of action potentials, 
initiate decreasing the threshold and increasing the 
sensitivity.24 It should be mentioned that the nociceptor is 
different from some other sensory receptors, such as sight, 
hearing, taste, smell, and touch sensory receptors which 
typically decrease their sensitivity when exposed to external 
stimuli for a prolonged time. The nociceptors generally 
decrease their threshold and increase their sensitivity when 
exposed to external noxious stimuli (such as being hurt by a 
needle or a knife). For the previous innocuous stimuli, the 
nociceptors decrease their pain threshold after exposed to 
external noxious stimuli, which is called “allodynia”. The 
nociceptors increase their response and generate noxious 
action potentials over the pre-set noxious threshold to the 
normal innocuous stimuli, which is called “hyperalgesia”.25 Our 
memristor can be used to serve as an artificial nociceptor. 
Firstly, 80 nA is defined as the pain threshold (Inox = 80 nA), 
which means that the pain can be recognized when the current 
exceeds 80 nA. As shown in Fig. 5b, the current gradually 
increase under the stimulations of continuous electrical pulses 
(V = 2 V, W = 0.5 s and Δt = 0.5 s). But the current can not exceed 
Inox when exposed to the innocuous stimuli of 2 V. In Fig. 5c, the 
current exceeds Inox at the beginning when exposed to the 
noxious stimuli of electrical pulses with amplitude of 7 V. After 
the exposure to the noxious stimuli of 7 V, we investigate the 
current response of the device to the previous innocuous 
stimuli of 2 V, as shown in Fig. 5d. The device is exposed to the 
noxious stimuli of 7 V with different pulse width (0.5, 1, 1.5 and 

2 s), after which the device is subjected to previously innocuous 
stimuli of 2 V. In this case, all the current values exceed Inox after 
the device is exposed to noxious stimuli. The increased pulse 
width of the noxious stimuli decreases the incubation time 
which is the time taken to exceed the Inox. Fig. 5e is plotted by 
extracting the current values of Fig. 5d. It can be observed that 
the longer pulse width of the noxious stimuli of 7 V subjected to 
the device, the shorter incubation time taken for the innocuous 
stimuli of 2 V. The incubation time is 27, 21, 13 and 10 s for the 
noxious stimuli with pulse width of 0.5, 1, 1.5 and 2 s, 
respectively. In addition, the broader the pulse width of the 
applied noxious stimulus, the more severe of the injuries. Thus, 
our memristor can be used to well simulate the biological 
nociceptor. 

Conclusions 
In summary, based on the Pt/MoSe2/Pt memristors with analog 
RS behaviors, artificial synapses and nociceptors can be 
emulated. The memristors exhibit excellent analog resistive 
behavior and show a series of tunable resistive states, which is 
attributed to the rearrangement of Se vacancies in the 2D 
nanosheet to form discrete conductive filaments in response to 
the DC voltage stimulation. Based on the well-repeated LTP-LTD 
behavior, the synaptic memristors can be used to construct a 
three-layer ANN with recognition accuracy of up to 92%. 
Moreover, the device also successfully implements the 
“learning-forgetting” experience and emulation of artificial 
nociceptors, providing a new approach to comprehensively 
investigate the neuromorphic characteristics based on 2D 
materials. 
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