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Abstract: This paper utilizes a fuzzy fault tree analysis and Noisy-OR gate Bayesian network 

to estimate the occurrence likelihood of navigational accidents. The kernel of this proposed 

method is first to construct the fault tree from investigation reports of navigational accidents, 

to calculate the occurrence probability of basic events using fuzzy set, to transform the fault 

tree to Bayesian network using the Noisy-OR gate. The merit of the developed model can 

overcome the problem of absolute description of the relationships between basic events and 

intermediate events. Finally, the model is applied to Qinzhou Port, the results are reasonable by 

comparing the results in other waterways. Moreover, the key influencing factors are identified 

from minimum cut set analysis and sensitive influencing factors are quantified sensitivity 

analysis. Consequently, the findings are beneficial for the maritime authorities to take 

countermeasures for navigational accidents prevention.  
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1 Introduction 
Collisions and groundings (i.e. navigational accidents) are the most frequently occurring type of 

maritime accidents, which accounts for approximately 85%. From the statistical analysis (Eleftheria et al., 

2016; Yip, 2008; Zhang et al., 2013), the occurrence likelihood of navigational accidents ranks first among 

all types of maritime accident. Specifically, in the Istanbul Strait, the occurrence likelihood of navigational 

accidents accounts for 69% among all types of accidents from fifty years of survey (Akten, 2004). Similarly, 

in the port area, the navigational accident occurs frequently due to the high traffic density (Mou et al., 2010) 

and complexity of marine traffic (Wen et al., 2015;Westrenen and Ellerbroek 2017). In the Gulf of Finland, 

the occurrence likelihood of the navigational accident accounts for 74% in the majority of years from 2007 

to 2008 (Maria et al., 2014). In Hong Kong Port, the occurrence likelihood of this type of the navigational 

accidents account for 63% (Yip, 2008); and in Tianjin Port, the occurrence likelihood of this type of 

accident accounts for 86.29% (Zhang et al., 2016). In the Yangtze River, the occurrence likelihood of this 

type of the navigational accident account for 58.87% (Zhang et al., 2013).  

Owing to the relatively high occurrence probability and serious consequence, many studies have 

focused on the occurrence likelihood estimation of this type of accident. In terms of collisions, Arici et al. 

(2020) utilized the fuzzy bow-tie method to estimate the collision in ship to ship (STS) operations, and 

analysed the factors that have the strongest relationship with collision/contact accidents in STS operations. 

Szlapczynski and Szlapczynska (2016) defined the domain-based collision risk parameters: degree of 

domain violation (DDV) and time to domain violation (TDV) for estimating the occurrence likelihood of 

ship collision risk. Ugurlu et al. (2020) analysed the occurrence likelihood of collisions by using 

Geographic information system, human factor analysis and classification system (HFACS), and Bayesian 

network model in the Black Sea. Li et al. (2020) forecasted the occurrence likelihood of navigation risk by 

using weighted basic probabilistic assignment and matrix operation. In terms of groundings, the majority 

models for evaluating the occurrence likelihood are based on investigation reports of accidents or incident 

and statistical data (Bye and Aalberg 2018; Mazaheri et al., 2016). Mazaheri et al. (2016) presented an 

evidence-based and expert-supported approach to assess the occurrence likelihood of ship-grounding 

accidents. Wu et al. ( 2019) proposed a mutual information-based Bayesian network method for estimating 

the consequences of navigation accidents and identified the predominant factors of navigational accidents. 

Jiang et al. (2021) utilized the analytical model to estimate the occurrence likelihood of a ship being 

grounded in the fluctuating backwater zone. 

From the previous studies, Bayesian networks (BN) are widely used for risk assessment due to its 

intuitive graphical structure and quantitative representation of the relationships between influencing factors 

from a probabilistic perspective (Akhtar and Utne 2014; Chen et al., 2019; Khakzad et al., 2013; Wang and 

Yang 2018). The advantages of this method are as follows. Firstly, BN could be used to intuitively represent 
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the accident development process (Baksh et al., 2018; Cheng et al., 2021). Secondly, BN is flexible to 

consider uncertainty in the dependencies among the influencing factors (Afenyo et al., 2017). Thirdly, the 

posterior probability of each event can be updated by using the new information (Mazaheri et al., 2016). 

Fourthly, BN could compensate for data scarcity and adjust the entire structure by changing only a few 

variables (Pristrom et al., 2016). Fifthly, sensitivity analysis can be used to identify the key influencing 

factors (Zhang et al., 2016), which are useful for safety management of maritime transportation. 

Although there are several merits of the BN, the quantitative part of the BN requires a large amount 

of historical data to determine prior probabilities and conditional probability tables. In practice, owing to 

lack of data, expert judgements are often requested and CPTs are obtained through expertise. Mokhtar et 

al. (2016) determined the conditional probability of every BN node by using expert knowledge. Wang et 

al. (2017) and Abimbola et al. (2015) calculated failure probability by using the relationships of logical 

"OR" and "AND" gates to define conditional probability distribution. However, the probabilities of the root 

node and conditional probabilities table derived from expert opinion might include subjective elements, in 

addition, logic gate analysis is absolute, and the occurrence of a failure event is not simply binary (e.g. a '1' 

occurs and a '0' does not occur) (Feng et al., 2020). 

To overcome these limitations, fuzzy fault trees and Noise-Or gate are introduced to address the 

problem of absolute description of conditional probabilities. Moreover, as fuzzy fault trees can well 

describe the accident development using historical data, it is introduced to obtain basic events and 

associated prior probabilities. Wang et al. (2013) and Arici et al. (2020) used fuzzy fault trees to obtain 

accident occurrence probabilities, Feng et al. (2020) and Xu et al. (2019) used the Noisy-OR gate BN to 

achieve the CPTs with small data sets, they found that the fuzzy fault tree was useful for the acquisition of 

accident occurrence probabilities. 

The objective of this paper is to construct a risk assessment model, which can be used for analysing 

navigational risk in a systematic way by transforming the fault tree to the BN. The remainder of the paper 

is organized as follows. The probabilistic model for estimating the occurrence likelihood of navigational 

risk is developed in Section 2. Section 3 applies the newly developed method to the Qinzhou Port. Results 

and discussion are carried out in Section 4, and Conclusions are drawn in Section 5. 

2 Development of the FFTA-Bayesian network based navigational risk assessment model 

2.1 Establish a navigational risk assessment framework 
The proposed navigational risk assessment framework is shown in Figure 1. The modelling process 

can be summarized in the following three steps.    

The first step is to construct the fault tree and calculate the probability of the basic events (BEs). In 

this step, the influencing factors for navigational accident are identified from the historical data and 
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previous studies. Afterwards, the relationships between the influencing factors are obtained by using 

accident investigation reports. Finally, the fault tree model is developed, and the probability of the basic 

events for navigational accident are derived by using fuzzy set.  

The second step is to transform the fault tree into the graphical structure of Bayesian network. 

Specifically, basic event is treated as root node, intermediate event (IE) is treated as intermediate node and 

top event (TE) is treated as top node. The conditional probabilities of the intermediate nodes are derived 

using Noisy-OR gates.  

The third step is to estimate occurrence probability of navigational accidents using Bayesian network. 

Minimum cut set and sensitivity analysis are carried out in the developed Bayesian network for navigational 

risk assessment. 

 
Figure 1 Developed framework for Navigational risk assessment 

2.2 Identify the influencing factors to develop the fault tree of navigational accidents   
Fault Tree Analysis (FTA) is a top-down deductive failure analysis method that uses Boolean logic to 

combine lower order events to analyse undesired states in a system. Fault trees can analyse not only system 

failures caused by a single factor, but also system failures caused by multiple factors with different 

conditions (Wang et al., 2013). Owing to intuitiveness, concision, visualization and predictability of FTA 

(Ding and Yu 2005; Fay, 2003; Li and Huang 2012), it has been widely used in maritime field (Zhang et 

al., 2019; Guan et al., 2016; Sakar et al., 2021a). In a fault tree, it includes top events, intermediate events 

and basic events, which are developed by logic gates. 
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To identify the influencing factors (basic events), the historical data of maritime accidents are collected 

in Qinzhou port from the Maritime Safety Administration of Guangxi, which are 115 cases from 2018 to 

2020. In addition, previous studies are also used to determine influencing factors, which are given in Table 

1. The reasons of choosing these influencing factors are descried in detail as follows. 

1. Top Event (TE). The navigational risk is treated as the top event of the fault tree, which is also the 

objective of this paper. 

2. Intermediate Events (IE). The intermediate events will be introduced to facilitate the modelling 

process. Traditionally, the influencing factors of navigational accidents can be categorized into three types, 

which are channel environment (IE1, Roeleven et al., 1995; Stahlberg et al., 2013b), wharf environment 

(IE2, Xia, 2021), and emergency resource (IE4, Wu et al., 2019; Zhang et al., 2019). Moreover, traffic 

complexity has been proved to be a key influencing factor of navigational risk (IE3, Mazaheri et al., 2014; 

Mullai and Paulsson 2011; Wang et al., 2019). Therefore, these four factors are treated as the intermediate 

events in this paper.  

3. Basic Events (BE). Navigational environment includes the channel environment and wharf 

environment. Channel environment includes lack buoys, fish cage, turning circle of channel, shallow area 

in curved channel etc, which are analysed from the collected accident reports in the Qinzhou Port. Wharf 

environment is particularly important, which includes bottom elevation between wharfs and actual ship 

tonnage exceeds design, etc. Ship traffic is also very important since it will increase the probability of 

collision accidents, therefore, the number of dredging ships, small-sized ships and fishing ships are the 

primary influencing factors for accidents in these areas. As the location of emergency resources is fixed 

and cannot be allocated along the channels, the distance between the location of the incident and the tugboat 

and anchorage will also affect the navigation risk. 

To simplify the modelling process, the status of all nodes is treated as binary, 12 BEs and 5 IEs were 

identified in the FT diagram. According to the historical data and previous studies, all basic events related 

to collision/grounding during navigation have been listed in Table 1. 

Table 1 Identified BEs for navigational accidents in Qinzhou Port  

Abbreviation Basic Event Descriptions Frequency References 

BE1 Oyster culture beds 

There are around 60 illegal 
oyster culture beds close to 

channel waters, the closest beds 
are only 10 meters away from 

the approach channel. 

7  

BE2 Turning circle of 
channel 

It is required to be greater than 3 
times of the length of designed 
ship, channel of Dahuan and 

Sandun cannot meet this 
requirement 

5 Debnath and Chin 
2009 
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BE3 Lack of buoys 
The channel of Eagle Ridge has 
not been completed, resulting 

that 500m waterway lacks buoys 
8 Debnath et al., 2011 

BE4 Switch of route due 
to construction 

The development of the western 
channel led to switch of route  8 Zhang et al., 2019 

BE5 
Inconsistent bottom 
elevation between 

wharfs 

The bottom elevation of adjacent 
wharfs is different, which may 

cause the ship grounding 
accident. 

10  

BE6 
Actual ship 

tonnage exceeds 
design 

The tonnage of some actual 
ships is larger than the designed 

tonnage. 
15  

BE7 One-way traffic  

Due to the limited width of the 
channel, the Yingling to the 

Dalanping is a one-way channel, 
which increases the difficulty of 

ship navigation. 

5 Debnath et al., 2011; 
Stahlberg et al., 2013b 

BE8 Dangerous goods 
ships 

There is a liquefied gas carrier 
terminal and a crude oil terminal 
in the Sandun. Dangerous goods 

ships often navigate in the 
nearby waterways, which has a 

significant impact on the 
navigational risk. 

20 Huang et al., 2021 

BE9 Dredging ships in 
the waterway 

Around five dredging ships is 
working in the Sanduan 

waterway. 
9 Zhang et al., 2019 

BE10 The number of 
small-sized ship 

The Yingling is a terminal for 
large-sized container ships, and 

the cargos needs to be 
transferred to other terminals by 
small ships, which increases the 

traffic density. 

10 Debnath et al., 2011; 
Pietrzykowski, 2008 

BE11 Distance of tugboat 

The distance of the tugboat to 
the accident will have a 
significant impact on the 

emergency response. 

22 Wu, et al.,2021; 
Zhang et al., 2019 

BE12 Distance of 
anchorage 

The distance of anchorage will 
have a significant impact on the 

emergency response. 
17 Debnath and Chin 

2016; Wu, et al.,2021 

 
After defining the TE, IEs and BEs, the fault tree model for navigational risk assessment can be 

developed, which is shown in Figure 2. In this fault tree model, there are 5 IEs and 12 BEs. 
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Figure 2 Fault tree model for navigational risk assessment 

2.3 Introduce fuzzy set to obtain probability of BEs 
After establishing the structure of the FTA, the nest step is to quantify the BEs. Traditionally, it can 

be obtained by using historical data. However, owing to the scarcity of data, it is hard to directly quantify 

the BEs from historical data and the expert judgment is the alternative solution. Owing to the ability to deal 

with uncertain and vague information (Arici et al., 2020; Wu et al., 2018; Wu et al., 2019; Wu et al., 2020), 

the Fuzzy set theory has been widely used in maritime transportation and it is introduced for quantification 

of the BEs in this paper. The derivation of the probability of BEs can be achieved in four steps.  

(1) Quantify the BEs using triangular fuzzy number. When defining the linguistic term of BEs, there 

are several types of membership functions, including triangular, trapezoidal and Gaussian shape functions. 

To simply the modelling process, the triangular fuzzy number, which can be represented by the triple (a1, 

a2, a3) and the corresponding membership function is written as Eq. (1). 

1

1 2 1 1 2

3

0 ; a
( ) ( a ) / (a a );a a

0 ; a
A

χ
µ χ χ χ

χ

≤
= − − ≤ ≤
 ≥

                                                                                              (1) 

(2) Aggregate the expert judgements on the BEs. Owing to the different experience, background 

knowledge, the experts may have different judgements on the same BE, therefore, the similarity degree 

( , )i js ω ω  between expert 
ie  and expert je  should be calculated and it is written as Eq. (2). 

/ ,
( , )

/ ,
i j i j

i j
j i j i

EV EV EV EV
s

EV EV EV EV
ω ω

≤=  ≤
                                                                                              (2) 
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Where 0 ( , ) 1i js ω ω≤ ≤ , iω and jω are two triangular fuzzy numbers. iEV and jEV  are the 

expectancy evaluation for iω  and jω  respectively. The expectancy evaluation of a triangular 

fuzzy number ( )1 2 3,  ,  i a a aω =  is defined as: 

1( ) [ ( ) ( )]
2

EV A E A E A− += +                                                                                                       (3) 

where 1 2 2 3) / 2, ) / 2( ) ( ( ) (a aE A E A a a− += =+ +  

After the comparison, the decision matrix M, which use the ( , )ij i js s ω ω=  as the element can be 

defined. In his decision matrix, if i j= , then 1ijs = . Moreover, the average agreement degree ( )iA E  

of the expert ie  is shown in Eq. (4).  

1

1( ) ( , )
1

n

i ij i j
i j
j

A e s
n

ω ω
≠
=

=
− ∑                                                                                                             (4) 

Afterwards, the relative agreement degree (RAD) of each expert can be calculated. 

1
( ) / ( )

n

i i i
i

RAD A e A e
=

= ∑                                                                                                                (5) 

Finally, expert judgements on each BE can be converted into a fuzzy number jp . 

1
1, 2, ,

m

ij ij
i

x j nRAD x
=

= =⊗∑                                                                                                  (6) 

where jx  is the aggregated fuzzy number of jBE ; ijx  is the fuzzy number of jBE assigned 

by expert iE ; m  is the number of experts; n  is the number of sBE .  

（3）Defuzzify the fuzzy possibility of BEs. The center of area defuzzification method is adopted in 

this paper because of its simplicity and usefulness, and it is written as Eq. (7). 
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−−
+
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−−
+

− −

∫ ∫∫
∫ ∫ ∫

                                  (7) 

where *
BEP is the output of defuzzification of BE; χ  is the output variable. 

(4) Convert fuzzy possibility score (FPS) into fuzzy probability value (FPV). The method, which has 

been introduced by Wang et al. (2013), is used to convert the fuzzy probability score into the fuzzy 

probability value of a basic event, which is shown in Eq. (8).  
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1 , 0
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0 , 0

K FPS
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 =

                                                                                                              (8)

 

where 
1
31( ) 2.301FPSK

FPS
−

= ×  and *
BEP FPS= , BEP FPV= ; BEP  is the occurrence probability of 

the BE. 
 

2.4 Use of Noisy-OR gate Bayesian network to derive the occurrence probability 
The traditional FTA utilize logical “OR” and “AND” gates to derive the occurrence probability, this 

method has two limitations. First, the logical gate analysis is extremely absolute to describe the 

relationships between BEs and IEs, however, in practice, the relationship is not simply binary, a probability 

would be better to represent their relationships. Second, the relationship between BEs and IEs often relies 

on the expert judgments, and this will include subjective factors and it would be reasonable to use a 

probability to describe their relationships. Therefore, the Noisy-OR gate Bayesian network, which is able 

to overcome the abovementioned problems (Feng et al., 2020), is introduced in this paper to derive the 

occurrence probability of navigational accidents, and it can be achieved in three steps.  

(1) Transform the structure of FTA to qualitative part of BN. This process is simple and it can be easily 

transformed, the basic event is treated as root node, IE is treated as intermediate node and TE is treated as 

top node. After transformation, the graphical structure of the developed BN is shown in Figure 3. 

 
Figure 3 Graphical structure of the developed BN 

(2) Derive the CPTs using Noisy-OR gate. The Noisy-or Gate model is often used to describe the 

internal relationship between several parent nodes and their associated child node. The parent nodes and 

child nodes only have two states, and the Noisy-OR gate BN should satisfy two conditions.  
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First, all variables should be independent from each other.  

Second, if only the variable Xi occurs and the other variables do not occur, the other items XP in the 

CPT of child node Y can be calculated using Eq. (9). 

:
( / ) 1 (1 )

i p
p i

i x x
P Y X P

∈
= − ∏ −                                                                                                                  (9) 

Note that if Xp  is an empty set, ( / ) 0pP Y X = , which means that the node Y does not relies on the parent 

node Xp . This is the problem of traditional FTA, and in practice, the parent nodes should be leaky 

relationship with the child node, and it is denoted by XL.   

Specifically, suppose the node Y has only two parent nodes, which are represented by iC  and allC . 

allC  is the sum of the factors other than iC , the corresponding probabilities are defined by iP  and allP , 

respectively (Peng et al., 2016), and the relationship can be derived in Eqs (10)-(11). 

i( / ) 1 (1 )(1 )i all i all i allP Y C P P P P PP= − − − = + −                                                                                       (10) 
( / ) allP Y C P=                                                                                                                                 (11) 

Afterwards, the Eq. (12) can be deduced as follows.  

i( / ) ( / )
1 ( / )i

P Y C P Y CP
P Y C
−

=
−

                                                                                                                  (12) 

If there is a leaky node XL, the conditional probability of node Y can be defined as Eq. (13). 

:

( ) 1 (1 ) (1 )
i P

i i i
i X X

P Y P P
∈

= − − −∏                                                                                                    (13) 

(3) Estimate the occurrence probability of navigational accidents. After defining the conditional 

probability of node Y with leaky node XL, the CPTs of all the parent nodes can be obtained. Similar with 

the traditional BN, and the final occurrence probability of the navigational accidents can then be easily 

derived. 

3 Application of the Noisy-OR gate BN model to the Qinzhou Port 

3.1 Description of the Qinzhou Port 
Qinzhou Port is located in the southern part of China, and it is the largest port in Guangxi. Moreover, 

it is also the fastest growing port in terms of the freight throughput. In 2019, the freight throughput is around 

120 million tons, and there are around 2,911 ships leaving or arriving the Qinzhou Port each month. Owing 

to the fast development of this port, the maritime safety of this port becomes a significant issue. First, the 

ship density is high in the approach channel, owing to the fast development of the port, the ship density 

also grows, which increases the probability of maritime accidents. Second, owing to the strategy of “new 

western land-sea corridor”, many infrastructures are constructing in the Qinzhou Port, there are 80 dredging 

vessels, which will definitely have a high impact on the maritime safety. Third, although the parameters of 

the wharfs are all designed and developed according to the regulations, the adjacent wharfs may have 
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different bottom evaluation, which may cause the grounding accident if the large-sized ship sails in the 

adjacent wharf with low bottom evaluation accidentally. Fourth, there are many oyster culture beds in the 

Qinzhou Port, which has also caused collision accident in the past years.  

According to the location of the different navigational environment of the wharfs and channels, the 

Qinzhou Port can be divided into five regions, and they are indicated in Figure 4. Specifically, the first 

region is the Jingujiang area, where are many wharfs close to each other and the adjacent wharfs may have 

different bottom evaluation. The second region is Dalanping, where many small-sized ships have to transfer 

cargo to other terminals in Guangxi, moreover, the tonnage of some actual ships is larger than the designed 

tonnage. The third region is Dahuan, where the turning circle of the channel is lower than the standard. The 

fourth region is Sandun, where dangerous goods ships often navigate in the nearby waterways, which has 

a significant impact on the navigational risk. The fifth region is the approach channel, where there are some 

illegal oyster culture beds and dredging ships. 

 
Figure 4 The five regions of the Qinzhou Port 

3.2 Calculation of Bes probabilities for navigational risk based on fuzzy methods 
Although some navigational accident data can be collected, it is hard to collect enough historical data 

to develop a data-driven model, the expert judgments, together with the data collected from the accident 

investigation reports, are used to estimate the occurrence probability of navigational accidents in this port. 

In this paper, only region 1 is used as an example to describe the modelling process in detail. 

The linguistic variables, which is often used to facilitate the expert judgements (Wu et al., 2018; Pam 

et al., 2013), is introduced in this study. Similar with Pam et al. (2013), Five linguistic variables, Very Low 

(VL), Low (L), Average (A), High (H) and Very High (VH), are used in this paper. The corresponding 

Region 1. Jingujiang 
Region 2. Dalanping 
Region 3. Dahuan 
Region 4. Sandun 
Region 5. approach channel 
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numerical values are shown in Figure 5. In this study, a professor majoring risk analysis and two senior 

shipbuilders are invited to conduct the expert judgements. 

 
Figure 5 Corresponding numerical values for linguistic variables 

 
The expert judgements of the 12 Bes are shown in Table 2. It can be seen that the three experts may 

have different expert judgments on some Bes (e.g. BE2), but also the same judgements on some specific 

Bes (e.g. BE8). 

Table 2 Expert judgements on Bes using linguistic variables 

Basic Event Linguistic judgments of experts 
Expert 1 Expert 2 Expert 

BE1 L L VL 
BE2 VL L A 
BE3 L VL L 
BE4 VL L VL 
BE5 L L A 
BE6 L A L 
BE7 VL L L 
BE8 L L L 
BE9 L VL VL 
BE10 VL L L 
BE11 L L L 
BE12 A VL L 

 

Take BE2 as an example, the occurrence probability of each Bes can be derived. By introducing Eqs. 

(2)-(5), the similarity degree, expectancy evaluation, average agreement degree and relative agreement 

degree can be obtained, and the results are shown in Table 3. Moreover, the fuzzy number of BE6 can be 

derived after integration of three expert judgement, and the fuzzy possibility can be obtained after 

defuzzification using Eq. (6). Afterwards, the final occurrence probability can be estimated using Eq. (7). 

Table 3 The occurrence probability calculation for BE2 

Expert E1 VL (0.0,0.1,0.3) Expectancy 
evaluation 

EV1 0.125 
E2 L (0.1,0.3,0.5) EV2 0.300 
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E3 A (0.3,0.5,0.7) EV3 0.500 

Similarity 
degree 

S11 1.000 Average 
agreement 

degree 

A(E1) 0.333 
S12 0.417 A(E2) 0.508 
S13 0.250 A(E3) 0.425 
S21 0.417 Relative 

agreement 
degree 

RAD1 0.263 
S22 1.000 RAD2 0.401 
S23 0.600 RAD3 0.336 
S31 0.250    
S32 0.600                                 
S33 1.000    

         BE6 (0.141,0.315,0.515) 
Defuzzification 0.323 

Occurrence probability 0.025 
 

Similar with the calculation process of BE2, the occurrence probability of each Bes in the five regions 

can be easily calculated, and the results are shown in Table 4. The results are reasonable owing to the 

following reasons: The occurrence probability of BE1 in Region 5 is higher than other regions owing to 

there are some illegal oyster culture beds close to the approach channel. The occurrence probability of BE2 

in Region 3 is higher than others because of the turning circle of the channel is relatively small. The 

occurrence probabilities of BE3 in Region 1 and 2 are higher than others because there are a 1000 m and 

4000 m long channel lack of buoy, respectively. The occurrence probabilities of BE4 in Region 4 and 

Region 5 are much higher than others because of the construction of new western land-sea corridor. The 

occurrence probability of BE5 in Region 1 is much higher than others because there are many wharfs with 

inconsistent bottom evaluation. The occurrence probability of BE6 in Region 1 and 2 are much higher than 

others because the actual ship tonnage is higher than the designed ship tonnage. The occurrence probability 

of BE7 is relatively low in all the five regions because the one-way traffic often lasts for a short time. The 

occurrence probability of BE8 is high in Region 4 because it is close to the 300,000-ton crude oil terminal, 

while in Region 3 there is also some dangerous goods terminals. The occurrence probability of BE9 in 

Region 5 is much higher than others because there are some dredging ships working in the approach channel, 

which has a significant impact on the navigation safety. The occurrence probability of BE10 in Region 2 

and 3 are relatively high because there are many small-sized ships for transforming cargos to the other ports 

in Guangxi. The occurrence probability of BE11 in Region 2 is relatively high as the tugboats are far from 

these two regions. The occurrence probability of BE12 in Region 1 is high because this region is far from 

the anchorage. 

Table 4 Occurrence probability of the BEs in each region 

Basic 
Event Region 1 Region 2 Region 3 Region 4 Region 5 

BE1 0.693% 0.066% 0.019% 0.019% 1.623% 
BE2 2.479% 0.019% 4.015% 2.479% 0.019% 
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BE3 0.693% 0.693% 0.066% 0.066% 0.019% 
BE4 0.019% 0.066% 0.019% 1.623% 1.623% 
BE5 4.015% 2.479% 0.693% 0.693% 0.066% 
BE6 4.015% 4.015% 0.693% 0.066% 0.019% 
BE7 0.693% 1.623% 0.019% 0.019% 0.019% 
BE8 1.623% 0.693% 2.479% 4.015% 1.623% 
BE9 0.019% 0.019% 1.623% 2.479% 4.015% 
BE10 0.693% 2.479% 2.479% 0.693% 0.066% 
BE11 1.623% 2.479% 0.693% 0.019% 0.066% 
BE12 2.479% 0.693% 0.693% 0.066% 0.019% 

3.3 Derivation of the CPTs using Noisy-OR gate BN 
When transforming the FTA to BN, the conditional probability will be binary, which is absolute to 

describe the occurrence probability of the navigational accidents. In practice, the occurrence of navigational 

accidents should be a probability. Therefore, the Noisy-OR gate is introduced to derive the CPTs. Take the 

IE6 (i.e. ship density) as an example, the detailed derivation of the CPTs is described as follows.  

As there are two child nodes (i.e. BE9 and BE10) for the IE6, if the relationships among these three 

factors are directly transformed from FTA to BN, the CPT will be binary and is shown in Table 5. 

Table 5 Conditional probability table of IE6 using traditional method  

BE9 Yes No 
BE10 Many Few Many Few 
High 1 0 1 0 
Low 0 1 0 1 

 
From Table 2, it can be seen that the binary probability cannot accurately describe relationships. From 

example, if there are some dredging ships working in the channel and there are few small-sized ships, the 

ship density should not be 100% low. In order to address this problem, the Noisy-OR gate model is 

introduced and the probabilities used in the Noisy-OR gate model is defined as follows.  
(Dredging ships at work in the waterway )
(Ship density High Dredging ships at work in the waterway Overnormal) 0.90

P
P

=
= | = =

 

(Dredging ships in the waterway )
(Ship density Low Dredging ships in the waterway Normal) 0.14

P
P

=
= | = =

 

(The number of small-sized ships)
(Ship density High The number of small-sized ship Overnormal) 0.94

P
P

=
= | = =

 

    
(The number of small-sized ships)
(Ship density Low The number of small-sized ships Normal) 0.18

P
P

=
= | = =

    

After defining the abovementioned probabilities, the connection probabilities could be calculated by 

using Eq. (11), in which 9CBEP  is 0.286 and 10CBEP  is 0.667. The unknown factor obeys the Gaussian 
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probability density with a confidence level of 99%. Therefore, the results of IE6 are shown in Table 6, and 

all the other probabilities in the CPT can be calculated using this method. 

Table 6. Conditional probability table of IE9 using Noisy-OR gate 

BE9 Yes No 

BE10 Many Few Many Few 
High 0.7646 0.2931 0.6703 0.01 

Low 0.2354 0.7069 0.3297 0.99 
 

After introducing the Noisy-OR gate method, it can be seen that the results are more reasonable than 

using traditional method. Specifically, when there are some dredging ships working in the channel and there 

are few small-sized ships, the ship density is low with a probability of 0.54 and is high with a probability 

of 0.46. By introducing this Noisy-OR gate method, all the CPTs in this navigational risk assessment model 

for Qinzhou Port can be derived.  

3.4 Result analysis of the navigational risk in the Qinzhou Port 
After obtaining the prior probability in Subsection 3.2 and the CPTs in Subsection 3.3, the final 

navigational risk can be derived. Take Region 1 as an example, the occurrence probability of Region 1 

0.0745, and the result is shown in Figure 6. The result is reasonable when comparing with the navigational 

risk in other waterways. Specifically, in the Yangtze River, the navigational risk is 0.0575 (Zhang et al., 

2013), in European waters, the result is 0.0592 (Sakar et al., 2021b), in the US Coast, the result is 0.0529 

(Rawson and Brito 2020). Therefore, the occurrence probability is reasonable since the result of 

navigational risk is similar with the other waterways. 

 
Figure 6 Occurrence probability estimation of Region 1 in Qinzhou Port 



16 
 

Similarly, the occurrence probability of navigational accidents can also be derived and the results are 

shown in Table 7. 

Table 7 Occurrence probability of navigational accidents in five regions 

Region  Occurrence probability 

Region 1 0.07453 
Region 2 0.06441 

Region 3 0.05182 
Region 4 0.05196 

Region 5 0.04224 
 

It can be seen that the highest occurrence likelihood is Region 1 while Region 5 is the lowest. This is 

because the prior probability in Region 1 is relatively high, including BE5 (4.015%), BE2 (2.479%), BE12 

(2.479%), BE8 (1.623%) and BE11 (1.623%). Note that in Region 5, there are only one probability is high 

and other probabilities are the lowest including BE2 (0.019%), BE3 (0.019%), BE6 (0.019%), BE7 (0.019%) 

and BE12 (0.019%). 

3.5 Minimum cut set to identify the key influencing factors  
Compared with the traditional FTA and BN models, one significant merit of the Noisy-OR gate is that 

it can use Minimum cut set to identify the key influencing factors, this is very important because there are 

many influencing factors, but only some key influencing factors may cause the high risk of navigational 

accidents.  

In the developed Noisy-OR gate BN model, the failure probability of the navigation risk is set to 1.0, 

indicating that a navigational accident already occurred. The strength of the influence of basic events can 

be judged by the thickness of the lines, and the thick lines represent the key influencing factors. Figure 7 

shows the results, and where several of the thick lines constructing connected paths. Figure 8 demonstrates 

that 12 root nodes could influence the navigational accidents, but they only had four connections: BE5→

IE2→TE and BE6→IE2→TE. The results can be used for the safety management of ship navigation in the 

Qinzhou Port. 
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Figure 7 Key influencing factors identification using Noisy-OR gate BN 

Similarly, the key influencing factors for the other regions can also be detected using the same method, 

and the results are shown in Table 8. 

Table 8 The key influencing factors for the five regions 

Region  Minimum cut sets 

Region 1 BE5→IE2→TE, BE6→IE2→TE 
Region 2 BE6→IE2→TE, BE10→IE6→IE4→TE 
Region 3 BE2→IE1→TE, BE10→IE6→IE4→TE 

Region 4 BE8→IE3→TE, BE9→IE6→IE4→TE 

Region 5 BE4→IE1→TE, BE9→IE6→IE4→TE 
 

3.6 Sensitivity analysis to quantify the sensitive influencing factors  
Sensitivity analysis is often introduced to determine the degree of influence of the input parent node 

on the child output node (Shabarchin and Tesfamariam 2016). The top event failure probability (i.e. 

navigational risk) is treated as the target, sensitivity analysis can be carried out by changing the occurrence 

probability of navigational accidents. The results of the sensitivity analysis are shown in Figure 8. 
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Figure 8 Sensitivity analysis of the navigational risk in the Qinzhou Port 

Figure 8 shows that the sensitivity of the nodes could be divided into five levels. The first level includes 

wharf environment (IE2), Inconsistent bottom elevation between wharfs (BE5) and actual ship tonnage 

exceeds design (BE6). The second level includes channel environment (IE1), traffic complexity (IE3) and 

emergency resources (IE4). The third level includes turning circle of channel (BE2), dangerous goods ships 

(BE11), distance of tugboat (BE15) and distance of anchorage (BE16). The fourth level includes ship 

density (IE5), oyster culture beds (BE1), lack of buoys (BE3), one-way traffic (BE7) and the number of 

small-sized ships (BE10). The fifth level includes switch of route due to construction (BE4) and dredging 

ships in the waterway (BE9). The result of sensitivity analysis revealed that wharf environment (IE2), 

inconsistent bottom elevation between wharfs (BE5) and actual ship tonnage exceeds design (BE6) were 

the most influential factors for navigational risk. 
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Figure 9 Tornado diagrams of the sensitivity analyses 

Figure 9 show the tornado diagrams of the sensitivity analyses for navigational risk (TE) in the 

developed model. From further analysis, the most sensitive factors in Region 1 are wharf environment, 

inconsistent bottom elevation between wharfs, actual ship tonnage exceeds design, natural environment of 

channel, emergency resources, traffic complexity, turning circle of channel, distance of anchorage and lack 

of buoys. Moreover, the most basic sensitive nodes and the corresponding values in five regions are shown 

in Table 9.  

Table 9 The most sensitive nodes and the corresponding values in five regions 

Region Most sensitive nodes Corresponding values 

Region 1 

Inconsistent bottom elevation between wharfs (Node11), 
Actual ship tonnage exceeds design (Node12), 

Turning circle of channel (Node8), 
Distance of anchorage (Node18) 

0.4573, 
0.4354, 
0.2571, 
0.2448 

Region 2 

Actual ship tonnage exceeds design (Node12), 
Inconsistent bottom elevation between wharfs (Node11), 

One-way traffic (Node13), 
The number of small-sized ship BE10(Node16) 

0.3980, 
0.3128, 
0.2738, 
0.2506 

Region 3 

Turning circle of channel (Node8), 
Dangerous goods ships (Node14), 

Actual ship tonnage exceeds design (Node12), 
The number of small-sized ship (Node16) 

0.3578, 
0.3030, 
0.2419, 
0.2228 

Region 4 

Dangerous goods ships (Node14), 
Switch of route due to construction (Node10), 

Turning circle of channel (Node8), 
Dredging ships in the waterway (Node15) 

0.3878, 
0.2560, 
0.2384, 
0.2163 

Region 5 

Dredging ships in the waterway (Node15), 
Dangerous goods ships (Node14), 

Switch of route due to construction (Node10), 
Oyster culture beds (Node7) 

0.2781, 
0.2558, 
0.2027, 
0.2007 
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4 Conclusions 
The main contribution of this paper is to construct a fuzzy fault tree analysis and Noisy OR gate 

Bayesian network model for the risk assessment of Qinzhou Port. The proposed model can overcome the 

problem of absolute descriptions of the conditional probabilities when transforming the fault tree to BN. 

Specifically, the fault tree is established using accident investigation reports, fuzzy set is used to derive the 

prior probability and Noisy OR gate BN is introduced to obtain the conditional probability tables. From 

further analysis, the key influencing factors and sensitive factors can also be identified in this developed 

model.  

The results are compared with the Yangtze River, European waters, and the coast of the United States. 

From this comparison, it can be seen that the results are reasonable for assessing the occurrence likelihood 

for navigational accidents, which indicates that the proposed model is useful for assessing the occurrence 

likelihood for navigational accidents. Although this paper takes Qinzhou port as an example, the proposed 

model can also be applied to other waterways to predict the probability of maritime accidents if the proposed 

waterway data have similar characteristics. 
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