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Abstract
As a fundamental part of indoor scene understanding, the research of indoor room layout estimation has attracted much 
attention recently. The task is to predict the structure of a room from a single image. In this paper, we illustrate that this task 
can be well solved even without sophisticated post-processing program, by adopting Feature Pyramid Networks (FPN) to 
solve this problem with adaptive changes. The proposed model employs two strategies to deliver quality output. First, it can 
predicts the coarse positions of key points correctly by preserving the order of these key points in the data augmentation stage. 
Then the coordinate of each corner point is refined by moving each corner point to its nearest image boundary as output. Our 
method has demonstrated great performance on the benchmark LSUN dataset on both processing efficiency and accuracy. 
Compared with the state-of-the-art end-to-end method, our method is two times faster at processing speed (32 ms) than its 
speed (86 ms), with 0.71% lower key point error and 0.2% higher pixel error respectively. Besides, the advanced two-step 
method is only 0.02% better than our result on key point error. Both the high efficiency and accuracy make our method a 
good choice for some real-time room layout estimation tasks.

Keywords  Layout estimation · Scene understanding · Feature Pyramid Network

1  Introduction

Indoor room layout estimation is a fundamental task for 
many applications, including indoor navigation, augmented 
reality, and scene reconstruction. This study focuses on the 
indoor layout estimation to predict the structure of a room 
through a single RGB image.

Figure 1 shows the definition of different room layout 
types and an example in LSUN dataset. From this figure, we 
can see that a room has three parts: ceiling, wall and floor. 
The wall can be further divided into the left wall, middle 
wall and right wall in general, from different perspectives. 
These parts are labeled with different semantic for seman-
tic segmentation. The junction points of different parts are 
considered as the key points in connections and each point 
is labeled with a number, representing their order for a given 
room type. The example at the bottom of Fig. 1 illustrates 
the segmentation map and room layout for an input image, 
which is the expected output of this task.

Intuitively, as long as these key points are correctly 
detected and connected in a proper order, the correct room 
layout can be obtained. Therefore, the major task in room 
layout estimation is to correctly detect the key points in the 
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right order. However, it is challenging to accomplish this 
task through a single RGB image, because rooms in a photo 
can be cluttered and shadowy in different ways.

In this paper, we see the key points as small objects and 
adopt the Feature Pyramid Networks (FPN) [1, 2], which is 
one of the most effective approaches to deal with both the 
small objects detection and segmentation task, to predict the 
room layout in end-to-end style. With proper modification, 
we demonstrate that FPN could solve this task well even 
without the commonly used post-processing step in prior 
works and we record the modified FPN as M-FPN. Besides, 
by keeping the order between key points stable during the 
data augmentation stage, the proposed model can get a better 
performance. Moreover, this step is a low-cost operation and 
can be applied in other similar order-related work, but has 
not been discussed in previous works.

The contribution of this paper can be summarized as 
follows:

•	 M-FPN is the first approach that uses FPN to solve room 
layout estimation in end-to-end style. It shortens the pro-
cessing time and can be used for real-time processing 
tasks.

•	 We propose a new technique called “order-preserving” 
to enhance model’s performance. This step makes each 
point consistent with its activation area and can basi-
cally eliminate the wrong matching problem by preserv-
ing the order between key points in the process of data 
augmentation. We are the first to devise and deploy them 
to indoor layout estimation.

•	 The proposed model demonstrates great performance 
on the challenging benchmark LSUN dataset [3]. Our 

method is comparable to the advanced end-to-end meth-
ods on the pixel error metric, while it outperforms the 
end-to-end methods on the key point error metric. In 
particular, it achieves a similar level of key point error 
as that of the state-of-the-art two-step methods. To the 
best of our knowledge, it is the fastest method of indoor 
layout estimation and reaches 31fps at processing speed.

The rest of this article is organized as follows. Section 2 
reviews the related work of indoor layout estimation. Sec-
tion 3 describes our proposed method and framework. Sec-
tion 4 reports the experimental results. Section 5 concludes 
this article.

2 � Related Work

The methods of indoor layout estimation can be divided 
into two styles according to whether an independent post-
processing program is used.

2.1 � Two‑Step Methods

The two-step methods usually follow the proposal-ranking 
scheme, in which the whole process, from feature extrac-
tion to proposal ranking is processed by a human-designed 
program [4–8]. As the rise of deep learning, some two-step 
methods use neural networks for feature extraction with 
great improvements in accuracy [9–13]. In general, these 
methods use an additional post-processing step to elevate 
the results’ precision but require a much longer processing 

Fig. 1   Definition and an exam-
ple of room layout in LSUN 
dataset
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time and more manually participating than that of the end-
to-end methods.

2.2 � End‑to‑End Methods

The end-to-end methods [14–16] have faster processing 
speed but these methods usually lack a well-designed post-
processing mechanism resulting in less sufficient perfor-
mance on accuracy than two-step methods. RoomNet [14] 
is the first end-to-end method to solve the layout estimation 
task. It follows the SegNet [17] structure, which is featured 
with encoder-decoder architecture. RoomNet adds an extra 
classifier composed of three fully connected layers at the 
bottleneck of SegNet to predict the room type. Since there 
are 48 points in total in the 11 types of rooms in the LSUN 
dataset, this network outputs a feature map of 48 chan-
nels with each channel corresponding to a point. To avoid 
using an extra classifier, Roth, et al. [15] proposed a ‘Smart 
Hypothesis Generation’ (SHG) method to divide the training 
data into three groups according to the number of walls in 
the input images, where each group is used to train a network 
respectively. Each network has two parts, the first of which 
outputs semantic segmentation maps while the second out-
puts key point heatmaps from the segmentation maps. After 
three sets of semantic segmentation and key point heatmaps 
are obtained, a scoring function is used to calculate the con-
sistency between the segmentation maps and the key point 
heatmaps. The algorithm then chooses the highest score as 
the final result. This method gets rid of an extra classifier by 
using 3 groups of networks and a scoring function to select 
the best matches. Although this method avoids an explicit 
room type classifier, the disadvantage is that it exploits 3 
groups of networks, which makes the training process more 
complicated and takes more time in inference.

In this article, we use the same output setting of Room-
Net but we increase the accuracy of the classifier by using a 
stronger feature extraction backbone. Our proposed method 
is also different from SHG [15] by employing a single net-
work which can be more efficient than SHG method. The 
output size of our method is only 1/4 of the input size, which 
is very similar to that of model compression. To enhance 
the accuracy of M-FPN, we also make each point consistent 
with its activation area. From this, our method achieves the 
state-of-the-art performances for both the processing speed 
and accuracy of the tested data sets.

3 � M‑FPN Method

In this section, we first introduce the proposed end-to-end 
method M-FPN in Sect. 3.1. We then propose the “order-
preserving” strategy in Sect. 3.2 to optimize the proposed 
network for better outputs in accuracy. Section 3.3 indicates 

how to refine the positions of corner points through the 
coarse positions.

3.1 � M‑FPN Network

Although SegNet has been used in both RoomNet and SHG 
method, we see another choice in basic network architecture: 
Feature Pyramid Network. As shown in Fig. 2, M-FPN is 
a single-network and basically modified from the network 
architecture of [2] and has the following characteristics:

3.1.1 � Characteristics

Compared to the encoder–decoder structure of SegNet, FPN 
sets most parameters and performs most computations on 
the encoder (backbone) part to get stronger features, which 
ensures that the extra classifier will have higher accuracy 
and will not bottleneck the model’s overall performance. 
Meanwhile, it merges the multi-scale features with just a 
few operations in the decoder part. The proposed network 
can be seen as an asymmetric, lightweight encoder-decoder, 
which is very efficient in computing and very appropriate 
for saving GPU memory. By adopting this architecture, our 
proposed model improves the classification accuracy from 
81.5% in [14] to 83.5%.

Besides, considering that the key points belong to the 
small details in the picture, we first upsample the four dif-
ferent scale features in the feature pyramid to the same scale 
and then integrate them together as shown in Fig. 2. The 
integrated feature retains both strong semantic information 
and richer details. The model’s performance is then effec-
tively improved. By comparison, RoomNet only uses the 
pooling index recorded at the subsampling process to pro-
duce dense feature maps of a larger size during the upsam-
pling process. This network will miss the information in the 
former extracted features, a common problem caused by the 
symmetrical encoder-decoder network.

Our proposed network works as follows:

•	 It takes a 320*320 image as input and outputs a feature 
pyramid with the feature size ranging from 1/32 to 1/4 of 
the original size.

•	 We add a classifier, which includes an average pooling 
layer, a dropout layer [18] and a fully connected layer, 
after the Block4, to predict the room type. The dropout 
layer can prevent the model from being overfitting. A 
single fully connected layer can decrease the number of 
parameters and provides relatively high accuracy.

•	 As shown in Fig. 2, f1∼ f4 in the feature pyramid are 
upsampled different times to get the p1∼ p4 at 1/4 of the 
original input size, and then we add them in pixel-wise 
and perform a 3*3 convolution to get the final result.
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Here, we choose 1/4 input resolution (80*80) as the final out-
put size to save memory and reduce the network parameters 
and as demonstrated from many experimental tests of previous 
methods, it is sufficient enough to use 80*80 resolution feature 
maps for the layout estimation task.

3.1.2 � Loss Function

The ground truth of each key point is a 2D Gaussian centred 
heatmap at 80*80 size with a standard deviation of 10 pixels. 
In this article, we follow the notation used in [14] as M-FPN 
shares the same output settings (Table 1). Different from the 
paper of [14], we use the focal loss [19] as the cost function 
for the room type prediction to alleviate the data imbalance 
problem in the LSUN dataset. The Euclidean loss is used as 
the cost function for key point heatmaps regression. The total 
loss function can be written as follows:

(1)

L(I, y, t) =
∑

k

Ik,t
‖‖Gk(y) − �k(I)

‖‖
2
− �

∑

c

IIc,tFL(�c(I))

The regressor � produces an ordered set of 48-channel heat-
maps that are ordered according to the room type order. Fig-
ure 1 shows the point order defined in the LSUN dataset. 
For example, the first eight channels correspond to the eight 
ordered points in room type 0 and the next six channels cor-
respond to the six ordered points in room type 1 and so on. 
In Equation (1), Ik,t is the Euclidean loss between the pre-
dicted heatmaps and the ground truth heatmaps if and only 
if key point k appears in ground truth room type t. Similarly, 
IIc,t is the focal loss if and only if room type index c is equal 
to the ground truth room type t. � is used to balance the 
two loss items and is set to 1 in our model. Based on many 
conducted experimental tests, we set the hyper-parameter of 
Focal Loss � = 1 , � = 2 respectively.

At the test stage, we use the predicted room type to 
select the corresponding set of key point heatmaps in the 
final output. We then find the maximum value’s coor-
dinates for each heatmap and scale the obtained coor-
dinates back to their original resolution to get the final 
coordinates.

Fig. 2   Pipeline and the pro-
posed network structure
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3.2 � Preserving Points Order

Horizontal flipping is the commonly used data augmenta-
tion technique in this task. However, after this procedure, 
the order between key points will be messed and no prior 
work has discussed the result of this. Here, after the aug-
mentation, we preserve the order of flipped points con-
sistent wth the order of original points (Fig. 3). By doing 
this, each point in the flipped image stays in the relatively 
identical area to its original counterpart and model trained 
by these rectified images performs better. The reason can 
be explained as follows:

•	 There are 11 different room types defined in the LSUN 
dataset. As depicted in Fig. 1(top), each room type has a 
specific points ordering and structure. Since each point 
belongs to a relatively fixed location in the image, a 
coarser position of each point can be learned through 
the network.

•	 Preserving the order of flipped points being consistent 
with that of the original points can greatly reduce the 
training complexity of the network, enables the network 
to converge faster and achieves much better outputs.

•	 The order-preserving process reduces the semantic ambi-
guity on points. For example, the activation area of points 
at the symmetrical position can overlap a lot if we do 
not execute the order-preserving step. In this case, the 
network will learn two symmetrical activation areas in 
the image making false prediction rate doubled for each 
point.

We demonstrate the effectiveness of the order-preserving 
step in Fig. 3. The general practice of horizontal flipping is 
to simply flip the input image (including the points in it) as 
the way shown in the top middle of Fig. 3. This can disrupt 
the order among the points and enlarge the activation area of 
each point, resulting that the network model is more likely 
to produce bad predictions. For example, if we train our 
model as the conventional practices, our model will learn 
two symmetrical activation areas for point 1, the upper left 
and the upper right part of the ground truth image in Fig. 3, 
which are overlapped with the activation areas for point 7. 
This greatly increases the possibility of making wrong pre-
dictions. As can be seen in Fig. 3, the area of point 7 exists 
a bright light in the ground truth so that when we predict it 
using the model trained without the order-preserving step, 
we get the result (bottom middle image in Fig. 3) where 
point 7 is near point 1, both at the upper left position of 
the image, and a similar situation occurs between point 3 
and point 5. In contrast, when we use the model trained 
with the order-preserving step, we get a good result (bottom 

Fig. 3   Top row: process from 
ground truth to reordered result. 
Bottom row: impact of the 
reordering process on the pre-
diction result through a control 
experiment

Table 1   Notations

Symbol Meaning

G Gaussian function
(I, y, t) Training sample of input image I: y is the ground truth

coordinates of k key points; t is the room type
� Room type classifier (output from the classifier in Fig. 2)
� Key point heatmap regressor (final 48-channel maps in 

Fig. 2)
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right image in Fig. 3). The reason is that during the training 
process we make the network learn a relatively individual 
activation area for each point so that the model can give the 
accurate predictions.

Overall, the order-preserving step is an essential step for 
improving the model’s final accuracy and has not been used 
in the previous work.

3.3 � Corner Refinement

To further improve the accuracy of outputs, we constrain 
the predicted corner point to its nearest image boundary. 
It should be noted that a corner point (i.e., points 2, 4, 6, 
8 in room type 0) is a point that is supposed to stay at the 
image boundary(i.e., top, bottom, left, right). As shown in 
Fig. 8b, by doing this the segmentation map gets a lot of 
improvements. This phenomenon is related to the process 
of producing the segmentation map. To make things easier 
to understand, we use Fig. 4 to illustrate this process in a 
simplified way.

In Fig. 4, we use a 5*5 table to denote an image. Each 
blank space means a pixel. A and B are the corner points. 
When corner points are correctly predicted (like Fig. 4a), 
the algorithm will connect them by a line segment. After 
that, we can get two parts (connected components) from this 
image, and each part will be given a number respectively, 
representing different semantic label. However, this algo-
rithm’s result is sensitive to the position of corner points. 
Like Fig. 4b shows that A and B are predicted at the wrong 
position with only 1-pixel distance to its right position, but 
the image can not be correctly divided, producing a huge 
pixel error.

Due to this reason, we conduct the step called corner 
refinement. It will restrict each predicted corner point to 
its nearest border of the picture so that the algorithm can 
calculate the number of connected components and divide 
the image correctly. The impact of the corner refinement step 
will be discussed in Sect. 4.4 in details.

4 � Experiments

4.1 � Dataset and Cleaning

The current mainstream dataset includes the Hedau [4] data-
set and LSUN (Large-scale Scene Understanding Challenge 
room layout) [20] dataset. The Hedau dataset, released in 
2009, was sampled from the internet and LabelMe [3]. It 
contains 209 training pictures, 53 validation pictures and 
105 test pictures. This dataset is relatively small and usually 
only used to compare pixel error. However, we could not 
find public resources on the internet. Therefore, we test our 
model on the LSUN dataset in this paper.

The LSUN dataset, sampled from the SUN [21] dataset, 
includes 4000 training pictures, 394 validation pictures and 
1000 test pictures. Since the challenge has been closed, we 
cannot get the ground truth of the test set, so we use the 
validation set to evaluate our model, like many other meth-
ods [11, 14–16]. In all the experimental tests, we scale the 
model’s outputs to the original resolution and evaluate the 
result by the LSUN toolkit as many other methods did.

As shown in Fig. 5, there are many wrong samples in the 
LSUN dataset. We need to clean the dataset before the formal 
experiments. In the room type 1 sample, the point order is 
reversed between both point tuple (2, 3) and point tuple (5, 6). 
Similarly, in the type 3 sample and type 9 sample, the order of 
point tuple (3, 4) and point tuple (1, 2) is reversed respectively. 
In addition, the problem of reversed order appears not only 
within the point tuple but also between different point tuples. 
For example, the point tuple (1, 2) and point tuple (3, 4) in the 
type 6 sample will sometimes be reversed too.

Apart from the point order problem, some room types 
can be mislabelled or the positions of some points can be 
incorrect. Since the number of such “dirty” samples is 
small, we simply discard them before the training process.

4.2 � Implementation Details

Our experimental environment is a single 2080Ti GPU, CPU 
i9-9900K, and the operating system is ubuntu16.04. Training 

Fig. 4   The impact of corner 
point’s position on the sematic 
label
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our model from scratch takes about 20 h on our machine. All 
input RGB images are resized to 320*320 and the outputs are 
the 48-channel key point heatmaps of resolution 80*80 and 
the labeled room types. The Adam optimizer [22] is employed 
to train the network for 150 epochs with batch size 8, weight 
decay 0.0005 and learning rate 0.00001. In addition, we use 
the ReduceLROnPlateau function to monitor the loss value in 
order to dynamically adjust the learning rate. The attenuation 
coefficient is set to 0.5, the patience value is 4, and the minimum 
learning rate is set to 1e−8. The backbone ResNeXt-101 [23] is 
set as the default with a group number of 32, group width of 8, 
and we initialize the backbone with weights pre-trained on Ima-
geNet. The classifier consists of an average pooling layer, a drop-
out [18] layer and a fully connected layer, with a dropout rate 
of 0.5. In terms of data augmentation, apart from the horizontal 
flipping, we also use the ColorJitter function to produce small 
variations in image brightness, saturation, contrast and hue. We 
weaken the gradients of the background pixels in the key point 
heatmaps by multiplying the l2 loss at the background with a 
factor of 0.2 as did in [14] as the output of the network tends to 
converge to zero due to the imbalance between the foreground 
and background pixels. Our model is implemented in the open 
source deep learning framework PyTorch [24], version 1.1.0.

4.3 � Testing Results

The metrics for the room layout estimation are pixel and key 
point errors (PE and KE) as defined in the LSUN toolkit. PE 
calculates the pixel-wise accuracy of the segmentation maps 
between the ground truth and the predicted segmentation. 

KE calculates the Euclidean distance between the predicted 
key points and ground truth points, normalized by the image 
diagonal length. Both PE and KE are averaged over all tested 
images.

In Table 2, we show the comparison of inference time 
and quantitative results on the LSUN dataset. Compared to 

Fig. 5   Wrongly labelled sam-
ples in ground truth. The order 
of the points is incorrect, which 
appears in most bad samples

Table 2   Comparison of quantitative results and inference time

Bold values indicate better results than other methods on LUN Data-
set
PE pixel point errors, KE key point errors

Method Year Post process PE (%) / KE (%) Time (ms)

Hedau, et al. [4] 2009 Yes 24.23 / 15.48 –
Mallya, et al. [9] 2015 Yes 16.71 / 11.02 –
Dasgupta, et al. 

[10]
2016 Yes 10.63 / 8.20 –

Ren, et al. [11] 2016 Yes 9.31 / 7.95 –
Zhao, et al. [25] 2017 Yes 5.29 / 3.84 –
RoomNet [14] 2017 No 9.86 / 6.30 166
LayoutNet [16] 2018 No 11.96 / 7.63 39
Edge Semantic 

[12]
2019 Yes 6.94 / 5.16 –

Double Refine-
ment [13]

2019 Yes 6.72 / 5.11 –

Smart Hypothesis 
[15]

2020 No 7.79 / 5.84 86

Our method 2020 No 7.99 / 5.13 32



220	 A. Wang et al.

1 3

other end-to-end methods, our method clearly outperforms 
all other methods on both error metrics except the ‘Smart 
Hypothesis’, which advantages our method slightly 0.2% in 
PE. In contrast, our method outperforms it by 0.71% in KE. 
In fact, our method has reached the level of state-of-the-art 
two-step method of Double Refinement [13] in KE.

It should be noted that [25] is a transfer learning method 
which requires a large amount of training data far beyond 
the LSUN dataset for pre-training and then fine-tunes the 
model on the LSUN dataset. Therefore, it is incomparable 
with other methods in our designed environment.

In terms of inference time among the end-to-end algo-
rithms, our model takes only 32 ms, the fastest processing 
speed among the methods in a single NVIDIA Titan X GPU. 
It is about 31 fps and suitable for real-time application. The 
time costs of two-step methods are not listed in Table 2 as 
these methods usually require from several seconds to sev-
eral minutes for predictions, which are too high to compare 
with our method.

Figure 6 shows the qualitative results of our model on 
the LSUN validation set. It is not hard to see that in a daily 
indoor environment, our network can effectively estimate 
the layout for different types of rooms. It can be seen from 
samples (a), (b) and (e) that our network has strong robust-
ness to occlusion for any input room types. In sample (a), 

the key points are covered by the bed. In samples (b) and 
(e), the key points are obscured by chairs. Both sample (c) 
and sample (d) have only two key points that can be identi-
fied easily from a human perspective, but the hard thing is 
how to select the specific tiny key point area from the many 
potential areas in the picture. From the results, we can see 
that our model performs well.

Here we want to specifically mention sample (e). This 
sample belongs to room type 1, but two points are missed in 
its ground truth label, which can be distinguished from the 
semantic segmentation map, and the line at the top slightly 
exceeds the boundary of the picture and beyond the field 
of view. Even though, in this situation, our model can still 
accurately predict the layout of the room, demonstrating that 
our model is very capable of learning the patterns from the 
dataset.

Figure 7 shows some representative failure cases. In case 
(a), there is a misleading oblique line in the house structure, 
which does not fit most cube-structured houses and makes 
the network mistakenly regard this oblique line as the final 
prediction result. Especially when there are multiple such 
structural lines in the house, it will be difficult for the model 
to make correct judgments. We call the representative situ-
ation in case (b) the network using “imagination”. Since 
some areas in the picture, such as corners, have a higher 

Fig. 6   Some qualitative results. 
The first column is the input 
image, the middle 3 columns 
are the key point heatmaps, 
semantic segmentation map, 
and room layout results in 
sequence produced by the net-
work, and the last two columns 
are ground truth



221Toward Enhancing Room Layout Estimation by Feature Pyramid Networks﻿	

1 3

probability of being key points, when these areas are blocked 
and the classifier predicts a wrong room type, the network 
intends to use “imagination” to predict possible key points 
in these areas matching the room type that accounts for a 
higher proportion in the dataset.

4.4 � Ablation Experiment

We conduct ablation experiments to figure out a better net-
work configuration in Table 3, and to illustrate the effective-
ness of the various processing steps we have proposed in 
Table 4.

Table 3 shows 4 neural networks with different configu-
ration. (a): a ResNet-50 as backbone, a fully connected(fc) 
layer as classifier, three deconvolution layers to output key 
point heatmaps; (b): the same with (a), except that the clas-
sifier is replaced by a 1*1 Fully Convolutional(FC) layer; 
(c): the same with (a), except that the backbone is replaced 
by ResNet-101; (d): Add another identical head-to-output 
segmentation maps on the basis of (c).

From the comparison of (a) and (b), we can see that the 
network has better performance on both KE and PE when 
a fully connected layer is used as classifier. One possible 

reason for this result is that a fully connected layer has 
more parameters than a fully convolution layer so that it 
has bigger feature space to catch the differences between 
different types of room layout.

Using a stronger backbone as (c) does improve the mod-
el’s performance. This is because a stronger backbone can 
extract high-level features with rich semantic information, 
and semantic information plays a vital role in room layout 
estimation task. Based on this fact, we use ResNeXt-101 
as backbone of M-FPN, which also elevates the prediction 
accuracy.

We add another parallel head to predict the segmenta-
tion maps in (d) on the basis of (c) trying to test wether, 
the multi-branch network has a better performance. The 
result is neither better nor worse. The model has lower 
KE (from 11.07 to 10.91%) and higher PE (from 19.33 to 
19.86%). However, considering that a multi-branch net-
work needs more inference time and parameters, it is not 
a good choice to use a multi-branch network, especially 
when you can not make the parallel heads work together 
in a united loss function.

In Table 4, the importance of order-preserving step can 
be seen from the comparison of (a) and (b): Without this 
step, KE increases from 5.13 to 6.72%, and PE increases 
from 7.99 to 10.98%. As indicated in Fig. 3, the activa-
tion area can overlap a lot between the symmetrical key 
points if the order-preserving step is not performed. There-
fore, when one of the symmetrical key points is severely 
obscured or in other similar cases, the network will predict 
the original symmetrical key points in a different area with 
a high probability.

Fig. 7   Some failure cases. 
In case (a), the oblique line 
structure on the upper left of 
the house is mistaken by the 
network as the room layout. In 
case (b), the network uses its 
“imagination” to predict two 
key points from the occlusion, 
which turns case (b) from type 
3 to type 5

Table 3   Ablation experiment of 
network configuration

Set Backbone fc FC Multi-Branch KE (%) PE (%)

(a) Res-50 ✓ 11.44 19.89
(b) Res-50 ✓ 12.49 20.74
(c) Res-101 ✓ 11.07 19.33
(d) Res-101 ✓ ✓ 10.91 19.86

Table 4   Ablation experiment of data-clean, reorder, corner refine

Set Data clean Reorder Corner refine KE (%) PE (%)

(a) ✓ ✓ ✓ 5.13 7.99
(b) ✓ ✓ 6.72 10.98
(c) ✓ ✓ 5.27 47.79
(d) ✓ 7.23 12.39
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From (b) and (d), KE increases from 6.72 to 7.23%, and 
PE increases from 10.98 to 12.39% when the data clean is 
not performed. The reason is that an incorrectly labelled 
order of points in the dataset will cause the model to learn 
the wrong activation area for each point and affect the 
results’ accuracy.

By comparing (a) and (c), it can be found that KE has 
changed 0.14% but PE has increased from 7.99 to 47.79%. 
This is related to the process of calculating the semantic 
segmentation map from the key point maps in the LSUN 
toolkit as explained in Sect. 3.3. Ideally, the connectivity 
of 4 pixels restricts the predicted point coordinates to be 
strictly at the boundary of the image during the process to 
find connected components. But in fact, as shown in Fig. 8 
case (a), although the predicted corner point is already 
very close to the boundary of the picture, there can still 

have an error of about tens of pixels when the corner point 
coordinates are scaled to the original resolution. There-
fore, the situation in Fig. 8b can occur. After the points are 
connected, the algorithm can miscalculate the number of 
connected components. Thus, it is a very necessary step to 
constrain the corner points and move them to the picture 
boundaries. The time cost of this step is almost negligible.

To illustrate the effectiveness of the proposed optimiza-
tion steps, we run these steps on a re-implementation of 
RoomNet(basic), and the result is shown in Table 5. By 
comparing (b) and (d), it is obvious that order-preserv-
ing step works well on the RoomNet. We get both lower 
KE (from 7.39 to 6.42%) and PE (from 12.53 to 9.61%). 
From (c) and (d), the PE is reduced from 46.2 to 9.61%, 
which shows that the corner refinement step works well 
on RoomNet too. After running these optimization steps, 
the RoomNet(re-imp.) gets better performance than the 
original RoomNet(basic) and is comparable to the best 
result of RoomNet in Table 2, which can be seen in (a) 
and (d). From the experiment results, we would like to 
say that the proposed steps can be helpful for other similar 
methods too.

Table 5   Ablation experiment of optimization steps on RoomNet

Set Network Reorder Corner refine KE (%) PE (%)

(a) RoomNet (basic) 6.95 10.46
(b) RoomNet (re-imp.) ✓ 7.39 12.53
(c) RoomNet (re-imp.) ✓ 6.42 46.20
(d) RoomNet (re-imp.) ✓ ✓ 6.42 9.61

Fig. 8   The first row is the input 
image and ground truth. Case 
(a) and case (b) respectively 
show the prediction result with 
and without the corner refine 
step
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5 � Conclusion

In this paper, we have proposed M-FPN as an end-to-end 
model for indoor layout estimation. With a processing 
speed up to 31 fps, M-FPN has reached the level of the 
state-of-the-art two-step method on the KE metric with the 
fastest speed. Compared with the most advanced end-to-
end method, there is only a slight 0.2% gap in the PE met-
ric. This is due to a series of operations that we perform on 
the dataset, in addition to our network’s superior capability 
of integrating multi-scale features. Among them, keeping 
the consistency of each key point’s activation area and 
applying the corner refinement step plays a vital role. The 
performance on the LSUN dataset and the ablation experi-
ments have demonstrated the superiority of our model. In 
the future, we intend to use a single network to predict key 
point maps and semantic segmentation maps at the same 
time, so as to further achieve better results.
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