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ABSTRACT
Modeling wind speed has a significant impact on wind energy systems and has attracted atten-
tion from numerous researchers. The prediction of wind speed is considered a challenging task
because of its natural nonlinear and random characteristics. Therefore, machine learning models
have gained popularity in this field. In this paper, three machine learning approaches – Gaussian
process regression (GPR), bagged regression trees (BTs) and support vector regression (SVR) – were
applied for prediction of the weekly wind speed (maximum, mean, minimum) of the target station
using other stations, which were specified as reference stations. Daily wind speed data, gathered via
the Malaysian Meteorological Department at 14 measuring stations in Malaysia covering the period
between 2000 and 2019, were used. The results showed that the average weekly wind speed had
superior performance to the maximum and minimum wind speed prediction. In general, the GPR
model could effectively predict theweekly wind speed of the target station using themeasured data
of other stations. Errors found in this model were within acceptable limits. The findings of this model
were compared with the measured data, and only Kota Kinabalu station showed an unacceptable
range of prediction. To investigate the prediction performance of the proposed model, two models
were used as the comparison models: the BTs model and SVR model. Although the comparison of
GPR with the BTs model at Kuching station showed slightly better performance for the BTs model
inmaximum andminimumwind speed prediction, the prediction outcomes of the other 13 stations
showed better performance for the proposedGPRmodel. Moreover, the proposedmodel generated
smaller prediction errors than the SVR model at all stations.
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1. Introduction

Wind power is one of the most common renewable
energy resources (Başakın et al., 2022), as the energy it
generates is clean, and it also aims to minimize global
warming and environmental pollution because it does
not release toxic emissions (such as those produced by
fossil fuel power stations, which cause many health prob-
lems for humans). In this respect, reliable wind speed
prediction is critical for the future of renewable energy
use (Barhmi & El Fatni, 2019).

Theworld’s overall consumption of electrical energy is
quickly increasing; however, the emission of greenhouse
gases is rising owing to energy being produced from fossil
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fuels. Furthermore, the global electrical energy produc-
tion percentage (2.7% average annually) increased from
2003 to 2015 and it will continue to rise until at least
2030 (Shafiullah et al., 2013). Nevertheless, about 40%
of the world’s greenhouse gas emissions are generated by
electricity, which mainly uses fossil fuels, i.e. carbon and
oil (Shafiullah, 2016). The greenhouse gas emissions are
harmful to humans; however, renewable power sources,
including wind, solar, biomass and rain, could reduce our
dependence on fossil fuels. The demand for wind energy
is increasing, to overcome the greenhouse impact and
use the other energy resources efficiently. Wind is con-
sidered the most effective and technologically innovative
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renewable energy resource available, owing to its free
nature and availability (Shafiullah et al., 2013).

1.1. Motivation for the study

Nowadays, in Malaysia, renewable energy such as wind
energy is considered the most attractive source of energy.
Therefore, researchers need to prepare an inventory of
the availability of wind energy in a region where there is
a lack of measured wind speed datasets. This motivation
would be helpful in predicting the wind speed poten-
tial utilizing variousmachine learning approaches. In this
context, it is important to establish a reliable model for
wind speeds at a particular station based on other sta-
tions. This would aid in the management of wind energy
resources for electricity production, as well as in case
of any issues arising related to the output of a station,
where the output of other stations could be considered.
For these reasons, in this article, three machine learn-
ing methods – support vector regression (SVR), bagged
trees (BTs) andGaussian process regression (GPR) –were
employed to predict the wind speed at 14 stations in
Malaysia.

1.2. Literature review

Several methods have been tested for forecasting wind
speed. Machine learning is an excellent multidisciplinary
area in which techniques for wind speed can be applied.
Therefore, several studies have focused on the imple-
mentation of machine learning algorithms to forecast
wind speed values (Khosravi et al., 2018). Barhmi and
El Fatni (2019) used various hybrid models based on
the support vector machine (SVM), and artificial neu-
ral network or neural network machines were used to
predict hourly wind speed. Md Abul Ehsan et al. (2019)
usedmultiple non-parametric tree-basedmachine learn-
ing approaches to predict the extreme wind speed. More-
over, to predict short–long-term wind speed, a hybrid
model was applied in the short–long-term prediction
period of 10min (L. Wang et al., 2018). M. R. Chen et al.
(2019) developed a new two-layer nonlinear combination
approach termed EEL-ELM for short-term wind speed
prediction problems, e.g. 10min or 1 h in advance. The
first layer is based on ELM, Elman neural network (ENN)
and long–short-term memory (LSTM) to individually
predict wind speed, and thismodel achieved good perfor-
mance. Furthermore, the LSTMmethodwas applied via a
nonlinear training ensemble of deep learning prediction
based on SVR, LSTM and extremal optimization (EO)
algorithm to predict wind speed (J. Chen et al., 2018).

The GPR model is gaining popularity in multiple sci-
entific applications. The GPR was presented to improved

forecasting accuracy for near-surface wind speed predic-
tion (Hoolohan et al., 2018). The hybrid model based
on auto-regression and GPR was applied to achieve bet-
ter probabilistic wind speed prediction; it was com-
paredwith othermodels and provided good performance
(Zhang et al., 2016). The GPR, as an effective nonlinear
modeling approach, could efficiently interpret the com-
plicating features of industrial datasets via the combined
covariance function derived from the base kernel. The
GPRmodel is equivalent to the conventional soft sensors
(Liu et al., 2018). The GPR model predicted total elec-
tron content (TEC) values more accurately (1 or 2 days)
ahead of day in order to forecast the daily ionosphere
TEC using the GPR model and multiple linear regres-
sion (Inyurt et al., 2020). The European Union chemical
property maps were created using a GPR model. This
model has been chosen because of its ability to measure
model uncertainty and its ability to add prior informa-
tion to modeling in the form of covariance functions
(Ballabio et al., 2019). H. Wang et al. (2020) introduced
a probabilistic method to predict wind gusts applying
ensemble learning. This model included random for-
est, LSTM and GPR models, and the results indicated
that this model had higher precision and efficiency of
generalization.

In recent years, ensemble models, which combine
many individual models into an ensemble modeling
method, have presented an efficient replacement for
the traditional machine learning methods (James et al.,
2013). The potential of ensemble modeling methods to
reduce the variance of the sample while achieving low
bias make them very desirable to improve the accuracy
of prediction (Breiman, 1996). The bagging ensembles of
decision trees are implemented to efficiently predict wind
energy (Breiman, 1996). A preference for this regression
method is based on its ability to use multiple compara-
tively poor single trees to obtain a high degree of pre-
dictability compared to single regressors. In addition, it
decreases the total error and has the potential to com-
bine multiple models. Real measurements taken from
a real wind turbine every 10min were used to demon-
strate the estimation accuracy of the tested methods. The
researchers used regression tree approaches to accurately
model load (Srivastava et al., 2020).

Another popular group is SVR methods, which have
good generalization capability. Jiang et al. (2017) intro-
duced the hybrid short-term model for predicting wind
speed using the v-SVM, optimized using the cuckoo
search algorithm. The state-space SVM with Kalman
unscented filter was developed by K. Chen and Yu (2014)
to predict wind speed. Furthermore, a combined or
hybrid model has been tested to boost the prediction
efficiency of a single model (Liye Xiao et al., 2017; Ling
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Xiao et al., 2015). For the combined approaches, the
various single models are used in forecasting, and their
projected outcomes are combined with the necessary
weight coefficients for the final prediction. In a combined
paradigm based on the principle of no negative limita-
tion and artificial intelligence, J. Wang et al. (2017) pro-
posed defining the optimum weight coefficients using an
algorithm for maximizing chaos particle swarm. J. Wang
et al. (2017) developed an integrated predictive model
using multitarget bat algorithms for wind speed predic-
tion to simultaneously attain high accuracy and consis-
tency. J. Wang and Hu (2015) introduced the stable com-
bination model of the autoregressive integrated moving
average (ARIMA), SVM, ELM and least square support
vector machine (LSSVM) for the short-term probabilis-
tic estimation of wind speed, using GPR to integrate the
outcomes of each predictor.

Citakoglu and Aydemir (2019) used the gray estima-
tion technique for the monthly wind speed dataset mea-
sured for the years 2000–2017 at three weather stations in
Kayseri. Three different graymodel (GM) (1,1) equations
were obtained from the results of their analyses. Their
results showed that prediction of wind speed at locations
withoutmeasurements can be precisely achievedwith the
GM(1,1) model obtained from other nearby stations.

1.3. Problem statement

Optimum forecasting of wind speeds is an ongoing
research issue since it is necessary to predict the viabil-
ity of harnessing wind speed from particular locations.
Consequently, the technologies relating to wind speeds
must be developed in depth. Because wind speed has
characteristics of nonlinearity and randomness, the pro-
duction of wind energy is unpredictable. The large-scale
grid integration of wind energy to the electricity net-
work can be challenging in terms of energy conversion
and management (Xiwei Mi et al., 2019). To tackle this
issue, very efficient technologies are needed to predict
wind speeds. Wind speeds can be affected by many fac-
tors. Simple forecasting methods face a challenge to cap-
ture the sophisticated characteristics of wind speeds in
order to achieve precise prediction results. Thus, high-
accuracy wind speed forecasts have gained worldwide
attention.

1.4. Objectives

The effectiveness and accuracy of the approaches used
in predicting wind speed are important to predict the
performance of wind energy. The overarching purpose
of this article is to build a method enabling the reliable

and efficient prediction of wind speed for a particular sta-
tion based on time-series supervisory control on other
stations in Malaysia. Thus, such time-series prediction
would describe amodel that predicts a future value of any
station only using the preceding values of the reference
stations. Another contribution in this study is to bring
this method to the attention of the renewable energy
community and show how it could be employed in a new
field.

2. Wind energy in Malaysia

In their growth cycles, all nations rely heavily on the
powermarket, and theworld’s demand for power is rising
daily. According to British Petroleum, the use of prime
power increased by 2.2% from 2013 to 2017. The largest
increases in energy consumption among fuel forms have
been in pure gas and oil. However, renewable energy
do not yet have large quotas of the overall energy port-
folio compared to non-renewable energy. Malaysia is
heavily reliant on fossil fuels, which generate over 90%
of the country’s energy, because of a lack of renew-
ables. For example, the Malaysian government empha-
sizes renewable energies for power production, especially
wind energy projects; however, wind energy develop-
ment is at a major disadvantage, as Malaysia is situated
in a low wind-speed area (Albani & Ibrahim, 2017).

Many projects do not achieve their desired goal. At
Pulau Terumbu Layang in Sabah, S. K. Najid et al. pre-
sented a 150 kW wind turbine project. According to
them, this was Malaysia’s first wind turbine (Najid et al.,
2009). Universiti Kebangsaan Malaysia (UKM) extended
this proposed project and combined it with diesel systems
that generate power to support the army and the near-
est resort. Tenaga Nasional Berhad (TNB) in Perhentian
Island installed the most famous wind turbine project.
With 100 kW of photovoltaic and 100 kW of diesel gen-
erators, this was a hybrid project, with recorded wind
speeds of 3.6m/s and 15.6m/s, respectively (Karim et al.,
2009).

In Malaysia, the gross littoral region is approximately
4675 km, the longest in the world (Ahmad & Tahar,
2014). Malaysia, therefore, accepts the value of renew-
able energy as a source of electricity, rather than petrol.
Small Renewable Energy Power (SREP) was initiated
to improve renewable energy evolution, but the results
were disappointing.With the overall electricity produced
from renewable energy, the production rate of renew-
able energy is sluggish. The Malaysian parliament sub-
sequently enacted the 2011 Clean Energy Act (Act 725)
for adoption in 2011. In 2015, the target for wind power
generation was stated to be 985MW. However, about
400MW was generated earlier in 2015. In comparison,
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the success rate (50%) reached the initial target, as the
objective was reported to be unattainable. Furthermore,
the 2015 target was 985MW, whereas 2020 and 2030
are expected to contribute 2080 and 4000MW, respec-
tively. In Malaysia, the wind power project is used only
for educational investigations (Sarkar et al., 2019).

3. Methods andmaterials

3.1. Study area andwind speed data

Malaysia is a country that lies completely in the equatorial
zone or equatorial low Intertropical Convergence Zone.
The Asian monsoon, including the weather in Malaysia,
is related to a greater than average seasonal migration
of the Intertropical Convergence Zone (Ibrahim et al.,
2014).

Malaysia’s climate is split into seasons: the inter-
monsoon in April, the monsoon in the south-west from
mid-May to September, the inter-monsoon in October,
and the monsoon in the north-east from November to
March. Also, in Malaysia, wind usually is regular, with
the highest wind flows occurring in the afternoon and
the lowest wind flows before morning. During the south-
west monsoon, the prevailing wind flow is generally
south-westerly and light, lower than 7.5m/s. During the
north-east monsoon, a stable easterly or north-easterly
wind of 5–10m/s prevails. Nonetheless, on the east coast
of Malaysia wind speeds may reach 15m/s or more.
Through the two inter-monsoon seasons, winds are gen-
erally light and variable. In a normal year, high pressure
over the eastern Pacific causes warm equatorial water
and the surface wind to flow westward, and converge
near Indonesia. Consequently, from April to Novem-
ber, the south-westerly winds on the north-west coast
of Sabah and Sarawak regions may intensify to reach
10m/s or higher (Ibrahim et al., 2014). However, the
wind flow inMalaysia is influenced by mesoscale or local
wind. Because Malaysia is mostly a marine country, the
influence of land and sea breezes on the overall wind
flow pattern is important, particularly on clear days. Sea
and land breezes of 5–7.5m/s frequently arise on bright
sunny afternoons or clear nights, reaching speeds of up
to tens of kilometers inland and along the shore. Daily
wind in many mountainous places is known as moun-
tain and valley breeze, and it is similar to land and sea
breeze.

During the day, the valley breeze is warm air rising
down the mountain slope, but after sunset, the mountain
breeze is cool air draining into the valley. The average
wind speed in the valley is more than 9m/s, although
the mountain breeze is generally stronger, with winds
exceeding 11m/s.

Existing wind speed data or secondary data are valu-
able in assessing wind resources in the early stages of
wind energy development (Ibrahim et al., 2014). The
study area selected in this article was Malaysia, so the
wind speeds must be obtained in Malaysia. The 14
selected stations are Alor Setar, Bayan Lepas, Cameron
Highlands, Ipoh, Klia Sepang, Kota Bharu, Kota Kina-
balu, Kuantan, Kuching, LubokMerbau, Muadzam Shah,
Pulau Langkawi, Sitiawan and Subang). Daily wind data
at these 14 stations were obtained from the Malaysian
Meteorological Department. The locations of these 14
stations are shown in Figure 1.

Figures 2 and 3 show themonthlymedianwind speeds
at the 14 stations in Malaysia. The 24 h wind data have
been recorded for 19 years, between 2000 and 2019.

Two sets of average wind speed time series sampled
with wind speed data are used to validate the predictive
efficacy of the proposedmodel. Each wind speed series of
stations comprises 6400 tests, 80% of which are used for
preparation and 20% for research. For example, one of
the 14 stations is shown in Figure 1 with the time-series
data of maximum, mean and minimal wind speeds, and
statistics for the 14 stations are measured and presented
in Table 1.

3.2. Gaussian process regression (GPR) approach

Gaussian processes (GPs) are described as sets of ran-
dom variables, some of which have a multiple-variable
Gaussian distribution. is the input domain, Y is the out-
put domain, and a pairs (xι, yι) are independent, then
extracted and distributed equally. It is supposed that the
GP on X is defined by the average and covariance func-
tions (μ: Y → Re and A: X ∗ X→ Re), respectively. The
main theory in GPR is that y is determined through y =
f (x)+ ζι, where ζ represents the Gaussian noise, with
variance of σ 2. There are random variables f (x) for the
input variables x in GPR, in which the values of the ran-
dom functions f are in certain locations. In the current
work, it is presumed that the observation errors are inde-
pendent and have a similar distribution to the zero mean
value (μ (x) = 0) and the variance (σ 2), and f (x) of the
GP on X (denoted by A) as:

y = (y1, . . . , ya) ∼ N (o, A + σ 2K) (1)

where K is the identity matrix and A ιj = A(xι, yι);
y/x∼N (o, A+ σ 2K) is normal. More details can be
found in Shabani et al. (2020).

3.3. Support vector regression (SVR) approach

This section describes the general concept of SVR mod-
eling. The SVM was initially created by Vapnik (Sain,
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Figure 1. Location of the 14 selected wind speed stations in Malaysia.

1996), and has been widely used for classification (Yin &
Hou, 2016; Citakoglu, 2021) and regression (Olatomiwa
et al., 2015) problems. In this study, the regression type of
SVM will be used, since it has been demonstrated that it
has great properties in training limited samples (Smola &
Schölkopf, 2004). Moreover, this method can be used to
uncover nonlinearity features in multivariate input and
output datasets using the kernel trick. In epsilon-SVR,
the goal is to achieve with a function f (x), which can

deviate from the present target yi at most by epsilon for
the whole learning data, and is as flat as possible. At this
time, the error remains appropriate because it is less than
epsilon, but any deviations larger than epsilon are not sat-
isfactory. In ordinary least square regressions, the goal
is to reduce errors, whereas in SVR modeling the aim
is to fit errors in a specific threshold. Additional details
regarding SVR are described in Smola and Schölkopf
(2004).
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Figure 2. Annual wind speed in Malaysia (Alor Setar).

3.4. Bagged regression trees (BTs) approach

The core of bootstrap aggregating (bagging) trees, which
was constructed by Breiman (1996), is to construct many
similar independent predictors and average the output of
the predictors to obtain the final predictions. This allows
for decreasing variance errors (Sutton, 2005). In the bag-
ging ensemble of the decision trees method, numerous
trees (single models) are combined to improve the pre-
dictive quality of themodel. The bagging trees prediction
approach is used to decrease the variation of the regres-
sion trees and to handle overfitting problems in individ-
ual trees. The initial stage in bagging trees is to create A
new training datasets of equal size by selecting samples
in a uniform way with replacement from actual training
data. Thus, every tree in the ensemble is trained indepen-
dently on the corresponding new training sets. Lastly, the
average of the entire predictions is calculated to obtain
the final forecast. The predictions of the BTs approach are
defined as (Harrou et al., 2019):

ŷ = 1
A

A∑
ι=1

fι(X) (2)

where every tree model fι is trained on the bootstrapped
dataset ι. The important steps used in calculating the BTs
predictions are defined in Algorithm 1:

Inputs: Training dataset and testing dataset, D.
Outputs: Prediction outputs.
For ι = 1, . . . ,A in training dataset do:

• Take a bootstrap replica D, from Dι

• Call decision trees withDι and received predictions ŷi
• Add y to ensemble ŷ

• Calculate final prediction: ŷ = 1
A

A∑
ι=1

ŷi

End.

PredictionBagged Trees← ŷ;

Return PredictionBagged Trees

3.5. Model evaluation

To evaluate the prediction accuracy of the models pro-
posed in the current work, various performance indi-
cators were applied, as shown in Table 2, including:
the correlation coefficient (R) (Shabani et al., 2020),
mean absolute error (MAE), root mean squared error
(RMSE) (Bokde et al., 2020), determination coefficient
(R2), Nash–Sutcliffe efficiency (NSE), mean squared
error (MSE), improvement percentage of mean absolute
error (PMAE), improvement percentage of root mean
squared error (PRMSE) (Xiwei Mi et al., 2019; Xi wei
Mi et al., 2017) and improvement percentage of mean
squared error (PMSE).

yi and ŷi represent the observed and predicted values
of wind speed in time step ι, respectively; (ȳ) and ŷi rep-
resent the mean values of the actual and predicted values
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Figure 3. General data flow diagram of the regression models. SVR = support vector regression; GPR = Gaussian process regres-
sion; BTs = bagged regression trees; R = correlation coefficient; MSE = mean squared error; NSE = Nash–Sutcliffe efficiency;
RMSE = root mean squared error; MAE = mean absolute error; PRMSE = improvement percentage of root mean squared error;
PMAE = improvement percentage of mean absolute error.
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Evaluation
metric Equation

MAE MAE =
∑n

ι=1 |yι − ŷi|
n

RMSE RMSE =
√

1

n

n∑
ι=1

(yι − ŷi)
2

R R =
∑n

ι=1(yι − ȳ)(ŷi − ŷi)√∑n
ι=1 (yι − ȳ)2

√∑n
ι=1 (ŷi − ŷi)

2

R2 R2 =
[ n∑

ι=1
(yι − ȳ)(ŷi − ŷi)

]2[ n∑
ι=1

(yι − ȳ)2
n∑

ι=1
(ŷi − ŷi)

2
]−1

NSE NSE = 1−
∑n

i=1 (ŷi − yι)
2∑n

i=1 ( yι − ȳ)2

MSE MSE = 1

n

n∑
ι=1

(yι − ŷι)2

Note: MAE = mean absolute error; RMSE = root mean squared error;
R = correlation coefficient; NSE = Nash–Sutcliffe efficiency; MSE = mean
squared error.

of wind speed in time step ι, respectively; and n is the
number of sets.

4. Results and discussion

This section contains two subsections: the results and dis-
cussion of the performance evaluation for the SVR, BTs
and GPR models, and the results and discussion of the
comparisons of these models.

4.1. Performancemachine learning techniques

The three machine learning methods were trained using
historical wind speed data obtained between 2000 and
2019. These data were arranged into maximum, mean
and minimum weekly wind speed values of the refer-
ence stations, and corresponding weeks were used. Every
dataset was split into training and checking divisions.
This process was proposed to prevent overfitting of the
systems to the training dataset (Jang et al., 1997).

In general, the goal of prediction is to investigate
the correlation between the input process variables (13
stations) and the output variable (one station) in the
training stage, thus providing the prediction value of the
output for the given unseen input dataset. More pre-
cisely, initially, the methods (SVR, BTs and GPRmodels)
were constructed using the training input and output
datasets X and y. After that, for the unseen inputs test
dataset, the built model was used to predict the input
variable “wind speed”. Lastly, the performance of pre-
diction was checked; R, MAE, MAE and RMSE are the
most commonly used metrics for checking the quality of
predictions.

The K-fold cross-validation (CV) technique, which is
often performed to provide an appropriate estimate of a
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Figure 4. Five-fold cross-validation process (Harrou et al., 2019).

model’s prediction errors, was used to construct predic-
tion models (Hastie et al., 2009). A training dataset was
split into K-folds, where each portion was used as test
data at some point (Figure 4). This allows the construc-
tion of trustworthy predictionmodels. Figure 4 presents a
K-fold cross-validation withK = 5, as used in this paper.
The presented dataset was randomly divided intoK equal
subsets. As shown in Figure 4, in iteration 1, fold 1 was
using for testing and the other folds for training. In iter-
ation 2, fold 2 was used to test the model and the others
were used for training.

This process was repeating until it was confirmed that
all folds had been used as the test dataset. The MSE was
calculated for every test sub-dataset, MSEι. The cross-
validation error is calculated as the mean of the predic-
tion errors, as:

CVerror = 1
k

k∑
ι=1

MSEι (3)

In practice, cross-validation with K = 5 usually uses
ιequal1 in model construction (Hastie et al., 2009).

To predict the maximum values of weekly wind speed
for each station, we applied the SVRmodel. The ability of
the SVRmodel to achieve the performance goal depends
on predefined internal SVR parameters, such as capacity
and gamma of kernel functions. The performance values
for each station using the SVRmodel (RMSE, MSE, NSE,
MAE, R and R2) for both training and test phases are
specified in Table 3. The MAE values, ranging from 0.2
to 0.6, vary from the observed value for each station and
test procedure. The highest MAE was observed to be 0.7
for CameronHighlands station in the test phase, whereas
the best result was 0.197785 for Muadzam Shah station
in the test phase. The best R and R2 values between the
target and output values reached 0.768 and 0.59, respec-
tively, for Muadzam Shah station in the training stage. In
the test phase, the highest values of R and R2 were 0.773

and 0.597, respectively, forKota Bharu station.At this sta-
tion a satisfactory range of NSE was reached, at 0.55476.
A value of NSE equal to 1.0 represents an ideal fit, NSE
greater than 0.75 is a very good fit, NSE of 0.64–0.74 rep-
resents a good fit, NSE of 0.5–0.64 is a satisfactory value
and NSE less than 0.5 refers to unsatisfactory prediction
(Moriasi et al., 2007). Concerning the testing phase, five
stations showed an unacceptable range of performance
(Ipoh, Kota Kinabalu, Kuching, Lubok Merbau and Siti-
awan). Lower R values, of 0.3 and 0.4, were found for
Kota Kinabalu station for the training and testing stages,
respectively. At Sitiawan station, for the training proce-
dure, preferable values of RMSE and MSE, of 0.29 and
0.088, respectively, were obtained, while regarding the
testing procedure a satisfactory value of NSE, at 0.534,
and the lowest (better) values of RMSE and MSE were
found, at 0.265645 and 0.070567, for Muadzam Shah
station.

The results in Table 3 show that the predictive model
BTs demonstrates good performance, with the lowest
RMSE in the training phase, with correlation coefficients
of more than 0.5 in all stations except for one, Kota Kina-
balu, which showed an unsatisfactory fit, with NSE and
R2 values of 0.15 and 0.095, respectively, while in the
testing phase, in addition to this station, the predicted
maximum weekly wind speed values at three other sta-
tions (Ipoh, Kuching and LubokMerbau,) using the other
13 stations as input, displayed unacceptable performance.

The third model implemented in this study, GPR,
showed better performance than the othermodels in pre-
dictingmaximumwind speed values, as shown inTable 3.
As seen from the training procedure, the maximum and
minimum values of RMSE range between 0.3 and 0.8 at
all stations. It can also be noted that the lowest value of
MAE is 0.22, at Sitiawan station. Among all the output
results for prediction at all stations, the R, R2 and NSE
at Kota Kinabalu station did not achieve satisfactory val-
ues in either the training or testing stages. Better values
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Table 3. Performance evaluation of the training and testing procedures at maximumwind speed.

Training procedure Testing procedure

Station RMSE MSE MAE R2 R RMSE MSE NSE MAE R2 R

SVR
Alor Setar 0.36292 0.13171 0.26235 0.57 0.75498 0.30476 0.09288 0.54672 0.23686 0.55295 0.74361
Bayan Lepas 0.51854 0.26888 0.37586 0.46 0.67823 0.51401 0.26421 0.28309 0.37973 0.36704 0.60584
Cameron Highlands 0.84839 0.71976 0.64937 0.45 0.67082 1.05910 1.12170 0.33047 0.71446 0.42482 0.65178
Ipoh 0.35734 0.12769 0.27085 0.35 0.59161 0.38492 0.14816 0.02445 0.27368 0.10743 0.32776
Klia Sepang 0.50318 0.25319 0.36647 0.47 0.68557 0.48569 0.23589 0.47774 0.34772 0.48231 0.69449
Kota Bharu 0.79622 0.63397 0.54859 0.5 0.70711 0.82080 0.67371 0.55476 0.49413 0.59768 0.77310
Kota Kinabalu 0.56189 0.31572 0.40349 0.15 0.38730 0.58728 0.34490 0.04397 0.44740 0.08978 0.29963
Kuantan 0.36290 0.13170 0.27548 0.41 0.64031 0.31146 0.09700 0.43024 0.24817 0.43251 0.65765
Kuching 0.35244 0.12421 0.26064 0.37 0.60828 0.33982 0.11548 0.08501 0.25828 0.12591 0.35484
Lubok Merbau 0.32709 0.10699 0.24581 0.41 0.64031 0.32928 0.10842 0.11624 0.22074 0.17141 0.41402
Muadzam Shah 0.35510 0.12610 0.24111 0.59 0.76812 0.26565 0.07057 0.53409 0.19779 0.55121 0.74244
Pulau Langkawi 0.76255 0.58149 0.48582 0.58 0.76158 0.58553 0.34285 0.50145 0.45167 0.54057 0.73523
Sitiawan 0.29354 0.08617 0.22699 0.4 0.63246 0.27081 0.07334 0.13605 0.20793 0.20916 0.45734
Subang 0.37250 0.13876 0.28581 0.42 0.64807 0.37970 0.14417 0.32660 0.28406 0.34383 0.58637

BTs
Alor Setar 0.34667 0.12018 0.25436 0.61 0.78103 0.28811 0.08301 0.59641 0.22624 0.59651 0.77234
Bayan Lepas 0.50979 0.25989 0.37872 0.48 0.69282 0.47041 0.22128 0.40264 0.35481 0.44031 0.66356
Cameron Highlands 0.83248 0.69303 0.64357 0.47 0.68557 1.05203 1.10678 0.34159 0.71727 0.40623 0.63736
Ipoh 0.36224 0.13122 0.27333 0.34 0.58310 0.36640 0.13425 0.11605 0.27032 0.17453 0.41776
Klia Sepang 0.51615 0.26641 0.38182 0.44 0.66333 0.45386 0.20599 0.54394 0.33018 0.55684 0.74622
Kota Bharu 0.76545 0.58592 0.52703 0.54 0.73485 0.78343 0.61377 0.59437 0.50626 0.62574 0.79104
Kota Kinabalu 0.56024 0.31387 0.40870 0.15 0.38730 0.57029 0.32524 0.09716 0.44241 0.10236 0.31994
Kuantan 0.35129 0.12341 0.26784 0.44 0.66333 0.30105 0.09063 0.56668 0.23494 0.47672 0.69045
Kuching 0.34027 0.11578 0.25388 0.41 0.64031 0.32037 0.10264 0.40034 0.24812 0.22697 0.47641
Lubok Merbau 0.32010 0.10246 0.24407 0.43 0.65574 0.32983 0.10879 0.26766 0.23370 0.19977 0.44696
Muadzam Shah 0.36366 0.13225 0.25941 0.57 0.75498 0.23526 0.05535 0.63457 0.17967 0.64454 0.80283
Pulau Langkawi 0.75463 0.56946 0.50723 0.59 0.76812 0.61377 0.37671 0.45221 0.48272 0.56378 0.75085
Sitiawan 0.29712 0.08828 0.22913 0.38 0.61644 0.26092 0.06808 0.19796 0.19577 0.28074 0.52985
Subang 0.37244 0.13871 0.28947 0.42 0.64807 0.35250 0.12426 0.41961 0.26389 0.42069 0.64860

GPR
Alor Setar 0.33012 0.10898 0.24860 0.65 0.80623 0.29108 0.08473 0.58650 0.23322 0.60072 0.77506
Bayan Lepas 0.48239 0.23270 0.36234 0.53 0.72801 0.47155 0.22236 0.39663 0.35631 0.44347 0.66593
Cameron Highlands 0.78779 0.62061 0.61154 0.53 0.72801 1.00190 1.00381 0.40084 0.68729 0.45585 0.67517
Ipoh 0.34725 0.12058 0.26534 0.39 0.62450 0.36487 0.13313 0.12340 0.26738 0.16592 0.40734
Klia Sepang 0.49881 0.24881 0.36656 0.48 0.69282 0.46718 0.21826 0.51677 0.35293 0.51817 0.71984
Kota Bharu 0.75850 0.57532 0.52655 0.55 0.74162 0.76225 0.58102 0.61601 0.49378 0.62433 0.79015
Kota Kinabalu 0.55094 0.30354 0.40351 0.18 0.42426 0.58198 0.33870 0.06116 0.45237 0.08214 0.28660
Kuantan 0.34582 0.11595 0.26444 0.46 0.67823 0.31387 0.09851 0.42139 0.25011 0.42644 0.65303
Kuching 0.34876 0.12163 0.26540 0.38 0.61644 0.34396 0.11831 0.06259 0.26577 0.13804 0.37154
Lubok Merbau 0.30416 0.09251 0.23482 0.49 0.70000 0.31545 0.09951 0.18890 0.21831 0.25447 0.50445
Muadzam Shah 0.32019 0.10252 0.24670 0.66 0.81240 0.25950 0.06734 0.55541 0.19852 0.57420 0.75776
Pulau Langkawi 0.72367 0.52370 0.49030 0.62 0.78740 0.66184 0.43803 0.36304 0.49807 0.48444 0.69602
Sitiawan 0.28694 0.08234 0.22447 0.42 0.64807 0.26874 0.07222 0.14921 0.21052 0.22041 0.46948
Subang 0.36782 0.13529 0.28518 0.44 0.66333 0.35722 0.12761 0.40398 0.27292 0.40810 0.63883

Note: RMSE = root mean squared error; MSE = mean squared error; MAE = mean absolute error; R = correlation coefficient; NSE = Nash–Sutcliffe efficiency;
SVR = support vector regression; BTs = bagged regression trees; GPR = Gaussian process regression.

of NSE andR2 of more than 0.6 were found at Kota Bharu
station in the testing procedure.

Regarding the predicted mean wind speed, the wind
speeds of 13 independent stations were utilized as inputs,
whereas the wind speeds of the target station were uti-
lized as the output in the SVR model. The findings
obtained with this approach were compared with the
measurement dataset. Errors found in the SVR method
arewithin satisfactory limits for prediction at each station
in the training procedure, whereR values ranged between
0.5 and 0.8 (Table 4). Regarding the best value of NSE
in the testing procedure, it was found to be 0.7, repre-
senting good fit, at Pulau Langkawi station. However, as

mentioned before, in the testing procedure, forecasting
of three stations (Kota Kinabalu, Ipoh and Kuching) did
not achieve an acceptable range of performance, with R
values of 0.187306, 0.441994 and 0.44375, respectively.

By applying the BTs ensemble method, better results
were obtained compared with the previous model, SVR,
at the 14 forecasting stations. The training procedure saw
the maximum determination coefficient of 0.73 obtained
at Pulau Langkawi station, and the minimum determi-
nation coefficient was found to be 0.23 at Kota Kin-
abalu station. The values of MAE ranged from 0.16
at Muadzam Shah to 0.34 at Cameron Highlands sta-
tion. In the testing stage, a good value of NSE, with
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Table 4. Performance evaluation of the training and testing procedures at mean wind speed.

Training procedure Testing procedure

Station RMSE MSE MAE R2 R RMSE MSE NSE MAE R2 R

SVR
Alor Setar 0.25259 0.06380 0.17784 0.64 0.8 0.21027 0.04421 0.62775 0.16769 0.63189 0.79492
Bayan Lepas 0.29786 0.08872 0.20958 0.58 0.76158 0.29066 0.08449 0.41419 0.22376 0.50391 0.70986
Cameron Highlands 0.44483 0.19787 0.32709 0.56 0.74833 0.55208 0.30479 0.44680 0.38211 0.55301 0.74365
Ipoh 0.22849 0.05221 0.17153 0.57 0.75498 0.22575 0.05096 0.01388 0.16948 0.19536 0.44199
Klia Sepang 0.27978 0.07828 0.20489 0.49 0.70000 0.25141 0.06321 0.48841 0.18622 0.49720 0.70513
Kota Bharu 0.42433 0.18005 0.28188 0.6 0.77460 0.50480 0.25483 0.55146 0.32589 0.56504 0.75169
Kota Kinabalu 0.27082 0.07334 0.19670 0.22 0.46904 0.36478 0.13306 −0.00877 0.27203 0.03508 0.18731
Kuantan 0.23479 0.05513 0.17343 0.61 0.78103 0.23614 0.05576 0.48893 0.19088 0.49889 0.70632
Kuching 0.21733 0.04723 0.15740 0.62 0.78740 0.20983 0.04403 −0.13595 0.16463 0.19691 0.44375
Lubok Merbau 0.20823 0.04336 0.15951 0.5 0.70711 0.17246 0.02974 0.30864 0.12976 0.39410 0.62777
Muadzam Shah 0.23310 0.05433 0.14874 0.65 0.80623 0.17411 0.03031 0.56669 0.13227 0.58021 0.76172
Pulau Langkawi 0.38938 0.15162 0.25266 0.74 0.86023 0.32000 0.10240 0.70013 0.25229 0.73758 0.85882
Sitiawan 0.19499 0.03802 0.15002 0.57 0.75498 0.17281 0.02986 0.21989 0.12494 0.28879 0.53739
Subang 0.22497 0.05061 0.16772 0.51 0.71414 0.22022 0.04850 0.40586 0.16183 0.41530 0.64444

BTs
Alor Setar 0.23840 0.05684 0.17309 0.68 0.82462 0.19851 0.03941 0.66822 0.16043 0.66857 0.81766
Bayan Lepas 0.28944 0.08378 0.21884 0.60 0.77460 0.29066 0.08449 0.41419 0.22376 0.50391 0.70986
Cameron Highlands 0.46258 0.21398 0.34943 0.53 0.72801 0.56920 0.32399 0.41196 0.37878 0.47282 0.68762
Ipoh 0.23935 0.05729 0.17713 0.53 0.72801 0.21560 0.04648 0.10060 0.16213 0.19980 0.44699
Klia Sepang 0.28412 0.08072 0.21171 0.48 0.69282 0.24798 0.06149 0.50228 0.17932 0.51853 0.72009
Kota Bharu 0.43468 0.18895 0.29302 0.58 0.76158 0.52481 0.27543 0.51520 0.32989 0.56045 0.74863
Kota Kinabalu 0.26884 0.07228 0.19702 0.23 0.47958 0.35634 0.12698 0.03738 0.27188 0.05432 0.23306
Kuantan 0.24023 0.05771 0.18135 0.59 0.76812 0.20582 0.04236 0.61172 0.16482 0.61175 0.78214
Kuching 0.20747 0.04304 0.15380 0.65 0.80623 0.19391 0.03760 0.02996 0.15512 0.31880 0.56462
Lubok Merbau 0.21434 0.04594 0.16735 0.47 0.68557 0.18558 0.03444 0.19944 0.13627 0.30549 0.55272
Muadzam Shah 0.22047 0.04861 0.15344 0.68 0.82462 0.15122 0.02287 0.67312 0.11262 0.68707 0.82890
Pulau Langkawi 0.39678 0.15743 0.26194 0.73 0.85440 0.36587 0.13386 0.60799 0.28510 0.68722 0.82899
Sitiawan 0.20905 0.04370 0.16184 0.51 0.71414 0.16406 0.02691 0.29693 0.12367 0.38368 0.61942
Subang 0.23514 0.05529 0.17776 0.46 0.67823 0.21294 0.04535 0.44445 0.15738 0.44989 0.67074

GPR
Alor Setar 0.21181 0.04486 0.16032 0.74 0.86023 0.21410 0.04584 0.61406 0.16826 0.62464 0.79034
Bayan Lepas 0.26071 0.06797 0.19741 0.68 0.82462 0.27863 0.07763 0.46170 0.21548 0.56082 0.74888
Cameron Highlands 0.41693 0.17383 0.31324 0.62 0.78740 0.51782 0.26814 0.51332 0.36038 0.56029 0.74853
Ipoh 0.22109 0.04888 0.16933 0.60 0.77460 0.21339 0.04553 0.11895 0.16417 0.24501 0.49498
Klia Sepang 0.27239 0.07420 0.20057 0.52000 0.72111 0.25735 0.06623 0.46396 0.19204 0.49365 0.70260
Kota Bharu 0.41236 0.17004 0.27980 0.62 0.78740 0.50089 0.25089 0.55838 0.33143 0.56643 0.75261
Kota Kinabalu 0.26471 0.07002 0.19547 0.26 0.50990 0.35624 0.12691 0.03789 0.26849 0.05879 0.24246
Kuantan 0.22147 0.04905 0.16668 0.65 0.80623 0.22970 0.05276 0.51641 0.18061 0.52799 0.72663
Kuching 0.20542 0.04220 0.15346 0.66 0.81240 0.21838 0.04769 −0.23041 0.17501 0.25207 0.50206
Lubok Merbau 0.19572 0.03831 0.15464 0.56 0.74833 0.16794 0.02820 0.34444 0.12819 0.41432 0.64368
Muadzam Shah 0.20256 0.04103 0.14003 0.73 0.85440 0.16357 0.02676 0.61754 0.12375 0.64608 0.80379
Pulau Langkawi 0.36393 0.13244 0.24158 0.77 0.87750 0.34300 0.11765 0.65547 0.26741 0.72328 0.85046
Sitiawan 0.19066 0.03635 0.14803 0.59 0.76812 0.16779 0.02816 0.26453 0.12242 0.33322 0.57726
Subang 0.22100 0.04884 0.16581 0.53 0.72801 0.20846 0.04346 0.46761 0.15775 0.47076 0.68612

Note: RMSE = root mean squared error; MSE = mean squared error; MAE = mean absolute error; R = correlation coefficient; NSE = Nash–Sutcliffe efficiency;
SVR = support vector regression; BTs = bagged regression trees; GPR = Gaussian process regression.

0.67, was found at Muadzam Shah station. In the testing
stage, the results were less satisfactory compared with the
training stage, but still obtained an acceptable range of
errors.

Table 4 shows that the GPR technique could effectively
predict themeanweekly wind speeds of any target station
utilizing the measurement data of the other 13 stations as
in the training phase for each station.

In the context of predictingminimumwind speed val-
ues at the 14 independent measurement stations, SVR
performed well and generatedminor prediction errors in
13 stations (Table 5). The minimum value of RMSE was
obtained at Sitiawan station, with 0.22203, which is the

best value in the training phase. In contrast, the best R2

value was moderate, at 0.59, at Pulau Langkawi station
compared with the other stations. It can be observed that
the lowest value of MAE was 0.153, at Muadzam Shah
station. The output results of SVR in the testing phase
showed a lower value of R2 obtained at Kota Kinabalu
station, which indicates unsuccessful prediction at this
station.

According to the implementation of the ensemble BTs,
the results obtained indicate that the correlation coeffi-
cients for only two stations (Kota Kinabalu and Subang)
obtained less than the moderate value of 0.5 in the train-
ing stage. On the other hand, in the testing procedure,
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Table 5. Performance evaluation of the training and testing procedures at minimumwind speed.

Training procedure Testing procedure

Station RMSE MSE MAE R2 R RMSE MSE NSE MAE R2 R

SVR
Alor Setar 0.28011 0.07846 0.21084 0.46 0.67823 0.25937 0.06727 0.31334 0.19658 0.33852 0.58182
Bayan Lepas 0.30416 0.09251 0.22770 0.40 0.63246 0.29731 0.08839 0.20231 0.23260 0.29375 0.54199
Cameron Highlands 0.37358 0.13956 0.25832 0.26 0.50990 0.45279 0.20501 0.13933 0.30851 0.23351 0.48323
Ipoh 0.26819 0.07193 0.20990 0.44 0.66333 0.28242 0.07976 −0.25598 0.22005 0.02733 0.16531
Klia Sepang 0.28955 0.08384 0.22167 0.22 0.46904 0.23385 0.05468 0.01316 0.18616 0.13601 0.36880
Kota Bharu 0.43081 0.18560 0.32234 0.22 0.46904 0.51585 0.26610 0.13204 0.34020 0.19645 0.44322
Kota Kinabalu 0.23686 0.05610 0.18010 0.16 0.40000 0.34717 0.12053 0.00073 0.27464 0.01422 0.11924
Kuantan 0.28590 0.08174 0.22148 0.41 0.64031 0.26393 0.06966 0.33994 0.21302 0.35879 0.59899
Kuching 0.23851 0.05689 0.18326 0.55 0.74162 0.23724 0.05628 −0.48375 0.18993 0.01732 0.13159
Lubok Merbau 0.23437 0.05493 0.18539 0.33 0.57446 0.22077 0.04874 −0.07805 0.17320 0.14165 0.37636
Muadzam Shah 0.22237 0.04945 0.15364 0.44 0.66333 0.17671 0.03123 0.30718 0.13265 0.33803 0.58141
Pulau Langkawi 0.35903 0.12890 0.23858 0.59 0.76812 0.33646 0.11320 0.42494 0.26209 0.49775 0.70551
Sitiawan 0.22203 0.04930 0.17145 0.45 0.67082 0.20769 0.04313 −0.10026 0.15949 0.11633 0.34107
Subang 0.26005 0.06763 0.19370 0.24 0.48990 0.23235 0.05399 0.03885 0.18025 0.07563 0.27501
BTs
Alor Setar 0.26461 0.07002 0.20024 0.52 0.72111 0.24224 0.05868 0.40104 0.18395 0.42016 0.64820
Bayan Lepas 0.30031 0.09019 0.22640 0.42 0.64807 0.28372 0.08050 0.27356 0.22738 0.34038 0.58342
Cameron Highlands 0.36667 0.13445 0.25823 0.29 0.53852 0.42375 0.17957 0.24617 0.29616 0.30271 0.55019
Ipoh 0.26549 0.07048 0.20819 0.45 0.67082 0.28354 0.06278 0.01143 0.19840 0.08040 0.25056
Klia Sepang 0.28888 0.08345 0.21940 0.22 0.46904 0.22376 0.05007 0.09646 0.17267 0.19134 0.43743
Kota Bharu 0.42130 0.17749 0.31689 0.25 0.50000 0.47527 0.22588 0.26323 0.33012 0.31952 0.56526
Kota Kinabalu 0.24276 0.05893 0.18319 0.12 0.34641 0.34645 0.12003 0.00490 0.27257 0.01383 0.11761
Kuantan 0.28658 0.08213 0.22477 0.40 0.63246 0.23249 0.05405 0.48781 0.18945 0.50178 0.70836
Kuching 0.22952 0.05268 0.17578 0.58 0.76158 0.21316 0.04544 −0.19791 0.17262 0.08450 0.29069
Lubok Merbau 0.24126 0.05821 0.19082 0.29 0.53852 0.20058 0.04023 0.11013 0.15580 0.19335 0.43972
Muadzam Shah 0.20854 0.04349 0.15231 0.51 0.71414 0.17135 0.02936 0.34855 0.12595 0.37087 0.60899
Pulau Langkawi 0.35180 0.12376 0.23314 0.60 0.77460 0.33911 0.11499 0.41586 0.26443 0.51442 0.71723
Sitiawan 0.22644 0.05128 0.17778 0.43 0.65574 0.20738 0.04301 −0.09700 0.16700 0.13396 0.36601
Subang 0.26749 0.07155 0.19944 0.20 0.44721 0.22276 0.04962 0.11657 0.17452 0.12666 0.35589
GPR
Alor Setar 0.25776 0.06644 0.19874 0.55 0.74162 0.25689 0.06599 0.32643 0.19729 0.36558 0.60464
Bayan Lepas 0.29476 0.08688 0.22272 0.44 0.66333 0.28588 0.08173 0.26245 0.22381 0.31771 0.56366
Cameron Highlands 0.36218 0.13118 0.25954 0.30 0.54772 0.42375 0.17957 0.24617 0.29616 0.30271 0.55019
Ipoh 0.26237 0.06884 0.20467 0.46 0.67823 0.26305 0.06919 −0.08956 0.20900 0.06856 0.26183
Klia Sepang 0.28656 0.08212 0.21730 0.24 0.48990 0.22497 0.05061 0.08669 0.17615 0.18701 0.43245
Kota Bharu 0.41591 0.17298 0.31710 0.27 0.51962 0.47097 0.22181 0.27649 0.32407 0.33423 0.57812
Kota Kinabalu 0.23620 0.05579 0.17693 0.17 0.41231 0.34455 0.11871 0.01579 0.27053 0.02065 0.14369
Kuantan 0.28057 0.07872 0.21675 0.43 0.65574 0.23808 0.05668 0.46292 0.19209 0.46766 0.68386
Kuching 0.23272 0.05416 0.18114 0.57 0.75498 0.22585 0.05101 −0.34476 0.17853 0.06427 0.25351
Lubok Merbau 0.22991 0.05286 0.18310 0.35 0.59161 0.20661 0.04269 0.05581 0.16208 0.19800 0.44498
Muadzam Shah 0.20753 0.04307 0.15075 0.51 0.71414 0.18144 0.03292 0.26957 0.13498 0.38115 0.61737
Pulau Langkawi 0.33927 0.11510 0.22939 0.63 0.79373 0.31563 0.09962 0.49394 0.24572 0.56585 0.75223
Sitiawan 0.21592 0.04662 0.17060 0.48 0.69282 0.20663 0.04270 −0.08907 0.15939 0.14331 0.37856
Subang 0.25790 0.06651 0.19433 0.26 0.50990 0.22872 0.05231 0.06862 0.17862 0.10155 0.31868

Note: RMSE = root mean squared error; MSE = mean squared error; MAE = mean absolute error; R = correlation coefficient; NSE = Nash–Sutcliffe efficiency;
SVR = support vector regression; BTs = bagged regression trees; GPR = Gaussian process regression.

we mentioned previously that only Kota Kinabalu sta-
tion showed unacceptable prediction, so when applying
the BTs model, the high error in prediction was obtained
with the lower value of R2. Moreover, BTs at Muadzam
Shah station has the lowest error or, more precisely, the
best value of MSE, at 0.0293.

Based on Table 5, the GPR model provides the best
outcomes compared with BTs and SVR in predicting
minimum wind speed values. So, among all stations,
Pulau Langkawi displays the vest performance, with good
values of R2 in training and testing, of 0.63 and 0.57,
respectively. The optimum value of RMSE were found at
Muadzam Shah station, with 0.20 and 0.13, respectively,
in the training and testing procedures.

The main important point to take from Table 5 is that
the performance evaluation in the training phase showed
more accurate results than the performance evaluation in
the testing phase.

However, we can see from all of the above results that
the GPR model can provide a good modeling method
and show better performance than SVR and BTs in (min-
imum, mean and maximum) wind speed prediction.
So, to better understand the relationship between actual
measurement data and predicted values for each station
plot, the observed values were drawn for each station.
The daily wind speed varies rapidly from day to day, so
even though the prediction of GPR for most of the sta-
tions showed good agreement with the observed values,
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Figure 5. Predicted and actual in testing procedure using the
Gaussian process regression (GPR) model.

the model at only one station, i.e. Kota Kinabalu, did not
show good prediction performance. In other words, it
can be seen from Figure 5 that the outcomes of the pre-
dictions have a close agreement with the corresponding
measurements for all 13 stations.

4.2. Comparisonmodels

Finally, after the wind speed had been predicted based
on the three regression models, and performed in three
stages, as summarized in Tables 3–5, to further demon-
strate the prediction performance of the training pro-
cedure using the three models, the PRMSE, PMSE and
PMAE were adopted for analysis, as given in Tables 6–8.

The improvement percentages of the comparison
models using the GPR model in predicting maximum
wind speed values are shown in Table 6. As mentioned
earlier, the only unsatisfactory prediction was obtained
at Kota Bharu station. Otherwise, the GPR model has
acceptable prediction accuracy at all stations, as it could

Table 6. Improvement percentages for comparing models with
the Gaussian process regression (GPR) model at maximum wind
speed prediction.

GPR over SVR GPR over BTs

Station PRMSE PMSE PMAE PRMSE PMSE PMAE

Alor Setar 9 17 5 5 9 2
Bayan Lepas 7 13 4 5 10 4
Cameron Highlands 7 14 6 5 10 5
Ipoh 3 6 2 4 8 3
Klia Sepang 1 2 0 3 7 4
Kota Kinabalu 5 9 4 1 2 0
Kota Bharu 2 4 0 2 3 1
Kuantan 5 12 4 2 6 1
Kuching 1 2 −2 −2 −5 −5
Lubok Merbau 7 14 4 5 10 4
Muadzam Shah 10 19 −2 12 22 5
Pulau Langkawi 5 10 −1 4 8 3
Sitiawan 2 4 1 3 7 2
Subang 1 3 0 1 2 1

Note: SVR = support vector regression; BTs = bagged regression
trees; PRMSE = improvement percentage of root mean squared
error; PMSE = improvement percentage of mean squared error;
PMAE = improvement percentage of mean absolute error.

Table 7. Improvement percentages for comparing models with
the Gaussian process regression (GPR)model atmeanwind speed
prediction.

GPR over SVR GPR over BTs

Station PRMSE PMSE PMAE PRMSE PMSE PMAE

Alor Setar 16 30 10 11 21 7
Bayan Lepas 12 23 6 10 19 10
Cameron Highlands 6 12 4 10 19 10
Ipoh 3 6 1 8 15 4
Klia Sepang 3 5 2 4 8 5
Kota Kinabalu 3 6 1 5 10 5
Kota Bharu 2 5 1 2 3 1
Kuantan 6 11 4 8 15 8
Kuching 5 11 3 1 2 0
Lubok Merbau 6 12 3 9 17 8
Muadzam Shah 13 24 6 8 16 9
Pulau Langkawi 7 13 4 8 16 8
Sitiawan 2 4 1 9 17 9
Subang 2 4 1 6 12 7

Note: SVR = support vector regression; BTs = bagged regression
trees; PRMSE = improvement percentage of root mean squared
error; PMSE = improvement percentage of mean squared error;
PMAE = improvement percentage of mean absolute error.
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Table 8. Improvement percentages for comparing models with
the Gaussian process regression (GPR) model at minimum wind
speed prediction.

GPR over SVR GPRover BTs

Station PRMSE PMSE PMAE PRMSE PMSE PMAE

Alor Setar 8 15 6 3 5 1
Bayan Lepas 3 6 2 2 4 2
Cameron Highlands 3 6 0 1 2 −1
Ipoh 2 4 2 1 2 2
Klia Sepang 1 2 2 1 2 1
Kota Kinabalu 3 7 2 1 3 0
Kota Bharu 0 1 2 3 5 3
Kuantan 2 4 2 2 4 4
Kuching 2 5 1 −1 −3 −3
Lubok Merbau 2 4 1 5 9 4
Muadzam Shah 7 13 2 0 1 1
Pulau Langkawi 6 11 4 4 7 2
Sitiawan 3 5 0 5 9 4
Subang 1 2 0 4 7 3

Note: SVR = support vector regression; BTs = bagged regression
trees; PRMSE = improvement percentage of root mean squared
error; PMSE = improvement percentage of mean squared error;
PMAE = improvement percentage of mean absolute error.

gain more accurate results than the SVR model and BTs
model in predicting the maximum weekly wind speed.
The outcomes of the GPR model are better than those
of the SVR approach. For example, compared to the
SVM approach, the RMSE and MSE of those models are
reduced at all stations (Table 6). For the MAE of pre-
diction results for Kuching, Muadzam Shah and Pulau
Langkawi, the SVR model increased by 2%, 2% and 1%,
respectively.

On the other hand, for the BTs model, the RMSEs
are greatly reduced by 22% at Muadzam Shah station.
At Kuching station, the RMSE, MSE and MAE for the
BTs model are increased by 2%, 5% and 5%, respectively.
However, for all other 13 stations, the prediction RMSE,
MSE and MAE are reduced for the proposed model BTs.

Regarding improvement in predicting the mean
weeklywind speed, it can see fromTable 7 that the predic-
tion outcomes of theGPRmethod are better than those of
SVR and BTs at all prediction stations. This phenomenon

Figure 6. Scatter diagram of the predicted and measured values of wind speeds.
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implies that GPR components could improve the predic-
tion performance of the proposed method. For instance,
it can be seen that the high MSE was reduced at Alor
Setar, with 30% and 21% of the proposed SVR and BTs
models, respectively.

Moreover, the predictionfindings of theGPRapproach
are better than those of the SVR approach in predicting
minimum weekly wind speed at all stations, as shown
in Table 8. For instance, the MSE at Alor Setar station
reduced by 15%comparedwith the proposedmodel SVR.
Compared to the BTs model, only the prediction results
of Kuching station have slightly increased, by 1%, 3%
and 3% of the proposed model BTs, for RMSE, MSE and
MAE, respectively.

Figure 6 shows the results of scatter diagrams for the
best model, which is the GPR model at four selected sta-
tions. At the end of this research, we may conclude that
this approach seems to be a promising tool for predicting
wind speed. It could help management and control in the
renewable energy field by allowing managers to choose
an appropriate station to predict missing values of wind
speed for the target station, based on the relationship
between the target station and reference station. The ben-
efit of this method is that if the requisite wind speed data
for reference stations can be obtained, the future wind
speeds of the target station could be predicted directly
and acceptably without using any topographical details
or further meteorological data.

5. Conclusion

As a crucial issue in the wind energy industry, wind
speed prediction plays an essential role in optimum plan-
ning and wind energy production and conversion man-
agement. In this study, wind speed data, arranged into
weekly minimum, mean and maximum values from 13
different stations, were applied as inputs, whereas the
wind speed of the target station was applied as the output
in three machine learning models. Even though predic-
tion at Kota Kinabalu station showed an unsatisfactory
level of accuracy using minimum and maximum wind
speed values, this prediction model has been successfully
employed at 14 measuring stations located in Malaysia
using mean weekly wind speed data. Based on a five-
fold cross-validation testing design, the GPR model per-
formed better than the BT and SVR models. However,
although the proposed model could provide good pre-
diction accuracy, the coefficient of determination (R) was
relatively low. Therefore, it is recommended to integrate
the model proposed in this study with a preprocessing
method or an optimization algorithm to improve the
correlation between the predicted values and the actual
values. In addition, future work could apply novel types

ofmachine learning algorithms that aremore appropriate
for time-series prediction. Furthermore, implementing
other data-driven techniques for predicting wind speed
at stations can be useful.
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