Tackling aging by using microRNA as a target and a tool

Wing-Fu Lai^{a,b,*}, Marie Lin^b, Wing-Tak Wong^a

5 a. Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic

- University, Hong Kong Special Administrative Region, China
- 7 b. Health Science Centre, Shenzhen University, Shenzhen, China
- 8 9

10

6

1 2

3 4

* Corresponding author: *E-mail address:* rori0610@graduate.hku.hk

11 Abstract

MicroRNA (miRNA) is a class of short non-coding RNA that regulates gene expression 12 at the post-transcriptional level. Evidence on age-associated changes in miRNA 13 expression has been collected in models ranging from nematodes to humans; however, 14 little discussions have been made to exploit the technical demands of turning the 15 knowledge of miRNA biology into anti-aging therapies. This review provides a 16 snapshot of the current understanding of the roles of miRNA in modulating the aging 17 process. Major chemical techniques, which are applicable to manipulate the miRNA 18 structure and to develop delivery systems for intervention execution, will also be 19 discussed. Finally, technical needs to be met for bench-to-clinic translation of miRNA-20 based interventions will be highlighted for future research. 21

22

23 Keywords

24 Aging, cellular senescence, miRNA, gene delivery, genetic manipulation

25 26 **Ge**i

Genetic manipulation to combat aging The process of aging is caused not only by the accumulation of mutations that hamper 27 proper functioning of normal genes but also by the age-associated alterations at the 28 epigenetic level. The occurrence of the latter results from a variety of genetic changes, 29 ranging from DNA methylation to chromatin remodelling. For many years, diverse 30 approaches have been reported for genetic manipulation, including the use of small 31 interfering RNA (siRNA) for gene silencing to the application of expression vectors for 32 gene augmentation. Among these, short and non-coding single-stranded RNA 33 consisting of around 18-25 nucleotides, namely microRNA (miRNA), displays 34 promising application potential because it cannot only be used as a tool to mediate gene 35 silencing but has also play regulatory roles in different biological processes (e.g. cell 36 proliferation, apoptosis, development, and differentiation) [1-8]. As a matter of fact, 37 alterations in miRNA expression are related not only to age-related diseases [9, 10] but 38 also to aging per se [11-14]. This has been revealed by an earlier study on peripheral 39 blood mononuclear cells (PBMCs, see Glossary) which demonstrated that a cohort 40 of 21 different miRNA molecules were up-regulated during human aging and 144 41 miRNA molecules were suppressed [15]. This study suggested the feasibility of using 42 miRNA as an endogenous therapeutic target for the development of interventions. 43

44

Apart from this, traditionally miRNA identification has mainly been done by using the
hybridization-based array method. The efficiency is far from satisfactory which has
impeded the development of miRNA-based anti-aging therapies. Recently, owing to the
increased accessibility and affordability of commercial platforms (e.g., ABI's SOLiD,
Roche's 454/FLX system, and Illumina's Genome Analyzer) for parallel sequencing,

50 high-throughput scanning of changes in miRNA expression has been facilitated [16,

17]. The efficiency of identifying the targets of miRNA has been further facilitated by 51 using HITS-CLIP (i.e., high-throughput sequencing of RNA isolated by crosslinking 52 immunoprecipitation) [18-20] and PAR-CLIP (i.e., photoactivatable-ribonucleoside-53 enhanced crosslinking and immunoprecipitation) [21, 22]. Despite this, little efforts 54 have been made to exploit the feasibility and technical demands of turning the 55 expanding knowledge of miRNA biology into anti-aging therapies. As a matter of fact, 56 aging is a complex process taking place at cellular, tissue, and organ levels; however, 57 we will focus our discussions only on aging at the cellular level. Recognizing cells as 58 the most fundamental units of an organism, we will discuss major principles of 59 designing miRNA structures, followed by a discussion on the possible use of miRNA 60 as a target and a tool in modulating the aging process in cells with the intent to 61 illuminate a new direction for the future development of anti-aging medicine. 62

63

64 Strategies to enhance miRNA performance

The effect of miRNA in gene silencing is largely mediated by the specific binding of 65 miRNA to the miRISC complex (Box 1). To enhance this binding, various strategies 66 67 have been proposed to chemically modify miRNA molecules. Owing to the presence of ribonucleases, naked miRNA in the blood stream is degraded very easily [23]. To 68 improve the stability, a number of chemical derivatives of RNA molecules have been 69 developed. Phosphorothioate oligodeoxynucleotides (ODNs), in which one of the non-70 bridging oxygen in the phosphate group is replaced with sulfur [24], are good examples 71 of RNA derivatives. Compared to naked miRNA, they possess higher resistance to 72 nuclease degradation [25, 26]. Unfortunately, the half-lives of many of them are still 73 very short. This has been revealed by the case of pentadecamers, whose half-lives in 74 adult human serum and the cell post-mitochondrial extract have been found to be less 75 than 10 hours [24]. Together with their non-specific effects on cell growth inhibition 76 and their low affinity to mRNA, phosphorothioate ODNs have not been adequately 77 optimized for therapeutic use [27]. To reduce the clearance from tissues, 2'-O-78 methoxyethyl modification has been incorporated into the backbone 79 of phosphorothioate ODNs [25]. More recently, attempts have been made to introduce 2'-80 O-methyl groups to the ribose moiety of the phosphorothioate ODN [28]. The generated 81 20-mer ODN has been found to have less non-specific inhibitory effects on cell growth, 82 and has targeted to sites 109 and 277 of bcl-2 mRNA effectively [28]. These 83 modifications have greatly enhanced the potential of phosphorothioate ODNs in 84 therapeutic applications. 85

86

100

Apart from phosphorothioate ODNs, other examples of RNA derivatives include 87 locked nucleic acid (LNA) oligonucleotides [29] and peptide nucleic acids (PNAs) 88 [30]. The clinical applicability of LNA oligonucleotides has been substantiated by the 89 case of an LNA-based therapeutic, namely Miravirsen (Santaris Pharma, Hørsholm, 90 Denmark), on which clinical trials have been undertaken to evaluate the possible use in 91 treating hepatitis C virus (HCV) infection (ClinicalTrials.gov identifier NCT01200420) 92 [31, 32]. PNAs are uncharged oligonucleotide analogs in which the sugar-93 phosphodiester backbone has been substituted by an achiral structure that consists of 94 95 N-(2-aminoethyl)-glycine units. By using standard bioconjugation techniques, these derivatives can be incorporated with various functional moieties (including targeting 96 ligands, proteins, and peptides) for enhanced tissue specificity and prolonged half-lives 97 [33-35]. Upon further optimization and evaluation, they may have good potential to be 98 used for intervention development in the future. 99

101 Working principles of intervention execution

To design anti-aging therapies based on miRNA, two directions are available. The first 102 one is to use miRNA as a tool to silence the expression of genes whose silencing is 103 thought to lead to aging retardation or even lifespan prolongation. The second one is to 104 take miRNA as an endogenous therapeutic target. In this case, age-related changes in 105 the expression of endogenous miRNA are first identified, followed by the 106 administration of a designed intervention to combat those changes. One strategy to 107 counteract the declining expression level of an endogenous miRNA molecule, is to 108 administer an oligonucleotide mimic (which possesses the same sequence as the mature 109 endogenous miRNA, and has the ability to bind with the RISC complex). Although 110 single-stranded RNA molecules can be used as mimics, double-stranded mimics, which 111 have a guide strand and a passenger strand, generally have higher potency [36]. If the 112 expression of an endogenous miRNA molecule is increased with advanced age, one 113 method to act against this is to use an anti-miRNA oligonucleotide (AMO) 114 complementary to the miRNA mature strand to prevent the miRNA molecule from 115 mediating the degradation of the target mRNA. Since the turn of the last century, 116 117 miRNA sponges have emerged as a new tool to modulate the activity of endogenous miRNA. Not only can these sponges serve as a decoy to modulate the activity of 118 overexpressed miRNA molecules, but they may also be used in long-term loss-of-119 function studies [37]. Although more studies are required to verify whether in vivo 120 sponge expression can be a faithful alternative to genetic knockouts of miRNA families, 121 the potential brought by miRNA sponges has provided a possible route to manipulate 122 multiple miRNA molecules simultaneously. 123

124

To develop an executable miRNA-based intervention, boosting the potency of the 125 miRNA therapeutic *per se* is required, but the availability of effective carriers for 126 delivering the therapeutic into target sites is equally important. The most extensively 127 used carriers are viral vectors [38]. Examples of viruses that have been adopted for gene 128 delivery include retroviruses, adenoviruses, and adeno-associated viruses. The clinical 129 potential of viral vectors, however, is impeded by the safety risks imposed by viruses. 130 These risks have been documented in reports on the development of leukemia in SCID-131 X1 patents who were treated with a gamma retroviral vectors [38], and also on the death 132 of an 18-year-old patient who was administered with an adenoviral vector for treatment 133 of inherited enzyme deficiency [39]. Other instances of preneoplastic or truly neoplastic 134 cell expansion caused by insertional mutagenesis have also been observed in gene 135 136 therapy of Wiskott-Aldrich syndrome (WAS) [40] and X-linked chronic granulomatous diseases [41]. This urges the need of developing non-viral alternatives 137 for delivery of nucleic acid therapeutics. 138

139

Over the last decades, different non-viral delivery methods, spanning from lipofection 140 to electroporation, have been developed (Table 1) [42-50]. These methods are generally 141 less immunogenic and pathogenic. Along with their higher tolerance for cargo sizes, 142 few of them including liposomal systems (ClinicalTrials.gov identifier NCT02191878, 143 NCT01437007, and NCT01829971) and polymeric carriers (ClinicalTrials.gov 144 identifier NCT00689065) have managed to proceed into clinical trials as RNA carriers 145 [51-52]. Here it is worth noting that as far as miRNA delivery is concerned, two 146 methods can be adopted. One is to deliver functional miRNAs directly that can elicit 147 their biological effects once they have been delivered into the cytosol. The other one is 148 to deliver miRNA expressing vectors, harbouring DNA sequences that are subsequently 149 transcribed into pre-miRNA. To succeed, the carriers, however, have to overcome 150

various barriers (e.g., cellular internalization and endolysosomal escape) imposed to
nucleic acid transfer before the RNA transcript can be obtained for further processing
by the cellular RNA machinery [53].

154

To boost the functional versatility of miRNA transfer, optically active delivery systems 155 have recently been developed. For instance, CdSe/ZnS quantum dots (QDs) have been 156 surface-coated with poly(ethylenimine) (PEI) for carrying the miR-26a expression 157 vector to induce the cell cycle arrest and to trigger proliferation inhibition in HepG2 158 cells [54]. The strong red luminescence of the QDs has enabled live cell imaging as 159 well [54]. These QDs warrant development as a theranostic carrier for miRNA-based 160 therapies. More recently, poly(1,8-octanedio-citric acid)-co-poly(ethylene glycol) 161 (which has been fabricated by using citric acid, polyethylene glycol, and 1,8-octanediol 162 through melt-derived polymerization) has been grafted with PEI via amidation 163 reactions to generate a photoluminescent polymer for miRNA transfer [55]. The 164 polymer can form polyplexes with nucleic acids, is photostable and even enables real-165 time tracking during miRNA delivery. 166

167

Besides delivering only miRNA, some carriers can deliver other agents concomitantly. 168 carboxvlmethoxy polyethylene glycol-block-poly(2-methyl-2-For instance, 169 propylene carbonate-graft-dodecanol-graft-tetraethylenepentamine) has been used to 170 form micelles for co-delivery of miR-29b1 and GDC-0449 (a small molecule hedgehog 171 inhibitor). Upon intravenous administration, high concentrations of GDC-0449 and 172 miR-29b1 have been detected in liver cells in common bile duct ligation (CBDL) mice 173 [56]. Apart from small molecule compounds, contrast agents can be co-delivered with 174 miRNA for imaging purposes. The feasibility of this has been documented in an earlier 175 study, which has used polyethylene glycol-modified **liposomes** to entrap ultrasound 176 contrast gas for subsequent detection using diagnostic ultrasound [57], while delivering 177 miR-126 to inhibit the negative regulators of vascular endothelial growth factor (VEGF) 178 signalling to promote angiogenesis and to improve blood flow in a hindlimb ischemia 179 mouse model [57]. Despite these advances, currently the delivery efficiency mediated 180 by non-viral vectors is generally much poorer than that mediated by viruses. 181 Overcoming this hurdle is one of the technical challenges to be resolved before non-182 viral technologies can contribute to intervention development in practice. 183

184

185 Translating technologies into practicable interventions

186 Cellular senescence, defined as the terminal proliferative arrest of a cell in response to stress, can be a feasible target to combat aging because it has been regarded as a basic 187 process accounting for aging phenotypes and age-related diseases late in life [58]. This 188 process is mediated by genomic DNA damage [59, 60] and various other factors (e.g. 189 telomere attrition, oxidative stress, and mitogenic imbalance). It may contribute to the 190 determination of the immune cell fate and may lead to the occurrence of the senescence-191 associated secretory phenotype (SASP), which functionally links senescent cells to 192 tumorigenesis, inflammation, tissue regeneration, and remodelling. The causal link 193 between senescence and aging has previously been revealed by using the senescence-194 prone progeroid mouse model [61, 62], in which the aging process has been retarded 195 after the abrogation of the senescence program by CDKN2A deletion or after the 196 removal of cells expressing $p16^{Ink4a}$ (which is a biomarker of cellular senescence). The 197 relationship among senescence, aging, and age-associated diseases can be explained by 198 the role of senescent cells in enhancing the susceptibility of tissues to stressors. In brief, 199 processes involved in tissue homeostasis may lead to the generation of senescent cells. 200

These cells persist when there are defects in the aging immune system or when there is 201 a lack of signalling from these cells to attract resident immune cells. Because of the 202 accumulation of senescent cells, aged tissues become less functional. Examples of 203 diseases caused by the loss of proliferation-competent cells include osteoarthritis [63], 204 cataracts [61], and glaucoma [64]. Inflammation and extracellular matrix remodelling 205 mediated by the SASP may also lead to diseases such as cancers [65], pulmonary 206 fibrosis [66], and atherosclerosis [67]. In fact, the SASP secretome has been implicated 207 in chronic immune-mediated diseases. Targeting this secretome might represent an 208 alternative therapeutic approach against related diseases. Studies have revealed that 209 miR-146a/b has been shown to affect SASP factors and therefore contribute to profound 210 changes in SASP expression profiles [68]. Genes related to SASP secretome are, 211 therefore, potential targets for miRNA-based interventions. 212

213

214 Owing to the role of telomere attrition in cellular senescence, miR-138, whose downregulation has been found to increase the endogenous level of human telomerase 215 reverse transcriptase (hTERT) [69], may be exploited as a target for intervention 216 217 development to overcome the Hayflick limit, although the tumorigenicity potentially led by the up-regulation of hTERT expression has to be investigated before related anti-218 aging interventions can come into practice [69]. Besides miR-138, by studying the 219 changes in miRNA expression in human trabecular meshwork (HTM) cells and human 220 diploid fibroblasts (HDF), two miRNA molecules (miR-182 and miR-183) from the 221 miR-183-96-182 cluster have been found to be up-regulated during stress-induced 222 premature senescence (SIPS), which has also been found to lead to the down-regulation 223 of four members of the miR-15 family (miR-15a, miR-15b, miR-16, and miR-195) and 224 five members of the miR-106b family (miR-17-5p, miR-18a, miR-20a, miR-106a, and 225 miR-106b) [70]. Follow-up studies revealed that, upon transfection with miR-106a 226 mimic, SIPS-related up-regulation of p21^{CDKN1A} in senescent HTM and HDF cells is 227 inhibited and increases cell proliferation has been observed [70]. This demonstrates the 228 possibility of intervening with the process of cellular senescence by using miRNA as a 229 mediator. 230

231

Apart from manipulating cellular senescence, aging might be tackled by intervening 232 with age-associated metabolic pathways. One example of these pathways is the 233 insulin/IGF pathway, which plays an important role in regulating glucose homeostasis 234 and protein synthesis. Down-regulating this pathway in in Caenorhabditis elegans [71], 235 236 Drosophila melanogaster [72], and mice [73] has been shown to enhance longevity. Till now, a number of miRNA molecules which can modulate insulin/IGF signalling have 237 been identified. One example is miR-71, whose deletion in nematodes has led to the 238 up-regulation of PI3K and PDK1, resulting in elevated activity of the insulin/IGF 239 pathway [74]. The mean lifespan of the nematodes having a deletion of miR-71 is 240 reduced by almost 50% in relation to the wild-type N2 counterparts. Another example 241 is miR-239, whose deletion leads to a reduction in insulin/IGF signalling activity and 242 an increase in stress resistance. Compared to the mean lifespan (16.8 ± 0.3 days) of the 243 wild-type N2 nematodes, the mean lifespan of the nematodes in which miR-239 has 244 been deleted is extended to 20.1 ± 0.5 days. Other examples of miRNA molecules that 245 modulate insulin/IGF signalling include miR-140-5p (targeting the insulin-like growth 246 factor binding protein-5 (IGFBP-5) [75]), miR-145 (targeting the insulin receptor 247 248 substrate-1 (IRS-1) [76]), and miR-1, miR-18a, miR-320, miR-206 (targeting Insulin Growth Factor IGF-1 [77-81]). Furthermore, the target of rapamycin (TOR) signal 249 transduction network has been linked with aging in a way that defects in TOR 250

regulatory complexes have been reported to retard aging in Saccharomyces cerevisiae 251 [82]. MiRNA molecules (e.g., miR-101 [83], miR-206 [84], miR-616-3p [85], miR-21 252 [86], miR-181 [87], miR-494 [88], miR-146b [89], and miR-126 [90]) that modulate 253 PTEN/Akt/mTOR signalling are, therefore, worth paying attention to when endogenous 254 miRNA targets are searched for the development of anti-aging interventions. In fact, 255 not only does miRNA modulate the aging network at the genetic and cellular levels as 256 mentioned above, but it also involves in the regulation of the aging process at the tissue 257 and organ levels by ameliorating age-associated damage. Examples of these miRNA 258 molecules have been listed in Table 2 [91-103]. Due to their regulatory role in the aging 259 process, they are candidates for intervention development. 260

261

The efficiency of identifying miRNA molecules has been greatly enhanced by advances 262 in computational technologies. During the identification process, putative miRNA 263 molecules are first predicted in silico by using algorisms (e.g., miRank [104], miRDeep 264 [105], and miRSeeker [106]) that identify hairpin structures in non-coding and non-265 repetitive regions in genome sequences. The miRNA candidates can then be validated 266 267 experimentally. Because of the advent of bioinformatics, miRNA candidates for antiaging interventions are expected to continuously increase in the forthcoming decades, 268 making miRNA-based anti-aging therapies more feasible technically. Despite this, off-269 target effects induced by miRNA are one of the concerns that have to be addressed [107, 270 108]. These effects could be specific or non-specific. Specific off-target effects occur 271 when an miRNA molecule leads to degradation of non-targeted mRNA transcripts [109]; 272 whereas non-specific effects may be caused by the carrier, which may activate Toll-like 273 274 receptors (TLR) to trigger immune responses [109], or by the saturation of RNAi machinery (especially Exp5) in cells due to the introduction of exogenous miRNA 275 molecules that impact the processing and function of endogenous miRNA [109]. These 276 off-target effects may result in unintended or even fatal disruption in physiological 277 processes. In addition, although a wealth of information about the role of miRNA in 278 senescence regulation has been available in vitro in the literature, the senescence 279 process in living organisms is poorly understood. This is partly due to the technical 280 limitations in identifying and characterizing senescent cells in tissues and organs. 281 Finally, currently the role of miRNA in regulating the aging process is still limited. 282 Further research is required before miRNA can be used as a therapeutic in the clinical 283 context. 284

285

286 Concluding remarks and future perspectives

Here, we presented an overview of the current understanding of the roles of miRNA in 287 modulating the aging network and offered insights into the opportunities of translating 288 current knowledge into anti-aging interventions that target cellular senescence. 289 Although it is still unclear whether senescence is the cause of diseases or the 290 consequence of aging pathology, senescent cells are generally thought to function as 291 both drivers and amplifiers of age-associated diseases [58]. Not only can cellular 292 senescence cause progenitor cell arrest [58], but it can also lead to stem and 293 parenchymal cell dysfunction via the SASP [58], thereby reducing the resistance of 294 295 tissues to disease-causing stresses. Using miRNA as a target and a tool to eliminate senescent cells and attenuate the SASP may emerge as possible strategy to ameliorate 296 aging symptoms or to prevent age-associated diseases. 297

298

However, several challenges still must be overcome. One challenge stems from the lackof effective carriers for delivery of therapeutics to target sites for the execution of

miRNA-based therapies. The other one comes from the relatively short half-lives of 301 miRNA therapeutics in blood. While naked miRNA can be removed from the blood 302 circulation easily via renal clearance and nuclease-mediated degradation [110, 111]. 303 chemical modification of the RNA structure, or the use of carriers, may help to enhance 304 the blood circulation time. However, it is worth noting that miRNA molecules carried 305 by nanoparticles with a diameter larger than 100 nm may be subject to removal by the 306 reticuloendothelial system (RES) in the liver, bone marrow, lung, and spleen, leading 307 to non-specific uptake by innate immune cells [112]. For this, proper design and 308 optimization of the carrier is needed for enhancing the execution of the intervention. 309

310

Apart from the delivery issue, one miRNA molecule may involve in multiple pathways 311 and have multiple targets. This makes targeting miRNA technically complicated. The 312 causal relationship between aging and changes in the expression profiles of miRNA is 313 also still controversial. Empirical verification is needed before targeting miRNA for 314 anti-aging purposes. Finally, owing to their short lifespan and ease of genetic 315 manipulation, invertebrate models have been extensively used in aging research. The 316 317 use of these models has provided valuable information for designing anti-aging interventions in the laboratory scale. Owing to the genetic differences between humans 318 and these invertebrate models, development of aging models that can more faithfully 319 recapitulate human aging is a hurdle to be overcome for future bench-to-clinic 320 translation. Taking all these challenges into account, it appears that there is still a long 321 way to go before miRNA-based anti-aging therapies can come into practice. Despite 322 this, miRNA profiling has already been possibly manipulated by using anti-sense 323 oligonucleotides, LNAs, and antagomirs [113-115]. This success, along with the rapid 324 development of delivery technologies [116-120], has made the possible use of miRNA 325 as a target and a tool in anti-aging medicine, at least theoretically, possible. 326

328 Acknowledgments

The authors would like to acknowledge Yau-Foon Tsui for helpful comments and suggestions during the writing of this manuscript. Thanks are extended to funding support from the Shenzhen Science and Technology Innovation Committee (JCYJ20170302144812937 and JCYJ20170818102436104) and the Natural Science Foundation of Guangdong Province (2018A030310485). The authors regret that, owing to space and reference number limitations, some important studies could be cited only indirectly through recent reviews.

336

327

338	Refere	nces
339	1.	Zhao, C., et al. (2019) Overexpression of microRNA-590-3p promotes the
340	1.	proliferation of and inhibits the apoptosis of myocardial cells through
341		inhibition of the NF-kappaB signaling pathway by binding to RIPK1. J. Cell.
342		Biochem. 120, 3559-3573.
343	2.	Yao, S., <i>et al.</i> (2018) MicroRNA-376a regulates cell proliferation and
343 344	2.	apoptosis by targeting forkhead box protein P2 in lymphoma. Oncol. Lett. 16,
345		3169-3176.
345	3.	Du, J., <i>et al.</i> (2018) MicroRNA-204-5p regulates 3T3-L1 preadipocyte
340 347	5.	proliferation, apoptosis and differentiation. <i>Gene</i> 668, 1-7.
348	4.	Orom, U.A., <i>et al.</i> (2008) miRNA-10a binds the 5'UTR of ribosomal protein
349		mRNAs and enhances their translation. <i>Mol. Cell</i> 30, 460-471.
350	5.	Fernandez-Perez, D., <i>et al.</i> (2018) MicroRNA dynamics at the onset of
351	0.	primordial germ and somatic cell sex differentiation during mouse embryonic
352		gonad development. RNA 24, 287-303,
353	6.	Cao, H., et al. (2018) MicroRNA-194 regulates the development and
354	0.	differentiation of sensory patches and statoacoustic ganglion of inner ear by
355		Fgf4. Med. Sci. Monit. 24, 1712-1723.
356	7.	McDonald, R.A., <i>et al.</i> (2013) miRNA-21 is dysregulated in response to vein
357	<i>,</i> .	grafting in multiple models and genetic ablation in mice attenuates neointima
358		formation. <i>Eur. Heart J.</i> 34, 1636-1643.
359	8.	Baker, A.H., and van Rooij, E. (2013) miRNA overexpression induces
360		cardiomyocyte proliferation in vivo. Mol. Ther. 21, 497-498.
361	9.	Zaporozhchenko, I.A., et al. (2018) Profiling of 179 miRNA expression in
362		blood plasma of lung cancer patients and cancer-free individuals. Sci. Rep. 8,
363		6348.
364	10.	Xu, P., et al. (2018) Comprehensive analysis of miRNAs expression profiles
365		revealed potential key miRNA/mRNAs regulating colorectal cancer stem cell
366		self-renewal. Gene 656, 30-39.
367	11.	Zhang, X., et al. (2015) MicroRNA clusters in the adult mouse heart: age-
368		associated changes. Biomed. Res. Int. 2015, 732397.
369	12.	Huan, T., et al. (2018) Age-associated microRNA expression in human
370		peripheral blood is associated with all-cause mortality and age-related traits.
371		Aging Cell 17, e12687.
372	13.	Kogure, A., et al. (2017) The microRNA machinery regulates fasting-induced
373		changes in gene expression and longevity in Caenorhabditis elegans. J. Biol.
374		<i>Chem.</i> 292, 11300-11309.
375	14.	Debernardi, J.M., et al. (2014) Post-transcriptional control of GRF
376		transcription factors by microRNA miR396 and GIF co-activator affects leaf
377		size and longevity. Plant J. 79, 413-426.
378	15.	Noren Hooten, N., et al. (2010) microRNA expression patterns reveal
379		differential expression of target genes with age. PLoS One 5, e10724.
380	16.	Wittmann, J., and Jack, H.M. (2010) New surprises from the deep-the family
381		of small regulatory RNAs increases. Scientific World Journal 10, 1239-1243.
382	17.	
383		normalization and differential expression analysis of small RNA sequencing
384	10	experiments. <i>Silence</i> 2, 2.
385	18.	Darnell, R.B. (2010) HITS-CLIP: panoramic views of protein-RNA regulation
386	10	in living cells. <i>Wiley Interdiscip. Rev. RNA</i> 1, 266-286.
387	19.	Maurin, T., et al. (2018) HITS-CLIP in various brain areas reveals new targets

388		and new modalities of RNA binding by fragile X mental retardation protein.
389		Nucleic Acids Res. 46, 6344-6355.
390	20.	Grozdanov, P.N., and Macdonald, C.C. (2014) High-throughput sequencing of
391		RNA isolated by cross-linking and immunoprecipitation (HITS-CLIP) to
392		determine sites of binding of CstF-64 on nascent RNAs. Methods Mol. Biol.
393		1125, 187-208.
394	21.	Maatz, H., et al. (2017) Transcriptome-wide identification of RNA-binding
395		protein binding sites using photoactivatable-ribonucleoside-enhanced
396		crosslinking immunoprecipitation (PAR-CLIP). Curr. Protoc. Mol. Biol. 118,
397		27.6.1-27.6.19.
398	22.	Spitzer, J., et al. (2014) PAR-CLIP (Photoactivatable Ribonucleoside-
399		Enhanced Crosslinking and Immunoprecipitation): a step-by-step protocol to
400		the transcriptome-wide identification of binding sites of RNA-binding proteins.
401		Methods Enzymol. 539, 113-161.
402	23.	Czauderna, F., et al. (2003) Structural variations and stabilising modifications
403		of synthetic siRNAs in mammalian cells. Nucleic Acids Res. 31, 2705-2716.
404	24.	
405		in subcellular extracts, culture media, sera and cerebrospinal fluid. J. Biochem.
406		Biophys. Methods. 20, 259-267.
407	25.	Crooke, S.T., et al. (1996) Pharmacokinetic properties of several novel
408	26	oligonucleotide analogs in mice. J. Pharmacol. Exp. Ther. 277, 923-937.
409	26.	Patil, S.D., and Rhodes, D.G. (2000) Influence of divalent cations on the
410		conformation of phosphorothioate oligodeoxynucleotides: a circular dishusing study. Nucleic Asida Pag. 28, 2420, 2445
411	27	dichroism study. Nucleic Acids Res. 28, 2439-2445.
412	27.	
413 414		(methylamino)-2-oxoethyl]- and 2'-O-methoxyethyl-modified antisense oligonucleotides. <i>J Med Chem.</i> 51, 2766-2776.
414 415	28.	-
415 416	20.	oligonucleotides have reduced non-specific effects in vitro. <i>Nucleic Acids Res.</i>
410		32, 2008-2016.
418	29.	Wahlestedt, C., <i>et al.</i> (2000) Potent and nontoxic antisense oligonucleotides
419	_>.	containing locked nucleic acids. Proc. Natl. Acad. Sci. U. S. A. 97, 5633-5638.
420	30.	Hyrup, B., and Nielsen, P.E. (1996) Peptide nucleic acids (PNA): synthesis,
421		properties and potential applications. <i>Bioorg. Med. Chem.</i> 4, 5-23.
422	31.	
423		microRNA. N. Engl. J. Med. 368, 1685-1694.
424	32.	Lanford, R.E., et al. (2010) Therapeutic silencing of microRNA-122 in
425		primates with chronic hepatitis C virus infection. Science 327, 198-201.
426	33.	Ricciardi, A.S., et al. (2018) Peptide nucleic acids as a tool for site-specific
427		gene editing. Molecules 23, 632.
428	34.	
429		limitations, and opportunities. Yale J. Biol. Med. 90, 583-598.
430	35.	
431		applications. J. Biotechnol. 259, 148-159.
432	36.	Bader, A.G., et al. (2011) Developing therapeutic microRNAs for cancer. Gene
433	~7	<i>Ther.</i> 18, 1121-1126.
434	31.	Kluiver, J., <i>et al.</i> (2012) Generation of miRNA sponge constructs. <i>Methods</i> 58, 112, 117
435	20	113-117. Desilier P. H. (2002) Constitution for SCID
436	38.	
437		progress. Lancet 360, 1185-1186.

438	39.	Marshall, E. (1999) Gene therapy death prompts review of adenovirus vector.
439		Science 286, 2244-2245.
440	40.	Boztug, K., et al. (2010) Stem-cell gene therapy for the Wiskott-Aldrich
441		syndrome. N. Engl. J. Med. 363, 1918-1927.
442	41.	Ott, M.G., et al. (2006) Correction of X-linked chronic granulomatous disease
443		by gene therapy, augmented by insertional activation of MDS1-EVI1,
444		PRDM16 or SETBP1. Nat. Med. 12 401-409.
445	42.	Kasar, S., et al. (2012) Systemic in vivo lentiviral delivery of miR-15a/16
446		reduces malignancy in the NZB de novo mouse model of chronic lymphocytic
447		leukemia. Genes Immun. 13, 109-119.
448	43.	Kota, J., et al. (2009) Therapeutic microRNA delivery suppresses
449		tumorigenesis in a murine liver cancer model. Cell 137, 1005-1017.
450	44.	Momen-Heravi, F., <i>et al.</i> (2014) Exosome-mediated delivery of functionally
451		active miRNA-155 inhibitor to macrophages. <i>Nanomedicine</i> 10, 1517-1527.
452	45	Xie, Y., <i>et al.</i> (2018) Synthesis and evaluation of chloroquine-containing
453		DMAEMA copolymers as efficient anti-miRNA delivery vectors with
454		improved endosomal escape and antimigratory activity in cancer cells.
455		Macromol. Biosci. 18, 1700194.
456	46.	
457	10.	and miRNA delivery. J. Drug Target. 18, 812-820.
458	47	Wu, Y., <i>et al.</i> (2011) MicroRNA delivery by cationic lipoplexes for lung cancer
459		therapy. Mol. Pharm. 8, 1381-1389.
460	48.	
461	4 0.	therapy. Angew. Chem. Int. Ed. Engl. 52, 3901-3905.
462	49.	
463	ч).	based plasmids in the developing neural tube and assessment of phenotypes by
464		Dil injection in open-book preparations. J. Vis. Exp. 68, 4384.
465	50.	
465	50.	against sugarcane mosaic virus in transgenic sugarcane. <i>Transgenic Res.</i> 27,
400 467		203-210.
468	51	Robb, T., <i>et al.</i> (2017) Exploiting microRNAs as cancer therapeutics. <i>Target</i> .
469	51.	Oncol. 12, 163-178.
409 470	52.	
470 471	52.	assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic.
471		Mol. Pharm. 6, 659-668.
472	53	Lai, W.F., and Wong, W.T. (2018) Design of polymeric gene carriers for
473 474	55.	effective intracellular delivery. <i>Trends Biotechnol.</i> 36, 713-728.
	51	
475 476	54.	
476		delivery and its enhanced suppression in HepG2 cells. <i>Int. J. Nanomedicine</i> 11, 6079-6088.
477	55	
478	55.	Wang, M., <i>et al.</i> (2017) Photoluminescent and biodegradable polycitrate-
479		polyethylene glycol-polyethyleneimine polymers as highly biocompatible and
480		efficient vectors for bioimaging-guided siRNA and miRNA delivery. Acta
481	= -	Biomater. 54, 69-80. Kuman V_{i} at al. (2016) Co. dolivery of small molecule holeshed inhibitor and
482	56.	Kumar, V., <i>et al.</i> (2016) Co-delivery of small molecule hedgehog inhibitor and
483		miRNA for treating liver fibrosis. <i>Biomaterials</i> 76, 144-156.
484	57.	
485		loaded Bubble liposomes for the treatment of hindlimb ischemia. <i>Sci. Rep.</i> 4,
486	5 0	3883. Childe D.C. et al. (2015) Celleden en en inceine en les
487	58.	Childs, B.G., et al. (2015) Cellular senescence in aging and age-related disease:

488		from mechanisms to therapy. Nat. Med. 21, 1424-1435.
489	59.	Park, C.W., et al. (2018) The novel small molecule STK899704 promotes
490		senescence of the human A549 NSCLC cells by inducing dna damage
491		responses and cell cycle arrest. Front. Pharmacol. 9, 163.
492	60.	Issler, M.V.C., and Mombach, J.C.M. (2017) MicroRNA-16 feedback loop
493		with p53 and Wip1 can regulate cell fate determination between apoptosis and
494		senescence in DNA damage response. PLoS One 12, e0185794.
495	61.	Baker, D.J., et al. (2011) Clearance of p16Ink4a-positive senescent cells delays
496		ageing-associated disorders. <i>Nature</i> 479, 232-236.
497	62.	Baker, D.J., <i>et al.</i> (2008) Opposing roles for p16Ink4a and p19Arf in
498	021	senescence and ageing caused by BubR1 insufficiency. <i>Nat. Cell Biol.</i> 10, 825-
499		836.
500	63	Martin, J.A., et al. (2004) Chondrocyte senescence, joint loading and
500 501	05.	osteoarthritis. Clin. Orthop. Relat. Res. 427, S96-S103.
501	64	Liton, P.B., <i>et al.</i> (2005) Cellular senescence in the glaucomatous outflow
502	07.	pathway. <i>Exp. Gerontol.</i> 40, 745-748.
503 504	65	Thangavel, C., <i>et al.</i> (2011) Therapeutically activating RB: Reestablishing cell
504 505	05.	cycle control in endocrine therapy-resistant breast cancer. <i>Endocr. Relat.</i>
505 506		Cancer 18, 333-345.
500 507	66.	Chilosi, M., <i>et al.</i> (2013) Premature lung aging and cellular senescence in the
507 508	00.	pathogenesis of idiopathic pulmonary fibrosis and COPD/emphysema. <i>Transl.</i>
		Res. 162, 156-173.
509 510	67	Zhou, X., <i>et al.</i> (2006) Clonal senescence alters endothelial ICAM-1 function.
510	07.	
511	60	Mech. Ageing Dev. 127, 779-785.
512	68.	
513		senescence-associated inflammatory mediators IL-6 and IL-8. <i>Aging</i> 1, 402-
514	60	411. Mitama S at $al (2008)$ Downson lation of miD 128 is appointed with
515	09.	Mitomo, S., et al. (2008) Downregulation of miR-138 is associated with
516		overexpression of human telomerase reverse transcriptase protein in human
517	70	anaplastic thyroid carcinoma cell lines. <i>Cancer Sci.</i> 99, 280-286.
518	70.	Li, G.R., <i>et al.</i> (2009) Alterations in microRNA expression in stress-induced
519	71	cellular senescence. Mech. Ageing Dev. 130, 731-741.
520	/1.	Kimura, K.D., <i>et al.</i> (1997) daf-2, an insulin receptor-like gene that regulates
521	70	longevity and diapause in Caenorhabditis elegans. <i>Science</i> 277, 942-946.
522	72.	
523	70	extends life-span and impairs neuroendocrine function. <i>Science</i> 292, 107-110.
524	13.	Bluher, M., et al. (2003) Extended longevity in mice lacking the insulin
525	74	receptor in adipose tissue. <i>Science</i> 299, 572-574.
526	/4.	de Lencastre, A., et al. (2010) MicroRNAs both promote and antagonize
527		longevity in C. elegans. Curr. Biol. 20, 2159-2168.
528	75.	Yu, L., et al. (2016) MicroRNA -140-5p inhibits colorectal cancer invasion and
529		metastasis by targeting ADAMTS5 and IGFBP5. Stem Cell Res. Ther. 7, 180.
530	76.	Guo, Y., et al. (2012) Up-regulated miR-145 expression inhibits porcine
531		preadipocytes differentiation by targeting IRS1. Int. J. Biol. Sci. 8, 1408-1417.
532	77.	Liang, L., et al. (2018) MicRNA-320 facilitates the brain parenchyma injury
533		via regulating IGF-1 during cerebral I/R injury in mice. <i>Biomed. Pharmacother</i> .
534		102, 86-93.
535	78.	Shan, Z.X., et al. (2009) Upregulated expression of miR-1/miR-206 in a rat
536		model of myocardial infarction. Biochem. Biophys. Res. Commun. 381, 597-
537		601.

538	79	Yu, X.Y., et al. (2008) Glucose induces apoptosis of cardiomyocytes via
539	17.	microRNA-1 and IGF-1. <i>Biochem. Biophys. Res. Commun.</i> 376, 548-552
540	80	Hu, W., <i>et al.</i> (2014) Identification of microRNA-18a as a novel regulator of
540 541	00.	the insulin-like growth factor-1 in the proliferation and regeneration of deer
542		antler. <i>Biotechnol. Lett.</i> 36, 703-710.
543	81.	Elia, L., <i>et al.</i> (2009) Reciprocal regulation of microRNA-1 and insulin-like
544	01.	growth factor-1 signal transduction cascade in cardiac and skeletal muscle in
545		physiological and pathological conditions. <i>Circulation</i> 120, 2377-2385.
546	82	Homza, B.V., <i>et al.</i> (2014) Defects in TOR regulatory complexes retard aging
547	02.	and carbonyl/oxidative stress development in yeast Saccharomyces cerevisiae.
548		Ukr. Biochem. J. 86, 85-92.
549	83.	
550	05.	enhances apoptosis in endometrial cancer via regulating PI3K/Akt/mTOR.
550		Cancer Biomark. 21, 179-186.
552	84	Liu, F., <i>et al.</i> (2017) MiR-206 inhibits head and neck squamous cell carcinoma
552	01.	cell progression by targeting HDAC6 via PTEN/AKT/mTOR pathway.
555		Biomed. Pharmacother. 96, 229-237.
555	85.	
556	05.	cancer via the PTEN/AKT/mTOR pathway. <i>Biochem. Biophys. Res. Commun.</i>
557		501, 1068-1073.
558	86	Wang, W.J., <i>et al.</i> (2018) MiR-21 promotes ECM degradation through
559	00.	inhibiting autophagy via the PTEN/akt/mTOR signaling pathway in human
560		degenerated NP cells. <i>Biomed. Pharmacother.</i> 99, 725-734.
561	87	Liu, J., <i>et al.</i> (2018) MiR-181 regulates cisplatin-resistant non-small cell lung
562	07.	cancer via downregulation of autophagy through the PTEN/PI3K/AKT
563		pathway. Oncol. Rep. 39, 1631-1639.
564	88	Zhu, H., <i>et al.</i> (2017) MicroRNA-494 improves functional recovery and
565	00.	inhibits apoptosis by modulating PTEN/AKT/mTOR pathway in rats after
566		spinal cord injury. <i>Biomed. Pharmacother.</i> 92, 879-887.
567	89.	1 55
568	07.	targeting the PTEN/Akt/mTOR signaling pathway. <i>Aging</i> 10, 2113-2121.
569	90	Tang, F., and Yang, T.L. (2018) MicroRNA-126 alleviates endothelial cells
570	20.	injury in atherosclerosis by restoring autophagic flux via inhibiting of
571		PI3K/Akt/mTOR pathway. <i>Biochem. Biophys. Res. Commun.</i> 495, 1482-1489.
572	91	Bai, G.S., <i>et al.</i> (2016) Chronic DNA replication stress reduces replicative
573	/1.	lifespan of cells by TRP53-dependent, microRNA-assisted MCM2-7
574		downregulation. <i>PLoS Genet.</i> 12, e1005787.
575	92.	Okada, N., <i>et al.</i> (2014) A positive feedback between p53 and miR-34 miRNAs
576	/2.	mediates tumor suppression. <i>Gene Dev.</i> 28, 438-450.
577	93.	Kofman, A.V., <i>et al.</i> (2013) MicroRNA-34a promotes DNA damage and
578		mitotic catastrophe. <i>Cell Cycle</i> 12, 3500-3511.
579	94.	Martin, N.T., et al. (2013) ATM-dependent MiR-335 targets CtIP and
580	2	modulates the DNA damage response. <i>PLoS Genet.</i> 9, e1003505.
581	95.	Luo, Z.H., <i>et al.</i> (2015) Mir-23a induces telomere dysfunction and cellular
582		senescence by inhibiting TRF2 expression. <i>Aging Cell</i> 14, 391-399.
583	96.	Xie, H.F., <i>et al.</i> (2017) MiR-377 induces senescence in human skin fibroblasts
584		by targeting DNA methyltransferase 1. <i>Cell Death Dis.</i> 8, e2663.
585	97.	Liang, W., et al. (2017) miRNA-34b is directly involved in the aging of
586		macrophages. Aging Clin. Exp. Res. 29, 599-607.
587	98.	Mao, L.Y., et al. (2015) BANF1 is downregulated by IRF1-regulated

588		microRNA-203 in cervical cancer. PLoS One 10, e0117035.
589	99.	Yu, K.R., et al. (2013) MicroRNA-141-3p plays a role in human mesenchymal
590		stem cell aging by directly targeting ZMPSTE24. J. Cell Sci. 126, 5422-5431.
591	100	. Rippo, M.R., et al. (2014) MitomiRs in human inflamm-aging: A hypothesis
592		involving miR-181a, miR-34a and miR-146a. Exp. Gerontol. 56, 154-163.
593	101	. Wang, L., et al. (2016) miRNA involvement in angiogenesis in age-related
594		macular degeneration. J. Physiol. Biochem. 72, 583-592.
595	102	. Luo, T., et al. (2015) MiRNA expression profile and involvement of Let-7d-
596		APP in aged rats with isoflurane-induced learning and memory impairment.
597		<i>PLoS One</i> 10, e0119336.
598	103	. Sandhir, R., et al. (2014) Differential response of miRNA-21 and its targets
599		after traumatic brain injury in aging mice. Neurochem. Int. 78, 117-121.
600	104	. Xu, Y., et al. (2008) MicroRNA prediction with a novel ranking algorithm
601		based on random walks. Bioinformatics 24, i50-i58.
602	105	. Friedlander, M.R., et al. (2008) Discovering microRNAs from deep
603		sequencing data using miRDeep. Nat. Biotechnol. 26, 407-415.
604	106	. Lai, E.C., et al. (2003) Computational identification of Drosophila microRNA
605		genes. Genome Biol. 4, R42.
606	107	. Suter, S.R., et al. (2017) Controlling miRNA-like off-target effects of an
607		siRNA with nucleobase modifications. Org. Biomol. Chem. 15, 10029-10036.
608	108	. Seok, H., et al. (2018) Evaluation and control of miRNA-like off-target
609		repression for RNA interference. Cell. Mol. Life Sci. 75, 797-814.
610	109	. Singh, S., <i>et al.</i> (2011) Subcellular fate and off-target effects of siRNA, shRNA,
611		and miRNA. <i>Pharm. Res.</i> 28, 2996-3015.
612	110	. Yu, B., et al. (2009) Targeted delivery systems for oligonucleotide therapeutics.
613		<i>AAPS J.</i> 11, 195-203.
614	111	. Raemdonck, K., et al. (2008) Maintaining the silence: reflections on long-term
615		RNAi. Drug Discov. Today 13, 917-931.
616	112	. Garzon, R., et al. (2010) Targeting microRNAs in cancer: rationale, strategies
617		and challenges. Nat. Rev. Drug Discov. 9, 775-789.
618	113	. Lee, S.J., et al. (2012) Over-expression of miR-145 enhances the effectiveness
619		of HSVtk gene therapy for malignant glioma. Cancer Lett. 320, 72-80.
620	114	Brock, M., et al. (2014) AntagomiR directed against miR-20a restores
621		functional BMPR2 signalling and prevents vascular remodelling in hypoxia-
622		induced pulmonary hypertension. Eur. Heart J. 35, 3203-3211.
623	115	. Selvamani, A., et al. (2012) An antagomir to microRNA Let7f promotes
624		neuroprotection in an ischemic stroke model. PLoS One 7, e32662.
625	116	. Lai, W.F. (2011) In vivo nucleic acid delivery with PEI and its derivatives:
626		current status and perspectives. Expert Rev. Med. Devices 8, 173-185.
627	117	. Lai, W.F. (2011) Nucleic acid therapy for lifespan prolongation: present and
628		future. J. Biosci. 36, 725-729.
629	118	. Lai, W.F. (2013) Nucleic acid delivery: Roles in biogerontological
630		interventions. Ageing Res. Rev. 12, 310-315.
631	119	. Lai, W.F. (2014) Cyclodextrins in non-viral gene delivery. Biomaterials 35,
632	-	401-411.
633	120	Lai, W.F., and Lin, M.C. (2009) Nucleic acid delivery with chitosan and its
634		derivatives. J. Control. Release 134, 158-168.
635	121	. Yi, R., <i>et al.</i> (2003) Exportin-5 mediates the nuclear export of pre-microRNAs
636	1	and short hairpin RNAs. <i>Genes Dev.</i> 17, 3011-3016.
637	122	Lee, Y., et al. (2003) The nuclear RNase III Drosha initiates microRNA
,	1 <i>44</i>	, _, or we (2000) the nuclear fit was in Diosha information

638	processing. Nature 425, 415-419.
639	123. Ambros, V. (2004) The functions of animal microRNAs. Nature 431, 350-355.
640	124. Denli, A.M., et al. (2004) Processing of primary microRNAs by the
641	Microprocessor complex. Nature 432, 231-235.

643 644	Clinician's Corner
644 645 646 647 648 649 650 651 652 653 654 655 656	 To design miRNA-based therapies for anti-aging purposes, one possible approach is to use miRNA as a tool to silence specific genes. The other approach is to restore miRNA expression profile whose endogenous level have been altered by aging. To translate miRNA-based therapies from theory into practice, effective delivery of the therapeutics into the target site is critically important. Specific off-target effects caused by miRNA that degrades non-targeted mRNA transcripts, as well as non-specific off-target effects that may trigger immune responses, are major concerns that need to be addressed before taking miRNA therapeutics into the clinic. Several RNA derivatives have already been used in clinical trials with both positive and adverse reports.
657	

658 Glossary

- 659 **Gene therapy:** a procedure to manipulate the genetic component of a living cell to tackle or improve the disease condition of a patient.
- 661 **Hayflick limit**: the maximum number of times a cell can divide.
- 662 **Immunoprecipitation:** a technique to precipitate a protein antigen out of a solution by 663 using an antibody that binds to that protein antigen.
- **Liposomes:** spherical vesicles that possess one or more lipid bilayers. They have been exploited extensively for use in therapeutics delivery.
- **Locked nucleic acid (LNA) oligonucleotides**: RNA analogs in which the ribose moiety is locked using a bridge that connects the 4'-carbon and 2'-oxygen in a RNAmimicking N-type (C3'-endo) conformation
- miRNA sponges: RNA molecules that possess repeated miRNA antisense sequences
 that can sequester miRNA molecules away from their endogenous targets
- 671 **Peptide nucleic acid (PNA) oligonucleotides**: a DNA mimic possessing a 672 pseudopeptide backbone
- 673 Peripheral blood mononuclear cells (PBMC): peripheral blood cells that have a
 674 round nucleus. Examples of these cells include lymphocytes and monocytes.
- 675 **Quantum dots**: highly fluorescent semiconductor nanocrystals that exhibit a quantized 676 energy spectrum
- **Telomere**: a segment of DNA present at the chromosomal end to give protection to the chromosome
- 679
- **Figure 1, key figure. Use of miRNA as a target and a tool.** To develop an miRNAbased therapy, therapeutic miRNA is first selected. Alternatively, age-related changes in endogenous miRNA expression are identified. After that, a delivery system is adopted to deliver therapeutics, which either counteract the changes in miRNA expression or degrade the mRNA transcript of a target gene in aged cells, for intervention execution. Dotted arrows indicate the action of the therapy; whereas solid arrows indicate the progression of stages and biological levels.
- 687

688 Figure I. miRNA biogenesis and the mechanism of action.

689

690 Box 1. MiRNA biogenesis and the mechanism of action

MiRNA modulates gene expression at the posttranscriptional level by matching 691 complementarily with the coding region or the 3' untranslated region (UTR) of the 692 693 target mRNA transcript. Biogenesis of miRNA starts with the generation of pri-miRNA, the primary precursor of miRNA. Right after pri-miRNA is transcribed it is in form of 694 a capped, polyadenylated RNA strand. A double-stranded stem-loop structure is 695 subsequently formed (Fig. I). Under the action of DGCR8 and Drosha in the nucleus, 696 pri-miRNA is processed into pre-miRNA, a hairpin structure consisting of 70-100 697 nucleotides. With the help of Exportin-5 (a RanGTP-dependent dsRNA-binding 698 protein), pre-miRNA is exported to the cytosol, where it is further processed into a 699 double-stranded miRNA duplex under the action of Dicer [121, 122]. Proper binding 700 with the miRNA-induced silencing complex (miRISC) is an important step determining 701 the effective action of miRNA molecules [123]. After the duplex binds with the miRISC, 702 it unwinds into two strands: the passenger strand and the mature strand [124]. The 703 former is released and degraded; whereas the latter remains to bind with the miRISC to 704 705 silence the expression of a target gene by inhibiting mRNA translation or inducing the degradation of the mRNA transcript. Because perfect pairing is not required for the 706 miRISC complex to act on the target mRNA transcript, one miRNA molecule may act 707

Table 1: Examples of	of technologies that ma	v be applicable to deliver	y of miRNA therapeutics
10010 11 2000000			<i>y</i> • • • • • • • • • • • • • • • • • • •

Approach	System	Working principle	Example	Ref.
Biological method	Viral vector	Use of a viral vector, in which the capacity of viral replication has been maintained but most of the genes coding for viral proteins have been removed, for carrying miRNA	The lentiviral vector expressing miR-15a/16 has increased the expression level of miR- 16 in serum after systemic administration to a <i>de novo</i> New Zealand Black (NZB) mouse model, with the miR-16 relative quantification (RQ) value of the plasma from treated mice having been increased by 50% in relation to that from mice injected with the control GFP-expressing lentiviral vector.	[42]
		therapeutics	Use of AAVs to deliver miR-26a to hepatocellular carcinoma (HCC) cells has reduced the level of miR-26a expression, resulting in inhibition of tumour growth and induction of apoptosis	[43]
	Exosome	Use of virus-infected cells to generate exosomes for carrying miRNA therapeutics	Delivery of an miRNA-155 inhibitor to RAW macrophages using exosomes has been reported to reduce lipopolysaccharide (LPS)-induced TNFα production and to partially inhibit the LPS-induced decrease in SOCS1 mRNA levels	[44]
Chemical method	Cationic polymer	Use of cationic polymers to complex with negatively charged miRNA	Polyplexes formed between chloroquine-containing 2-(dimethylamino)ethyl methacrylate copolymers (PDCs) and miR-210 have been reported to inhibit migration of cancer cells	[45]
		molecules to form polyplexes for RNA delivery	Reducible hyperbranched polymers have complexed with precursor miRNA (pre-miRNA) to generate polyplexes, which have enabled silencing of the expression of the enhanced green fluorescence protein (EGFP) in an H1299 human lung cancer cell line that has endogenously expressed EGFP	[46]
	Liposome	Use of liposomes to encapsulate miRNA molecules for enhanced delivery performance	Liposomes have been mixed with pre-miR-133b to generate N-[1-(2,3-dioleyloxy)propyl]- N,N,N-trimethylammonium chloride: cholesterol: D-α-tocopheryl polyethylene glycol 1000 succinate lipoplexes, which have led to the down-regulation of the MCL-1 protein in A549 non-small cell lung cancer (NSCLC) cells	[47]
	Solid lipid nanoparticle (SLN)	Use of SLNs to adsorb miRNA molecules to facilitate the delivery process	SLNs containing dimethyldioctadecylammonium bromide have been generated to deliver miR-34a mimics into cancer stem cells (CSC), leading to an increase in the 50% median survival time of CSC-bearing mice by around 20%.	[48]
Physical method	Electroporation	Use of an electrical field to permeabilize the plasma membrane so that miRNA molecules can be introduced into the cells more easily	Electroporation has been used to deliver a plasmid harbouring a miR30-RNAi transcript to the chicken neural tube for gene silencing in a cell type-specific, traceable manner.	[49]
	Microparticle bombardment	Use of particles coated with miRNA molecules as "bullets", which are later shot into target cells	Particle bombardment has been adopted to deliver RNAi constructs, which have been generated from stable short hairpin (shRNA) transgenes possessing miRNA-derived stem and loop sequences, into sugarcane cultivars.	[50]

Level	miRNA	Tissue/cell	Target	Effects	Ref.
Genetic level	miR-34	Primary mouse embryonic fibroblasts	MCM2-7	Mediate MCM2-7 down-regulation to lead to DNA replication stress (RS)- induced cell arrest	[91]
		Patent-derived tissue samples	HDM4	Mediate tumor suppression by repressing <i>HDM4</i> to create a positive feedback loop acting on p53	[92]
		Glioblastoma cell lines	53BP1	Promote DNA damage and mitotic catastrophe by targeting 53BP1	[93]
	miR-335	HeLa cells and patient-derived lymphoblastoid cell lines	CTIP	Target CTIP to modulate the DNA damage response	[94]
Cellular	miR-23a	Human skin fibroblasts	TRF2	Induce cellular senescence by inhibiting <i>TRF2</i> expression	
level	miR-377	Human skin fibroblasts	DNMT1	Induce senescence by targeting DNMT1	[96]
	miR-34b	RAW264.7 macrophages	E2f3	Regulate the aging of RAW264.7 macrophages by targeting <i>E2f</i> 3. Compared to normal macrophages, the expression level of miR-34b has been found to be 5.23 times higher in aging macrophages.	[97]
	miR-203	CaSki and HeLa cervical cancer cell lines	BANF1	Involve in cell cycle regulation by targeting <i>BANF1</i> . Upon overexpression of miR-203, the proliferation, colony formation, migration, and invasion of cervical cancer cells have been suppressed.	[98]
	miR-141-3p	Human mesenchymal stem cells	ZMPSTE24	Down-regulate the expression of <i>ZMPSTE24</i> to lead to the up-regulation of prelamin A, resulting in cellular senescence	[99]
	miR-34a,	Human umbilical vein	Genes encoding	Control the mitochondrial integrity and function by regulating the expression of	[100]
	miR-181a	endothelial cells	mitochondrial	mitochondrial proteins such as Bcl-2	
	miR-146a		proteins		
Tissue and organ levels	miR-93	Murine model of CNV	VEGFA	Control neovascularization by regulating the expression of vascular endothelial growth factor-A (VEGF-A). Administration of an miR-93 mimic into a mouse model of choroidal neovascularization (CNV), which is a hallmark of late-stage age-related macular degeneration (AMD), has been found to be therapeutic.	[101]
	Let-7d	Male Sprague-Dawley (SD) rat model	APP	Contribute to isoflurane-induced learning and memory impairment by up- regulating the amyloid precursor protein (APP) and increasing the production of amyloid-β (A beta) in the hippocampus	[102]
	miR-21	Murine model of cortical impact injury	PTEN, PDCD4, RECK, TIMP3	Exhibits an increase in the expression level, as well as the subsequent down- regulation of the target genes (<i>PTEN</i> , <i>PDCD4</i> , <i>RECK</i> , <i>TIMP3</i>), in response to traumatic brain injury.	[103]

Table 2: Examples of miRNA molecules involved in the regulation of the aging process