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Abstract Most studies investigating the interactions between the carbon market with 
other markets are confined to developed countries, largely overlooking emerging 
economies’ contexts encountering environmental dilemmas caused by high carbon 
emission coupling with an economic boom. This study examines the connectedness 
mechanisms in the “Carbon-Commodity-Finance” system in emerging economies 
applying a spillover index approach with the estimated vector autoregression model. 
Given the recent green development of tackling climate change, this study also looks 
into the role of green bonds and new energy index stocks in the system. Our results 
suggest that: (i) the nature of system-wide spillovers changes over time and is notably 
driven by economic policy uncertainties; (ii) the stock market, on average, is the 
system’s primary source of shock contagion, with green bonds being the largest shock 
receiver; (iii) the carbon market is heterogeneously connected with other markets, it 
mostly receives shocks from financial and metal markets, and transmits the shock to 
energy markets, particularly coal; and (iv) investment risk in most markets can be 
greatly reduced by creating portfolios with other markets in the system, except for green 
bonds, which are difficult to hedge and cannot help hedge others. These findings have 
significant implications for investors and policy makers in emerging economies in 
terms of asset allocation optimization and market risk management. 

Highlights 

 The connectedness across Carbon-Commodity-Financial markets shows dynamics.
 Carbon market is a shock receiver of stocks and metals but a transmitter in energy.
 Stocks are the primary contagion source, while green bonds are the most vulnerable.
 System-wide spillovers are EPU-driven and all series are affected heterogeneously.
 The portfolio weights strategy outperforms hedge ratios in hedging effectiveness.

Keywords Dynamic spillovers, Carbon-Commodity-Financial markets, Connectedness 
network, Economic policy uncertainty, Investment portfolio management 

1 Introduction 

Price volatilities in different markets influence one another directly (Rigobon and Sack, 
2003). During crises, such volatilities are likely to increase drastically, spilling over into 
other markets (Reinhart and Rogoff, 2008). Naturally, measuring and monitoring such 
spillovers can provide an “early alert” for impending crises and trace the progress of 
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ongoing crises (Diebold and Yilmaz, 2012) help in establishing policy responses to 
preserve market stability and prevent shock contagion (Shen et al., 2018). More 
importantly, such spillovers among different markets offer investors and policy makers 
effective information on connectedness mechanisms in seeking investment 
opportunities and risk management (Antonakakis et al., 2020). With the rising 
financialization of carbon, carbon emission allowances, an emerging global asset class, 
attract increasing attention and adoption by investors to diversify portfolios in dealing 
with the uncertainty and risks posed by other markets (Vardar et al., 2018). As a result, 
the analysis of connectedness mechanisms of the complex systems involved in the 
carbon market is essential for both researchers and market participants. 

A lively debate has been developing around this issue employing advanced econometric 
approaches, with themes mainly focusing on spillovers between the carbon market and 
other markets, including but are not limited to renewable energy markets, fossil energy 
markets, and financial markets. Despite the fact that results vary on the data, scope, and 
techniques used, one general conclusion is that the carbon market and other markets are 
linked. Moreover, as the carbon market is metamorphosing, growing evidence suggests 
that it is increasingly influenced by joint commodity and financial markets instead of 
the unidimensional markets considered in previous research (Adekoya, 2021). However, 
there is still no consensus on the correlations between markets in this complex “Carbon-
Commodity-Finance” system (Gronwald et al., 2011). The erratic and heterogeneous 
results of this issue may lead to difficulties for investors in managing portfolios, such 
as the intangible loss of potential returns if only the shock transmission in the carbon 
and energy market is seen without considering the volatility of the stock market. 
Therefore, modeling a real situation in which to consider-within a single study-the 
connectedness mechanisms among carbon emission allowances, commodities, and 
financial assets is crucial to advance knowledge of potential systemic risks and thus 
make informed preventive interventions.  

Research investigating connectedness mechanisms between the carbon market and 
other markets has been featured by various levels of carbon financialization. Most 
studies have focused on developed economies, particularly Europe, as the European 
Union Emissions Trading System (EU ETS) is to date the most efficient (Zeng et al., 
2021). Meanwhile, studies on connectedness mechanisms in emerging economies’ 
contexts are seriously lacking. Emerging economies often target at boosting economic 
growth, which is deemed to be a more immediate priority than addressing climate 
change. These economies are the main damaging source for global warming because of 
their large emissions potential (Wara, 2007). However, their level of carbon 
financialization levels is still in its infancy. On the other hand, financial market 
conditions, types of carbon emissions, economic growth rates, institution structures, 
and technology availability in emerging economies are significantly different relative 
to developed economies (Mensah, 2014; Paramati et al., 2018). Evidence on the 
connectedness mechanisms of the “Carbon-Commodity-Finance” markets in emerging 
economies could provide economic and management implications for investors and 
policy makers, deserving more research attention (Gronwald et al., 2011).  



In view of the research gaps, this study examines a comprehensive “Carbon-
Commodity-Finance” system in emerging countries by including five detailed classes, 
that is, carbon market, energy commodities, metal commodities, traditional financial 
(stock and foreign exchange) markets, and green financial (new energy index stock and 
green bonds) markets. We not only combine the widely scrutinized carbon, energy, and 
traditional financial markets, but also link metal markets and green financial markets to 
them with the aim to provide multidimensional spillover information. Citing the 
financialization of common precious and industrial metals and the important role of 
green finance in successfully managing carbon market risks, it is also important to 
consider hedging asset classes that need to be examined for their exact roles in the 
system (Jin et al., 2020a; McInerney and Bunn, 2019). Meanwhile, emerging 
economies are more vulnerable to sudden changes in trade, stocks, and capital flows 
during economic upswings which may be attributable to the occurrence of economic 
shocks (Bloom, 2009). We further investigate the contribution of economic policy 
uncertainty (EPU), as an index closely related to economic growth and corporate 
investment, to the system-wide connectedness in order to provide important signals for 
systemic risk monitoring and intervention. Additionally, given the limited research 
available on the potential role of systematic risk hedging and portfolio management, 
this study conducts a holistic investigation into the portfolio weights, hedging strategies, 
and hedging effectiveness among several influential markets identified by spillover 
performance.  

The novel theorization and findings of this study offer a wide range of implications to 
investment and management policy in emerging countries. First, this work provides 
supportive insights into shock transmissions over time, including magnitudes and 
directions, and identifies key risk triggers for each market in the system to supplement 
previous studies. As such, it contributes to risk management research on how to 
stabilize markets with a novel understanding that is important for both research and 
practice. Examining connectedness mechanisms of a system with a multidimensional 
perspective not only clarifies the interactions and dependencies among carbon, 
commodity, and financial markets, but also contributes to the enrichment of a risk 
management theory concerning the carbon market in emerging economies. Furthermore, 
this study offers investors empirically based explanations about effective strategies for 
creating portfolios. As investment efforts involve capital allocations and risk 
assessments (Mensi et al., 2020), it is important to inform investors precisely how 
shocks propagate across markets and which assets can be effectively hedged.  

The arrangement of the rest of this study is organized in the following order: Section 2 
conducts a literature review, while Section 3 provides the approaches adopted and 
describes the underlying data. Sections 4, 5, and 6 present the empirical results, 
investment and management implications, and conclusions, respectively. 

2 Literature review 

Since the start of the EU ETS - the earliest and relatively mature carbon market - the 
main concern of prior studies revolves around the issue of carbon trading thickness and 



market efficiency (Daskalakis, 2013; del Rio, 2017; Montagnoli and De Vries, 2010; 
Wu and Qin, 2021), whereas recent publications address issues associated with linkages 
between the carbon market with other important energy, non-energy, and financial 
markets aimed at investment diversification alongside carbon financialization (Bouri, 
2015; Chang et al., 2018; Dai et al., 2021b; de Menezes et al., 2016; Hammoudeh et al., 
2015; Keppler and Mansanet-Bataller, 2010; Reboredo, 2013; Sousa et al., 2014; Tan 
and Wang, 2017; Zhang and Sun, 2016). Among these studies, the debate focuses on 
correlations between different markets, relying on Granger-causality tests (Keppler and 
Mansanet-Bataller, 2010), nonlinear autoregressive distributed lag models 
(Hammoudeh et al., 2015), and quantile regression models (Tan and Wang, 2017), 
autocorrelation functions (de Menezes et al., 2016), and how price or return volatilities 
transmit across markets using copula models (Reboredo, 2013), wavelet approach 
(Sousa et al., 2014), or BEKK, DCC, and other GARCH models (Bouri, 2015; Chang 
et al., 2018; Zhang and Sun, 2016). These studies examined how one market index 
affects a particular market, especially energy sector, and how potential risks should be 
addressed by market participants, with an emphasis on the contribution of market trend 
forecasting to investment and management.  

Of particular importance in understanding the connectedness mechanisms across 
markets is to understand the directional interactions, a powerlessness of the above 
techniques, which is further explored by Diebold and Yılmaz (Diebold and Yilmaz, 
2012). This approach is particularly well suited to developing a system thinking for a 
complex economic system with interactive markets, and so was quickly being applied 
to investigate the various dynamic spillovers related to carbon and energy markets as 
well as financial markets (Dai et al., 2021b; Ji et al., 2019; Ji et al., 2018; Wang and 
Guo, 2018). However, few studies have looked into the role of each possible market 
index in the “Carbon-Commodity-Finance” system’s overall connectedness, resulting 
in decisions that are often fragmented and piecemeal, to the detriment of fundamental 
environmental and economic objectives. In a study by Tan et al. (Tan et al., 2020), 
where the European carbon market was investigated in connection with energy and 
financial markets, the authors stressed the closeness of oil and EU carbon markets to 
financial markets and the need to set macroeconomic determinants as important factors 
in system-wide spillovers. Similarly, Adekoya et al. (Adekoya et al., 2021) divided this 
time-domain spillover into different frequencies to provide intelligence for both short- 
and long-term investors, and argued for much more systematic thinking was needed to 
make better investment choices. These studies are mostly confined to the EU. The 
analysis of emerging economies is necessary and meaningful in that the connectedness 
mechanisms among carbon, commodity, and financial markets are considered 
inconsistent in emerging and developed economies, yet the former is rarely investigated 
in the existing literature.  

In addition, a recurring topic in some studies expresses a viewpoint that economic or 
financial events-along with control and support policies- have often brought shocks into 
the interactions between different markets. As a result, investors are compelled to seek 
an alternative investment strategy to hedge downside and upside risks with related 



assets. In this context, the diversified role of commodity and carbon markets has 
attracted particular interest and attention, leading to a closer integration between 
commodity and carbon as well as financial assets such as stocks (Antonakakis et al., 
2018b, 2020; Jin et al., 2020a, b; Lahiani et al., 2021; Mensi et al., 2020). However, the 
hedging results are mixed or even contradictory. For example, some studies find 
commodities, particularly oil, have strong potential to hedge stocks (Mensi et al., 2016), 
while others demonstrate that commodities are ineffective in hedging stock market risks 
(Olson et al., 2017). These studies’ potential utility in advising portfolio hedging and 
risk management remains limited. We undertake a rigorous examination of the hedging 
effectiveness of four main market indices in a “Carbon-Commodity-Finance” system 
to provide a comprehensive empirical investigation of this research question. This will 
provide investors with flexibility when it comes to devising effective hedging strategies 
(Jin et al., 2020a).  

3 Methodology and data 

3.1 Methodology 

3.1.1 Dynamic spillover approach of Diebold and Yilmaz [DY] (2012) 

Diebold and Yilmaz [DY] (2012), based on the generalized forecast error variance 
decomposition (GFEVD) of the estimated vector autoregression (VAR) model, is the 
cornerstone approach used to assess the connectedness mechanisms in this study. 
Compared with other methods, such as the Granger-causality test (Keppler and 
Mansanet-Bataller, 2010), the wavelet approach (Sousa et al., 2014), quantile 
autoregressive distributed lag model (Lahiani et al., 2017), and MGARCH techniques 
(Zhang and Sun, 2016), this spillover approach is able to evaluate the unidirectional 
and bidirectional spillovers (transmission and reception). It provides a more 
comprehensive interpretation of the strength and the source of contagion of each market 
into the whole system (Mensi et al., 2020). Following the DY (2012) spillover approach, 
the GFEVD is defined as follows: 

𝜃𝜃𝑖𝑖𝑖𝑖𝐻𝐻 =
∑ �𝑒𝑒𝑖𝑖

′Ψℎ∑𝑒𝑒𝑗𝑗�
2𝐻𝐻−1

ℎ=0
𝑒𝑒𝑗𝑗
′ ∑𝑒𝑒𝑗𝑗×∑ 𝑒𝑒𝑖𝑖

′(Ψℎ∑Ψℎ
′ )𝑒𝑒𝑖𝑖𝐻𝐻−1

ℎ=0
= 1

𝜎𝜎𝑗𝑗𝑗𝑗
×

∑ �(Ψℎ∑)𝑖𝑖𝑖𝑖�
2𝐻𝐻−1

ℎ=0
∑ (Ψℎ∑Ψℎ

′ )𝑖𝑖𝑖𝑖𝐻𝐻−1
ℎ=0

             (1) 

Where 𝜎𝜎𝑗𝑗𝑗𝑗  represents the standard deviation, 𝑒𝑒𝑗𝑗  is a selection vector with the 𝑗𝑗𝑡𝑡ℎ 
element being 1 and the rest being 0. The 𝑗𝑗𝑡𝑡ℎ series’ contribution to the forecast error 

variance of the variable 𝑖𝑖 at the horizontal ℎ is defined by 𝜃𝜃𝑖𝑖𝑖𝑖𝐻𝐻. Then, we standardize 

it by rows to obtain the following result:  
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Where∑ 𝜃̅𝜃𝑖𝑖𝑖𝑖𝐻𝐻𝐻𝐻
𝑗𝑗=1 = 1 and ∑ 𝜃̅𝜃𝑖𝑖𝑖𝑖𝐻𝐻𝑛𝑛

𝑖𝑖,𝑗𝑗=1 = 𝑛𝑛. Consequently, DY (2012) prove that the total 
spillover is the relative contribution of other system variables to the prediction variance, 
as computed thus: 
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Furthermore, the directional spillovers (to) and vice versa (from) of a given variable 𝑖𝑖 
to other system variables 𝑗𝑗, as well as the net spillovers of variable 𝑖𝑖, i.e., the difference 
between the directional spillovers of “to” and “from”, are computed respectively in eq. 
(4): 

𝐶𝐶𝑖𝑖→∙𝐻𝐻 = ∑ 𝜃̅𝜃𝑖𝑖𝑖𝑖𝐻𝐻𝑛𝑛
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𝑗𝑗≠𝑖𝑖 ,𝐶𝐶𝑖𝑖,𝑛𝑛𝑛𝑛𝑛𝑛𝐻𝐻 = 𝐶𝐶𝑖𝑖→∙𝐻𝐻 − 𝐶𝐶𝑖𝑖←∙𝐻𝐻               (4) 

3.1.2 Bilateral hedge ratios and portfolio weights 

Hedge ratios and optimal portfolio weights can be estimated using a conditional 
variance. According to Kroner and Sultan (Kroner and Sultan, 1993), an investor should 
long/short $𝛽𝛽  position in asset 𝑗𝑗  to reduce the shock of a portfolio with $1 long 
position in asset 𝑖𝑖. Then, the hedge ratio between two assets is defined as: 
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Then, as described by Kroner and Ng (Kroner and Ng, 1998), we calculate the optimal 
portfolio weights of asset 𝑖𝑖 as below: 
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Where ℎ𝑖𝑖𝑖𝑖,𝑡𝑡 ,ℎ𝑖𝑖𝑖𝑖,𝑡𝑡 ,ℎ𝑗𝑗𝑗𝑗,𝑡𝑡  represent the conditional variance of asset 𝑖𝑖  , conditional 
variance of asset 𝑗𝑗, and the conditional covariance between two assets volatility at time 
𝑡𝑡 , respectively. Thus, 1 −𝑤𝑤𝑖𝑖𝑖𝑖,𝑡𝑡  is the optimal weight of asset 𝑗𝑗 . The estimation of 
𝑤𝑤𝑖𝑖𝑖𝑖,𝑡𝑡  for each pair of two assets in this study is derived by referring the dynamic 
conditional correlations (DCC) GARCH framework used in the literature of 
Antonakakis et al. (Antonakakis et al., 2018b, 2020).  

Finally, it is important to make a comparison between these two hedging methods, 
which is conducted by hedging effectiveness (HE), as follows: 

𝐻𝐻𝐻𝐻 = 1 − ℎ𝛽𝛽,𝑤𝑤

ℎ𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗
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Where ℎ𝛽𝛽,𝑤𝑤  and ℎ𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗  denote the variance of the hedge and unhedged portfolio, 
respectively. Higher hedging ratio values indicate stronger hedging effectiveness, thus 
implying that the underlying investment policy is a superior hedging strategy (Mensi et 
al., 2020).  



3.2 Data description 

We employ daily closing price series covering various assets from three main markets, 
including carbon, commodity, and financial markets, which are listed in Table 1 along 
with the data sources. Our dataset is mainly from China, as it is a mega-economy and 
the world’s largest carbon emitter, having established a national carbon trading market 
(Van der Hoeven, 2014). The sample period is January 7, 2015-December 31, 2021, 
yielding 1524 daily observations as dictated by data availability. Guangdong, as the 
earliest carbon trading pilot in China, has its carbon emission used as the carbon market 
variable. In terms of the commodity market, we adopt three energy variables, coal, oil, 
and gas, to represent different energy markets, while gold, silver, and copper are used 
to represent metal markets. In addition, we choose four different financial market 
indices to illuminate the price information in the financial market. Specifically, the CSI 
300 Index, a capitalization-weighted stock market index, is considered as the behaviour 
of the stock market, while the RMB exchange rate is used to capture the foreign 
exchange market’s dynamics. In order to ensure that some assets (oil and gas) are traded 
in the same currency, we convert foreign currencies to RMB based on the currency 
exchange rates using the US dollar as the base currency. Further, two points on 
financing green projects to help the transition to a green economy are considered, 
namely, new energy index stocks and green bonds.  

Table 1 Description of the variables of the “Carbon-Commodity-Finance” system 
Primary Market Abbreviations Index Name Data Sources 

Carbon 
Market 

Guangdong 
Carbon Market 

GDEA 
Guangdong Carbon 
Allowance Prices 

CSMAR a 

Commodity 
Market 

Energy Markets 
COAL Power Coal Futures CSMAR 

OIL Brent Oil Futures Investing.com b 
GAS Natural Gas Futures Investing.com 

Metal Markets 
GOLD Gold Futures CSMAR 

SILVER Silver Futures CSMAR 
COPPER Copper Futures CSMAR 

Financial 
Market 

Stock Market CSIR CSI 300 Index Investing.com 
Foreign Exchange 

Market 
CNY RMB Exchange Rate Investing.com 

Green Financial 
Markets 

CGBI 
China Bond Green Bonds 

(Full Price Index) 
WIND c 

CNI CNI New Energy Index WIND 

Notes: (a), (b), (c) denote the dataset website of http://www.csmar.com/, 
https://www.investing.com/, and http://www.wind.com.cn/. 

The daily returns of the “Carbon-Commodity-Finance” system are determined by 
subtracting the logarithms of two consecutive prices, that is, 𝑅𝑅𝑡𝑡 = ln (𝑃𝑃𝑡𝑡 𝑃𝑃𝑡𝑡−1⁄ ) × 100, 
where 𝑃𝑃𝑡𝑡  is the price at time 𝑡𝑡 . Descriptive statistics are provided in Table 2. On 
average, the indices except for COPPER, CSIR, and CGBI have positive returns. As for 
the daily variance, GDEA has the highest variance compared to others, indicating the 



high volatility of the carbon market, followed by energy markets, while CGBI has the 
lowest variance. Furthermore, we find that the distributions of all return series are 
skewed and leptokurtic because the nonzero skewness statistics and all kurtosis 
statistics are greater than three. The augmented Dickey-Fuller (ADF) test confirms that 
all return series are stationary. 

Table 2 Descriptive statistics of variables of the “Carbon-Commodity-Finance” 
system 

 Mean Variance Skewness Kurtosis JB Q (20) ADF 
GDEA 0.033 21.4 -0.611 10.971 7737.218*** 27.429*** -14.226*** 
COAL 0.059 5.608 -2.464 28.745 54010.235*** 22.008*** -9.679*** 

OIL 0.001 13.649 0.943 14.747 14036.098*** 406.042*** -18.345*** 
GAS 0.027 9.957 0.215 4.386 1233.429*** 20.581** -11.46*** 

GOLD 0.00005 1.539 0.128 3.027 586.126*** 392.218*** -19.649*** 
SILVER 0.001 2.719 -0.041 5.938 2239.195*** 473.379*** -18.351*** 
COPPER -0.003 2.485 -0.335 6.168 2444.337*** 35.896*** -11.163*** 

CSIR -0.019 2.167 -1.025 6.521 2967.163*** 27.338*** -9.921*** 
CNY 0.002 0.075 -0.180 3.787 918.738*** 18.124** -10.324*** 
CGBI -0.00017 0.008 -0.495 13.350 11380.112*** 498.332*** -8.912*** 
CNI 0.002 4.159 -0.765 3.094 756.725*** 27.080*** -9.704*** 

Notes: (***), (**), (*) denote significance level at 1%, 5% and 10%; Skewness: 
D'Agostino test(D'Agostino, 1970); Kurtosis: Anscombe and Glynn test(Anscombe and 
Glynn, 1983); JB: Jarque and Bera normality test(Jarque and Bera, 1980); Q (20): 
Fisher and Gallagher weighted portmanteau test(Fisher and Gallagher, 2012); ADF: 
Cheung and Lai augmented Dickey-Fuller test(Cheung and Lai, 1995). 

4 Empirical results 

This section presents connectedness mechanisms, the role of economic policy 
uncertainty on the spillover index, and the corresponding portfolio diversification of 
the “Carbon-Commodity-Finance” system. We first report the estimation findings for 
the total spillovers adopting the approach of DY (2012), followed by the analysis of 
directional spillovers, including the average “from”, “to”, and “net” spillovers, as well 
as the dynamic net directional results over time. Next, the cross-market connectedness 
frameworks are discussed to reveal the spillover linkages during the whole period. We 
then derive the role of economic policy uncertainty on the system-wide spillover index 
using a quantile-regression method. Furthermore, simplified bivariate portfolios are 
used to explore potential hedging opportunities.  

4.1 Total spillovers 

It is widely assumed that spillovers vary over time and that intermarket correlations 
may strengthen or diminish under uncertainty and unexpected shocks such as economic 
recessions, financial crises, political events, and disasters (Antonakakis et al., 2018a; 
Diebold and Yilmaz, 2012; Lahiani et al., 2021). Fig.1 shows the total spillovers for the 
full sample period, with a rolling window of 200 days and an ahead forecast horizon of 
100 days, which following Baruník and Křehlík (Baruník and Křehlík, 2018). Judging 



from the given total average time-domain spillover index of 36.35%, market 
interdependence is not insignificant, but strong. In terms of overall trends, this total 
spillover index fluctuates from about 35% to almost 45% over time, providing market 
participants with significant information about the influence of various events in the 
political and financial spheres (Antonakakis et al., 2018b). It starts to show an 
increasing pattern due to China’s financial crisis and reaches its first peak in 2016 
before the implementation of China's strict financial "deleveraging" regulation. It then 
falls to below 35% at the end of 2016, followed by two small swings in 2017, likely 
caused by the spike in oil prices and interest rate hikes of the US Federal Reserve 
System (Fed). Furthermore, the second phase of high spillovers is observed during the 
period between 2018 and 2020. A possible explanation for this continuity can be found 
in the events of Sino-US trade frictions and oil price crashes, which create uncertainty 
in the “Carbon-Commodity-Finance” system. Importantly, it also shows that the 
spillovers do not diminish immediately when the trade tension ends, but peak and 
persist until the end of 2021. Obviously, this increased spillovers because of the 
outbreak of the COVID-19 pandemic. The shocks caused by the rapid spread of the 
pandemic have brought dramatic impacts on global markets, but then decreases rapidly 
as China’s segregation and blocking policies significantly alter market demand and 
operating patterns. With the overall economic expectations moving toward a relative 
recovery, China proposed a carbon capping and carbon neutrality (dual carbon) strategy 
and established a national carbon emission trading market in March and July 2021, 
respectively. Thereafter, the spillover fluctuates smoothly at 30%-35%.  

 
Fig. 1 Total dynamic spillovers 

4.2 Directional spillovers 

Fig. 2 provides a clearer description of directional spillover levels between carbon, 
commodity, and financial markets. Overall, the spillovers “to” (spillovers from one 
particular market to other markets) and “from” (spillovers from all other markets to one 
particular market) are positively correlated, which means that markets with high levels 
of outputs are also higher in inputs. Also, it reveals that carbon, financial, and 
commodity markets have stable dual-directional spillovers. Specifically, CSIR, CNI, 
and SILVER have relatively high spillovers in both from and to directions, implying 
that they have strong market influence in the system. COPPER and GOLD, although 



contributing less than SILVER, play non-negligible roles in the systemic spillovers. 
That is a key reason for the phenomenon that metal markets are now increasingly 
viewed as important components of investment portfolios (Mensi et al., 2020). However, 
CNY, CGBI, energy markets, and GDEA, have relatively low dual-directional 
spillovers with other markets, indicating the relatively weak linkages between them and 
other markets. In terms of GDEA, the low carbon market activity caused by loose 
allowances and wait-and-see sentiment of emission control firms may be one reason. 

 
Fig.2 To, from and net directional spillovers 

A positive (negative) net directional spillover indicates that the variable is a net 
transmitter (receiver) of spillovers, and it transmits gross volatility shocks to all other 
markets more than receives from them (Diebold and Yilmaz, 2012). Fig. 2 also shows 
the characteristics of the net directional spillovers in the “Carbon-Commodity-Finance” 
system, where positive and negative values are presented as triangles and circles, 
respectively. GDEA and all energy markets are net spillover receivers, as well as 
COPPER. While other metals of SILVER and GOLD are positive, which indicates that 
they are net transmitters. In terms of the financial market, CGBI is vulnerable to 
spillovers from other markets, and in contrast, CSIR, CNI, and CNY are net spillover 
transmitters. It is noted that the larger size of the triangles and circles, the bigger the 
absolute value of the directional spillovers indicated. Thus, the combinations (CSIR, 
CGBI) and (SILVER, COAL) are the largest net transmitters and net receivers of the 
financial market and commodity market, respectively, while GDEA exists only as a net 
receiver. The directional spillovers depicted above provide a useful description of 
average net directional spillover behaviour, but may overlook potentially important 
dynamic spillover movements. Therefore, it is necessary to further examine the changes 
in the net directional spillovers of the markets over time. 



 

Fig.3 Net dynamic directional spillovers 

Clearly, many changes take place throughout time, some of which are well-described 
in Fig.3 as a more-or-less continuous evolution. The first observation is that the carbon 
market acts mainly as a net spillover receiver. Large fluctuations happen probably due 
to major uncertainties or crisis events. For example, China’s dual carbon strategy 
proposed in early 2021 and the establishment of the national carbon emission trading 
market, not only change GDEA from a net receiver to a net transmitter, but also cause 
significant volatility in other markets such as COAL, OIL, and GAS. Regarding energy 
markets, before 2017, OIL is a net receiver while COAL and GAS are net transmitters, 
but then things change. GAS and COAL stay negative values for most periods except 
for the stages such as the Fed rates hike and the dual carbon strategy. OIL mainly acts 
as a transmitter during 2017-2018, with spillovers turning negative as oil prices decline 
and trade tension intensify after 2018, and positive in 2020 when the COVID-19 
pandemic breaks out and in 2021 after the carbon market is established, respectively.   

Metal markets undergo significant volatility. Prior to 2018, SILVER primarily acts as a 
net receiver. This happens probably because of the sensitive nature of SILVER relative 
to other markets. In 2018, SILVER switched from a net receiver to a net transmitter as 
demand declined due to the Fed rates hike and the U.S.-China trade war. With the 
implementation of a series of measures to stimulate economic growth, including tax 
cuts and accommodative monetary policy, negative market sentiment eased and 
volatilities tapered off. SILVER has a big swing in 2019 due to investment sentiments 
surge in the economic markets with successive Fed interest rate cuts, becoming a 



receiver again. Later, it faces another big volatility in 2020 due to the pandemic. 
Although GOLD also experiences several volatilities during the whole period, it acts as 
a net receiver except for the period during the second half of 2018 to 2021, which is 
related to the fact that it has both commodity and financial attributes and is used as a 
safe-haven and investment tool. Copper is an important basic raw material and is 
considered as a macroeconomic “barometer”. Thus, COPPER is more volatile, 
switching back and forth between acting as a net receiver and transmitter until 2020, 
while it acted mainly as a net transmitter during the COVID-19 pandemic.  

In terms of the financial market, CSIR and CNI exhibit similar volatility trends as net 
spillover transmitters, mainly because CSIR reflects the overall trend of the A-share 
market, including the new energy sector. CNY reflects supply and demand in the foreign 
exchange market and is subject to market liquidity, thus acting as a net spillover receiver 
for most periods. But it changes to a large transmitter when the market experiences 
extreme pessimism, especially after the pandemic outbreak in 2020, it transmits much 
more shocks to other markets than receives from them. CGBI is a net transmitter in 
early 2017 and then becomes a receiver as it is subject to shocks from other markets 
during the trade tension and the pandemic. In summary, we can argue that although all 
these markets are at both the transmitting and receiving ends of the net directional 
spillovers, shocks are mainly transmitted into the “Carbon-Commodity-Finance” 
system through CSIR, CNI, and SILVER. This performance is more pronounced after 
the COVID-19 pandemic outbreak. However, it is still unclear about the aggregate 
information on how much each market contributes to the volatility of the pairwise 
markets. Thus, we further analyze their pairwise directional connections by using a 
network diagram, in net terms. 

4.3 Connectedness network 

Complex network theory describes the linkages of a system as a network composed of 
nodes and inter-nodes relationships to effectively characterize the structural connection 
in cross-market spillovers (Wang et al., 2020). Thus, a network diagram is used to 
identify the specific sources, directions, and magnitudes of spillover shocks transmitted 
(received) by each market in the system in this section (Geng et al., 2021), as shown in 
Fig. 5. The nodes are the 11 variables from the carbon, commodity, and finance markets. 
The arrows denote the directions of spillovers. The edges’ sizes show the magnitude of 
the pairwise connectedness, which is also reflected through the colors of the edges (red 
[strong], dark golden [medium], grey [weak]). The top figures depict the connectedness 
network for the full samples and the carbon market, while the bottom ones depict the 
network for the commodity and financial markets. The net spillover transmitters are 
represented by brown nodes, while the net spillover receivers are represented by dark 
green nodes.  



 
Fig.4 Connectedness network framework 

The net connectedness for all samples is presented in Fig.4 (a). Overall, financial 
markets (except CGBI) and metal markets (except COPPER) are the main transmitters, 
while energy markets and the carbon market, as well as CGBI and COPPER, are the 
main receivers. There are some extents of connectedness between different markets but 
the intensity manifests itself in different ways. Specifically, discuss the carbon market 
first. Markets except for energy markets and CNY are net contributors to the carbon 
market. Of these, CGBI is somewhat more impacts on GEDA. This illustrates the 
considerable role of green bonds play in the carbon market by financing 
environmentally friendly projects (Hammoudeh et al., 2020).  

Meanwhile, the connection between energy markets of OIL, GAS, and COAL exists, 
but it is not as strong as expected. GAS receives net shocks from COAL, which are 
transmitted by OIL and then transmitted to OIL again, forming a small closed-loop 
transmission. In practice, OIL and GAS are very close fuel substitutes in terms of 
industrial production, which is one of the main reasons for the strong connectedness. It 
is noted that OIL is indirectly connected to SILVER via CNY. One explanation for this 
relationship is that higher oil prices spur inflation, bringing about great turmoil in the 
silver market. In terms of the intermetallic market, SILVER has a stronger connection 
with GOLD than COPPER because of their shared financial attributes. This finding is 
in line with previous evidence obtained in the preliminary analysis that suggests a 
strong volatility dependence between gold and silver (Dutta, 2018; Mensi et al., 2019). 



Moreover, our study further argues that GOLD receives more shocks volatility from 
SILVER than it transmits, as the net pairwise value from SILVER to GOLD is positive.  

The impact of the commodity market on the financial market is mainly through 
commodity price fluctuations and high leverage amplification effects. Nevertheless, 
CSIR and CNI have a much greater impact on the commodity and carbon markets than 
they receive. Especially for COPPER, as a major industrial feedstock, it is extremely 
vulnerable to stock market shocks. Moreover, the financial market has internal 
spillovers, with CSIR being the main transmitter. Therefore, we can assume that the 
contagion of shocks within the “Carbon-Commodity-Finance” system is mainly caused 
by the stock market. Furthermore, CSIR is a net shock transmitter to CNI and CGBI, 
implying the overall impact of the traditional stock market tends to spread to the green 
market, which is in line with Pham’s findings(Pham, 2016). Due to the long-term 
property of green bonds, it does not exhibit sufficient stability in the short term, so 
CGBI is more vulnerable to contagion from other markets.  

4.4 The role of economic policy uncertainty on system-wide connectedness 

This section is to advance the empirical analysis by examining how spillovers in the 
“Carbon- Commodity- Finance” system is affected by economic policy uncertainty 
(EPU). The analysis of EPU is inspired by the increasing uncertainty generated by 
economic policies that are found to influence investment and management 
decisions(Reboredo and Uddin, 2016). To provide a more elaborated and holistic 
picture, we source for China’s EPU index, obtained from the website 
http://www.policyuncertainty.com, to investigate how it drives the interconnectedness 
in the “Carbon-Commodity-Finance” system. Furthermore, we run a quantile 
regression model as Eq. (8) to analyze the role of EPU on the dynamic spillover indexes, 
as it enables for the examination of co-movement in different market conditions, 
including bearish (lower quantile), bullish (upper quantile), and normal (intermediate 
quantile) markets, which cannot be captured by other techniques (Koenker and Bassett 
Jr, 1978).   

𝐶𝐶𝐶𝐶𝑡𝑡𝜏𝜏 = 𝛼𝛼0𝜏𝜏 + 𝛼𝛼1𝜏𝜏𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 + 𝑒𝑒𝑡𝑡𝜏𝜏                          (8) 

Where 𝐶𝐶𝐶𝐶𝑡𝑡𝜏𝜏  represents the spillover index at 𝜏𝜏𝑡𝑡ℎ  quantile. 𝛼𝛼1𝜏𝜏  denotes the EPU 
impact coefficient of the connectedness at the 𝜏𝜏𝑡𝑡ℎ quantile. 

The estimated parameters of the total and net directional spillovers at varying quantiles 
are documented in Table 5 and vividly presented in Fig.6. We observe that most 
parameters are statistically significant for different quantile orders, indicating that EPU 
has a strong influence on the connectedness in the “Carbon-Commodity-Finance” 
system. The positive coefficients in the table imply that a rise in EPU increases the 
spillover index, while negative coefficients lead to a fall. Moreover, the null hypothesis 
of insignificance coefficients is firmly rejected in most cases (Adekoya, 2021). Take 
CNI as an example. The results show the irrelevance of EPU in shaping the new energy 
stock market at upper quantiles, which is possibly explained by the fact that EPU is not 
crucial in determining its returns in an economic upswing and therefore investors and 



policy makers have no need to protect markets from its risk. 

Table 3 The role of EPU on the system-wide connectedness at different quantiles 
 𝜏𝜏 = 0.1 𝜏𝜏 = 0.3 𝜏𝜏 = 0.5 𝜏𝜏 = 0.7 𝜏𝜏 = 0.9 

Total spillovers 
TOTAL 0.0167 *** 0.0183 *** 0.0213*** 0.0170*** 0.0104*** 

 (0.0021) (0.0010) (0.0021) (0.0021) （0.0007） 

Net spillovers of the carbon market 
NET GDEA -0.0037* 0.0019 0.0042*** 0.0130*** 0.0181*** 

 (0.0019) (0.0021) (0.0013) (0.0021) (0.0034) 
Net spillovers of the commodity market 

NET COAL 0.0047 -0.0207*** -0.0193*** -0.0250*** -0.0227*** 
 (0.0038) (0.0019) (0.0025) (0.0027) (0.0025) 

NET OIL 0.0078*** 0.0166*** 0.0052** -0.0018 -0.0123*** 
 (0.0023) (0.0015) (0.0025) (0.0018) (0.0018) 

NET GAS 0.0077*** -0.0014 -0.0084*** -0.0232*** -0.0142*** 
 (0.0018) (0.0016) (0.0022) (0.0022) (0.0028) 

NET GOLD 0.0220*** 0.0274*** 0.0297*** 0.0323*** 0.0195*** 
 (0.0011) (0.0014) (0.0015) (0.0021) (0.0062) 

NET COPPER -0.0037 -0.0003 -0.0075*** -0.0100*** -0.0118*** 
 (0.0034) (0.0009) (0.0012) (0.0014) (0.0021) 

NET SILVER 0.0216*** 0.0183*** 0.0111*** 0.0039*** -0.0110*** 
 (0.0011) (0.0018) (0.0017) (0.0009) (0.0008) 

Net spillovers of the financial market 
NET CSIR 0.0248*** 0.0213*** 0.0286*** 0.0315*** 0.0205*** 

 (0.0028) (0.0012) (0.0021) (0.0021) (0.0069) 
NET CNY -0.0214*** -0.0193*** -0.0161*** -0.0158*** -0.0346*** 

 (0.0013) （0.0011） (0.0023） (0.0021) (0.0029) 
NET CGBI -0.0224*** -0.0116*** -0.0086*** -0.0101*** -0.0131*** 

 (0.0028) (0.0025) (0.0029) (0.0019) (0.0021) 
NET CNI 0.0031*** 0.0055*** 0.0067 0.0010 0.0015 

 (0.0011) (0.0015) (0.0052) (0.0016) (0.0023) 

Notes: This table provides the parameter 𝛼𝛼1𝜏𝜏 and related estimated standard errors, i.e., 
the numbers in parentheses. (***), (**), (*) respectively indicate significance at the 1%, 
5%, and 10% levels. 



 

Fig. 5 Coefficients of EPU on the system-wide connectedness 

Overall, the estimation results highlight a clear positive impact of EPU on the system-
wide total spillovers at all quantiles, indicating that EPU is the notable driver of inter-
system connectedness. Moreover, EPU positively affects GDEA, GOLD, and CSIR at 
all quantiles. As EPU increases, these three markets have greater influence in the system 
due to the rise of their net spillovers, providing investors and policy makers with 
investment and risk warnings information. In fact, EPU guides the stock market and 
gold market more strongly, which may be explained by the fact that CSIR and GOLD 
could be one cause of economic uncertainty. Moreover, EPU has a negative impact on 
COAL, GAS, COPPER, CNY, and CGBI, with COAL and CNY being the most 
negatively impacted. Thus, the increase in EPU makes them more sensitive to other 
markets. This means that they are likely to receive more shocks across the markets than 
they transmit, with COAL and CNY bearing the brunt. This finding is informative for 
these markets participants in that the changeable economic policy uncertainty should 
be taken into full account when they make investment and management decisions (Dai 
et al., 2021a). Interestingly, from the lower to the higher quantiles, the coefficients of 
EPU on COAL, GAS, and SILVER range from positive to negative. Similarly for OIL, 
and indeed, the role of EPU on oil prices is still under debate, with existing literature 
concluding both positive (Joëts et al., 2017) and negative effects (Mo et al., 2018), as 
well as insignificant effects (Reboredo and Uddin, 2016). Our results provide evidence 
that EPU has a positive impact on the oil market at lower quantiles, but a weakly 
negative impact on the oil market in the case of better economic conditions. Also, it 
should be noted that at lower quantiles, the impact of EPU on GDEA, COPPER, and 
CNI is negligible. A possible explanation is that when the market has a symmetric effect 
in the system, i.e., when the transmitter and received are offset, or when the market has 
a lower influence in the system, that markets are virtually immune to external economic 
and financial influences. They offer potential pathways for risk management, so 
investors could consider resorting to these assets to hedge their portfolios in times of 
financial, economic, or pandemic crises (Huynh et al., 2020). 

4.5 Further analysis on the investment strategies 

To the extent that we may further bolster our findings based on the connectedness 



mechanism and the role of EPU on it, we conducted a portfolio and hedging exercise. 
In particular, we create bivariate investment portfolios necessary to include CSIR (i.e., 
the largest transmitter of the financial market), SILVER (i.e., the largest transmitter of 
the commodity market), CGBI (i.e., the largest receiver of the system), and GDEA (i.e., 
the carbon market).  

Table 4 summarizes the statistics of optimal portfolio weights and hedge ratios for the 
aforementioned four markets. Meanwhile, hedging effectiveness refers to the risk 
reduction that investors can achieve using portfolio weight or hedge ratio strategies 
(Antonakakis et al., 2020). The portfolio weights reflect the portions that needed to be 
invested in GDEA, SILVER, CSIR, and CGBI in any ￥ 1 portfolio. We note that 
portfolio investments in all assets, except for the portfolio weights between CGBI/other 
assets and CSIR/CNI, reduce the volatility of each paired asset due to the positive HE 
values. For all optimal portfolios, GDEA assumes less than 50% weight, indicating that 
investors should hold more other assets than the carbon market. For instance, in the 
GDEA/COAL portfolio, ￥ 0.38 should be invested in GDEA and ￥ 0.62 in COAL, 
which would reduce the volatility of GDEA and COAL by 84.37% and 40.36%, 
respectively. Generally, the weights of SILVER in the portfolios with other assets range 
from about 6% to 80% (except CGBI). CNY is a better portfolio choice when investors 
own less than 10% of SILVER, and GOLD, COAL, COPPER, CSIR as well as CNI are 
more effective in hedging risk when owning more SILVER. In terms of CSIR, when 
investors hold less than 50%, it is more beneficial to invest in metal markets, especially 
GOLD, otherwise, they should choose energy markets, where COAL outperforms OIL 
and GAS. One interesting point is that while CSIR transmits a lot of shocks to CNI, the 
latter is not effective in reducing the volatility of CSIR in a portfolio, but in turn, the 
former effectively hedges risks of CNI. Furthermore, CGBI is a notable finding that, 
when combined with other assets, significantly reduces their investment risk; however, 
few portfolios have been found to significantly reduce the investment risk of green 
bonds (Tiwari et al., 2022).  

Table 4 Average portfolio weights 𝑊𝑊𝑖𝑖𝑖𝑖, hedge ratios 𝛽𝛽𝑖𝑖𝑖𝑖, and hedging effectiveness 
𝐻𝐻𝐻𝐻 

 𝑊𝑊𝑖𝑖𝑖𝑖 𝐻𝐻𝐻𝐻 (%) 𝛽𝛽𝑖𝑖𝑖𝑖 ,𝛽𝛽𝑗𝑗𝑗𝑗 𝐻𝐻𝐻𝐻 (%) 
Panel A: GDEA 

GDEA, COAL 0.38 84.37, 40.36 0.01, 0.01 -0.17, 0.06 
GDEA, OIL 0.49 74.79, 60.48 0.05, 0.04 0.05, 0.38 
GDEA, GAS 0.49 80.51, 58.11 -0.04, -0.04 0.07, -0.10 

GDEA, GOLD 0.21 94.83, 28.16 -0.03, 0.00 0.32, 0.20 
GDEA, SILVER 0.26 91.48, 32.94 0.09, 0.02 -0.15, -0.14 
GDEA, COPPER 0.27 93.97, 48.06 0.05, 0.01 0.00, 0.04 

GDEA, CSIR 0.23 91.72, 18.26 0.04, 0.01 -0.32, -0.50 
GDEA, CNY 0.02 99.66, 2.72 -0.50, 0.00 0.22, 0.08 
GDEA, CGBI 0.00 99.96, -0.18 1.66, 0.00 -0.09, 0.30 
GDEA, CNI 0.35 87.33, 34.82 -0.01, 0.00 -0.22, -0.27 

Panel B: SILVER 



SILVER, COAL 0.70 34.69, 68.34 0.18, 0.37 4.12, 7.63 
SILVER, OIL 0.78 22.63, 84.59 0.03, 0.15 0.69, 0.80 
SILVER, GAS 0.77 32.89, 81.68 0.00, 0.00 -0.12, -0.01 

SILVER, GOLD 0.38 65.29, 38.69 0.08, 0.04 0.79, 1.17 
SILVER, COPPER 0.46 52.23, 47.74 0.27, 0.23 5.95, 6.82 

SILVER, CSIR 0.42 59.35, 49.00 0.26, 0.19 3.29, 4.33 
SILVER, CNY 0.06 97.49, 8.74 -0.44, -0.01 0.59, 0.44 
SILVER, CGBI 0.01 99.70, -0.17 -0.45, 0.00 -0.03, -0.45 
SILVER, CNI 0.62 42.78, 62.6 0.14, 0.22 2.89, 4.17 

Panel C: CSIR 
CSIR, COAL 0.72 49.1, 80.33 0.13, 0.35 1.64, 3.46 

CSIR, OIL 0.83 21.05, 87.47 0.04, 0.21 1.01, 0.34 
CSIR, GAS 0.81 33.29, 85.48 0.01, 0.05 0.08, 0.21 

CSIR, GOLD 0.45 67.1, 53.68 -0.03, -0.02 0.30, -0.20 
CSIR, COPPER 0.55 57.68, 63.10 0.12, 0.15 3.74, 2.22 

CSIR, CNY 0.09 96.99, 12.74 -0.8, -0.04 1.33, 2.14 
CSIR, CGBI 0.01 99.62, -2.33 -1.26, 0.00 -0.61, 0.20 
CSIR, CNI 0.92 -2.86, 46.41 0.50, 1.09 56.23, 62.82 

Panel D: CGBI 
CGBI, COAL 1.00 2.53, 99.86 0.00, -1.14 0.00, 0.01 

CGBI, OIL 1.00 0.06, 99.94 0.00, 0.88 0.00, 0.00 
CGBI, GAS 1.00 -1.45, 99.92 0.00, 0.27 0.00, 0.00 

CGBI, GOLD 0.99 0.08, 99.47 0.00, 0.83 0.00, 0.00 
CGBI, COPPER 1.00 -7.17, 99.65 0.00, 0.98 0.00, 0.00 

CGBI, CNY 0.89 23.14, 91.62 0.01, 0.10 0.00, 0.00 
CGBI, CNI 0.99 -0.19, 99.80 0.00, -1.03 0.00, 0.00 

The bilateral hedges ratios and hedging effectiveness between each pairwise asset are 
also shown to help us better comprehend the investment implications of our study. The 
hedge is formed by either being long or short on both assets (Basher and Sadorsky, 
2016). Table 4 reports that the average hedge ratios, indicating a ￥1 long position in 
one asset are protected by the average value of a long/short position in another asset 
(Tiwari et al., 2022). When the hedge ratio is positive, a short position in the asset 
should be added to the portfolio (Jin et al., 2020a). For example, hedge ratio estimates 
for GDEA/OIL of 0.05 show that a ￥1 long position in GDEA can be hedged by ￥0.05 
investment in OIL, while 0.04 means taking a short position of about ￥0.04 in GDEA 
to hedge ￥ 1 investment in OIL, yielding HE values of about 0.05 and 0.38, 
respectively. It is noteworthy to mention the negative hedge ratios of GDEA/GAS, 
GDEA/GOLD, and GDEA/CNY. This arises when the asset pairs are negatively 
corrected (Tiwari et al., 2022). Thus, long positions in GAS, GOLD, CNY can also be 
an ideal hedge in the simplistic design of GDEA’s hedging strategies. Our bilateral 
results also suggest that GDEA can act as a hedge against COAL, OIL, and COPPER. 
However, in general, the hedge ratios of GDEA are weak and sensitive to the 
instabilities in commodity and financial markets. 

Arguably, the average ratio in the hedging instrument can be considered as a proxy for 



the transaction cost (Chen and Sutcliffe, 2012). Comparing the transaction costs and 
the hedging effectiveness of paired assets, in Table 4, the cheapest hedge for a ￥1 long 
position in SILVER is obtained with a short position in OIL (￥0.03), while the most 
expensive and effective is COPPER (￥0.27). Turning to CSIR, the transaction costs of 
hedging a ￥1 long position in CSIR suing a short position in other assets are quite 
varied. For instance, ￥0.01 in GAS and ￥0.50 in CNI are needed to hedge CSIR. Also, 
it can be found that CNI is the most expensive hedge against CSIR, but with the highest 
hedging effectiveness. Moreover, we observe that both CNY and GOLD can be 
regarded as good hedges for SILVER and CSIR. In terms of CGBI, although the 
portfolio created with it have been shown to help lower investment risk of other assets 
significantly, it is not an ideal hedge instrument when it comes to hedge rations, as it is 
difficult to hedge and ineffective for hedging other assets, in line with the findings of 
Tiwari et al. (Tiwari et al., 2022).   

As a new era of carbon market participation dawns, the ensuing dynamics across 
markets become more complex, and it is particularly important for investors and policy 
makers to diversify their portfolios and manage market risks. Our empirical evidence 
provides new insights, which are detailed in the next section. Overall, the portfolio 
management analysis reveals that most mixed portfolios offer better hedging than 
individuals. Although the optimal hedge ratio strategy also reduces risk levels for some 
specific markets, the optimal portfolio weight strategy reduces risk more effectively by 
comparison, suggesting that the optimal weight strategy is the more preferred hedging 
strategy during our sample period. 

5 Discussion on investment and management policy implications 

It is desirable for governments in emerging economies to introduce a financial 
framework that allows carbon emissions to be valued and traded like other financial 
and commodity assets (Adekoya et al., 2021). However, the examination of the carbon 
market shows that it is a net receiver of shocks and that such shocks increase with 
economic uncertainty as to the positive impact of EPU on it, so it is economically 
indicative of its vulnerability to external market risks. Our findings could help policy 
makers to avoid risk contagion and maintain the stability of the carbon market. Green 
bonds and metal markets have the strongest linkages to the carbon market and are thus 
considered as the primary cause of the carbon market shocks, which should be carefully 
monitored. Also, it is important to note that the carbon market can transmit such shocks 
to energy markets, especially the coal market. Precautionary measures for energy 
market crises should be taken in a timely manner if the carbon market is turbulent. We 
also provide significant results with potential interest to investors, particularly risk-
averse investors who are seeking risk reduction, that an investment portfolio including 
carbon assets could help reduce the volatility of one asset (Tan et al., 2020).  

Given the environmental and economic implications of holding various commodities, 
it is imperative to examine the exact sources of contagion (Batten et al., 2015). Our 
results show that gold and silver markets are net transmitters to shocks in the system, 
while other commodities are net receivers. Although the dependence between metals 



and energy markets is not tight, other commodities will receive more shocks as 
contagion increases in the gold and silver markets during economic uncertainty events. 
Policy makers should adopt targeted measures to strengthen their prevention 
capabilities. In some circumstances, emerging economy investors may benefit from the 
ideal hedge in gold and silver because of their safe-haven role but not in every 
commodity market; silver, for example, is not an ideal hedge for natural gas. In our 
analysis, while energy markets have potential as a mechanism to diversify system 
shocks, it is advised that energy investors to hold more gold and silver assets than 
energy assets to reduce the instability and the uncertainty of energy markets. In addition, 
despite the tighter connectedness between silver and gold compared to copper, a mixed 
portfolio with copper offers a better hedge than gold. In short, investors in emerging 
economies can allocate and balance their portfolios appropriately by taking into the role 
of commodities to diversify investment risk.  

Studying financial market spillovers is critical in an emerging economy, as the degree 
of its volatility has consequences for the stability of the whole system (Yavas and Dedi, 
2016). Our results provide significant evidence that the stock market is the primary 
source of intra-system contagion, and that an unexpected occurrence in it may affect 
not only its volatility and returns, but also triggers liquidity crises exacerbating 
volatility in other markets. Policy makers need to be aware of extreme economic or 
unexpected events, such as stock market crashes, housing crises, and financial scandals, 
to prevent panic and contagion of risk. In order to reduce the overall risk without 
lowering the expected return, commodities should be an integral part of a diversified 
portfolio of stocks but in relatively small amounts. In addition to the stock market, green 
financial markets are becoming well-established investment instruments that have been 
gaining popularity, considered in our study as the new energy index stock and green 
bonds. They appear to offer another possible pathway for investors and policy makers 
in markets related to environmental protection to seek risk diversification and 
management. However, our results highlight that new energy index stock receives large 
shocks from the stock market and can be a good hedge for the stock market, but adding 
it into a portfolio cannot reduce stock market volatility. Moreover, green bonds are the 
most vulnerable assets to uncertain events. We corroborate green bonds have 
implications for investors in boosting environmentally friendly portfolios, as they can 
reduce the volatilities of other assets, but has negligible benefits in terms of hedging. 
Furthermore, our study also identifies a potential market shocks transmitter, i.e., the 
foreign exchange rate, which may offer information value for commodity investors. 
The foreign exchange rate of a commodity-exporting country may have an impact on 
the commodity prices of coal and silver. However, there is more evidence that the 
foreign exchange rate is influenced by commodities than the other way around 
(Clements and Fry, 2008). Therefore, emerging economies should emphasize exchange 
rate risk management and implement strict and orderly controls, as well as reasonably 
adopt financial instruments for effective hedging to gradually enhance the resistance of 
the foreign exchange market in extreme economic environments (Ding et al., 2021). 

6 Conclusion  



This study examines the pattern of shock transmission among commodity and financial 
markets as well as the carbon market in emerging economies. To achieve this, we apply 
a dynamic connectedness approach derived from VARs to model the 
interconnectedness of our prespecified network. It reveals the spillover hierarchy, 
magnitude, directions, and patterns in the “Carbon-Commodity-Finance” system. 
Furthermore, connectedness patterns of all series are examined in conjunction with the 
network diagrams. Then, whether and how economic policy uncertainty drives the 
system-wide spillover indices is investigated via a quantile regression approach. With 
more attention being paid to the interdependencies across these markets, how investors 
might benefit from portfolio diversification is becoming a topic issue. This makes it 
essential, last but not the least of this study, to construct bivariate portfolios that allow 
us better understand the hedging effectiveness of selected series that have a greater 
influence on the system.  

Our findings provide the economic and management policy implications for investors 
and policy makers, however, there are still some limits. For instance, the “Carbon-
Commodity-Finance” system has been divided into 11 markets due to data availability. 
A more detailed classification should improve the estimation of the connectedness of 
various markets and thus provide a better judgment of the investment strategies. 
Nevertheless, the description of such a system could be a great challenge. Another 
concern is the investment portfolios, a dynamic portfolio weights and hedge ratios could 
better reflect the volatilities at all periods as the average values, although important, do 
not provide the full picture (Antonakakis et al., 2018b). Future studies could scope out 
to the Asia-Pacific markets; alternatively, a joint investigation of developed and 
emerging economies is a promising direction.  
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