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Abstract: Human-robot collaborative (HRC) assembly combines the advantages of robot's operation 10 
consistency with human's cognitive ability and adaptivity, which provides an efficient and flexible way for 11 
complex assembly tasks. In the process of HRC assembly, the robot needs to understand the operator's intention 12 
accurately to assist the collaborative assembly tasks. At present, operator intention recognition considering 13 
context information such as assembly objects in a complex environment remains challenging. In this paper, we 14 
propose a human-object integrated approach for context-aware assembly intention recognition in the HRC, 15 
which integrates the recognition of assembly actions and assembly parts to improve the accuracy of the 16 
operator's intention recognition. Specifically, considering the real-time requirements of HRC assembly, 17 
Spatial-Temporal Graph Convolutional Networks (ST-GCN) model based on skeleton features is utilized to 18 
recognize the assembly action to reduce unnecessary redundant information. Considering the disorder and 19 
occlusion of assembly parts, an improved YOLOX model is proposed to improve the focusing capability of 20 
network structure on the assembly parts that are difficult to recognize. Afterwards, taking decelerator assembly 21 
tasks as an example, a rule-based reasoning method that contains the recognition information of assembly 22 
actions and assembly parts is designed to recognize the current assembly intention. Finally, the feasibility and 23 
effectiveness of the proposed approach for recognizing human intentions are verified. The integration of 24 
assembly action recognition and assembly part recognition can facilitate the accurate operator's intention 25 
recognition in the complex and flexible HRC assembly environment. 26 

Keywords: Human-robot collaborative assembly; human intention recognition; ST-GCN; part recognition; 27 
improved YOLOX 28 

1. Introduction29 

With the development of advanced machining technologies, the machining accuracy and consistency of 30 
parts have improved much, which highlights the importance of assembly to ensure product quality [1]. Since 31 
complex product assembly work occupies large labor intensity and cost, it is of vital importance to improve the 32 
efficiency and flexibility of complex product assembly tasks [2]. In automated production workshops, robots 33 
have been widely used to execute repeatable and heavy work to reduce labor costs and improve operation 34 
accuracy, especially in assembly processes. However, in complex product assembly tasks, human operations are 35 
still essential because robots have little cognitive ability and flexibility. Therefore, Human-robot collaborative 36 
(HRC) assembly [3, 4], as a new model combining the advantages of humans and robots, has gradually become 37 
a hot research topic. Compared with traditional manufacturing systems, collaborative robots manage their 38 
behaviors not based on the traditional pre-programmed instructions but the visual [5], tactile [6], and other 39 
ways [7, 8] to perceive the operator's intention, to better accomplish the HRC assembly work. Therefore, it is 40 
crucial for robots to accurately recognize the operator's intention in the HRC assembly process. 41 

The operator’s intention recognition can be inferred by recognizing the assembly action. Assembly action 42 
recognition can be realized in different modalities of data, such as RGB images [9], optical flow [10], body 43 
skeletons [11], etc. However, RGB image-based methods are usually susceptible to complex backgrounds, 44 
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illumination changes, and other external factors. Optical flow only represents the pixel-level differences 45 
between adjacent frames. Traditional human action recognition methods based on optical flow are slow in 46 
computation. In contrast, skeleton-based action recognition methods are robust to the above factors and have 47 
less computational consumption because they only need to process the skeleton data. In addition, Microsoft® 48 
Kinect visual camera and human pose estimation algorithm provide the basis for skeleton-based action 49 
recognition. However, it should be noted that in the process of HRC assembly, due to the influence of complex 50 
background changes, the similarity of different actions, the occlusion of the human body, and other factors, it is 51 
still of low confidence to recognize the operator’s intention only through action recognition. Moreover, the 52 
operator's intention will change with different assembly parts. 53 

To promote better collaboration between human and robot in the HRC assembly, we propose a framework 54 
combining skeleton-based assembly action recognition and assembly part recognition to recognize the 55 
operator's intentions. On the one hand, we recognize the operator's assembly action based on the 56 
Spatial-Temporal Graph Convolutional Networks (ST-GCN) model. On the other hand, an improved YOLOX 57 
model integrating the Convolutional Block Attention Module (CBAM) and Focal Loss function is proposed to 58 
recognize the assembly part. On that basis, we design a rule-based reasoning method to accurately recognize 59 
the operator's intentions in the complex and flexible HRC assembly environment. 60 

The main contributions of our paper are as follows: 61 
 A framework for operator intention recognition in the HRC assembly is built based on the integration 62 

of assembly action recognition and assembly part recognition.  63 
 An assembly action dataset (AAD) of the decelerator assembly tasks is built by using the Azure Kinect 64 

DK camera to capture a series of 5~6s short videos, and the ST-GCN model is adopted to recognize 65 
the operator’s assembly action in the HRC assembly. 66 

 The corresponding assembly part dataset (APD) of the decelerator assembly tasks is built by 67 
snapshotting images from the short videos, and an improved YOLOX model integrating CBAM and 68 
Focal Loss function is developed to recognize the assembly part in the HRC assembly. 69 

 A rule-based reasoning method is designed to infer the operator's assembly intention and the 70 
responsive operation of the robot. 71 

The rest of this paper is organized as follows. A literature review related to human action recognition for 72 
HRC assembly and object detection for HRC assembly is provided in Section 2. Section 3 describes the overall 73 
framework of the operator's intention recognition in the HRC assembly. In section 4, the ST-GCN model for 74 
recognizing the operator’s assembly action is constructed. In Section 5, we establish an improved YOLOX 75 
model to recognize assembly parts. In Section 6, the feasibility and effectiveness of the proposed approach are 76 
verified based on the AAD and APD. Finally, some concluding remarks are presented in Section 7. 77 

2. Related work 78 

In the HRC assembly, the operator's intention is highly related to the assembly actions and the assembly 79 
parts. In section 2, we review human action recognition for HRC assembly and object detection for HRC 80 
assembly, respectively. 81 

2.1. Human action recognition for HRC assembly 82 

In the process of HRC assembly, the operator’s assembly action information is an essential part of obtaining 83 
assembly intention. The action recognition can be realized by optical flow, RGB, skeleton, and other modalities 84 
of data. Zhu et al. [12] used an optical flow model to extract local optical flow features and combined the global 85 
silhouette features to recognize human action. Sidor et al. [13] converted the depth maps into a 3D point cloud, 86 
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and then realized the classification of human activities through the classifier. These image sequence-based 87 
methods need to deal with a large amount of data information, and still have shortcomings when applied in 88 
scenarios with real-time requirements. 89 

In contrast, skeleton sequence-based action recognition methods are robust to the background changes and 90 
do not have excessive redundant information, which can better realize HRC assembly tasks with real-time 91 
requirements. The human skeleton is like a topology, naturally constructed as a graph in a non-Euclidean space. 92 
There are two ways to process skeleton sequences. One way is to encode skeleton sequences into images, and 93 
then typically use the recurrent neural network or convolutional neural network (CNN) to extract features. Urgo 94 
et al. [14] recognized operator’s locations based on OpenPose, and then built monitoring methods based on a 95 
hidden Markov model to recognize missing operations or unsafe behavior. Hu et al. [15] proposed a framework 96 
for skeleton-based action recognition that can select temporal scales automatically with a single layer Long 97 
Short Memory Networks (LSTM). The action recognition methods based on RNN can effectively process 98 
sequence data but has limitations in extracting spatial features of the human skeleton. However, the skeleton 99 
sequence has abundant spatial and temporal information, and CNN has excellent advanced information 100 
extraction ability, which has been widely used. Naveenkumar et al. [16] presented a deep learning approach for 101 
skeleton-based action recognition using CNN and LSTM, which achieved competitive results on open datasets. 102 
Al-Amin et al. [17] proposed a personalized system of the skeleton data-based CNN classifier to recognize the 103 
operator’s assembly actions, which improves the action recognition accuracy of heterogeneous workers. The 104 
system comprised six 1-channel CNN classifiers, which can be adapted to new workers by transfer learning. 105 

Another way is to construct a Graph convolutional network (GCN). The application of GCN to 106 
skeleton-based action recognition has been proved to achieve excellent results, extending traditional CNN from 107 
images to graphs with arbitrary structure. Yan et al. [18] first proposed the ST-GCN model for skeleton-based 108 
action recognition, which can automatically learn spatial-temporal patterns from skeleton data. This work has 109 
drawn more attention to the advantages of GCN for skeleton-based behavior recognition. Some researchers 110 
have also made improvements on the basis of the ST-GCN model [19, 20]. In this paper, we apply the ST-GCN 111 
model to the field of HRC assembly and recognize the operator’s actions by exploring the spatial-temporal 112 
features of the human skeleton, providing a decision-making basis for HRC. 113 

2.2 Object detection for HRC assembly 114 

Object detection is a hot research topic in the machine vision field and it is widely used in real-life scenarios, 115 
such as assembly elements recognition [21], ship detection [22], etc. Especially, with the rapid development of 116 
deep learning, the performance of object detection algorithms has been greatly improved. According to the 117 
existence of candidate regions, object detection algorithms can be divided into two types, i.e. one-stage 118 
detection and two-stage detection [23]. 119 

Two-stage object detection algorithm includes two stages, i.e. candidate region extraction and classification 120 
regression. Typical two-stage algorithms, especially the R-CNN series, show high accuracy in the recognition 121 
of assembly parts. Wang et al. [24] adopted the Faster R-CNN algorithm to recognize assembly parts related to 122 
specific tasks, achieving 99% accuracy. Back et al. [25] proposed a Mask R-CNN with a confidence map 123 
estimator for the accurate detection of texture-less and metallic industrial components. The two-stage object 124 
detection algorithm achieves good results in precision, but the speed is limited, and it is often difficult to meet 125 
the real-time detection requirements in the HRC assembly scene [26]. 126 

The one-stage object detection algorithm has a smaller network model and faster operation speed, which has 127 
great advantages in application scenarios requiring real-time recognition and fast decision-making [26]. Typical 128 
algorithms for one-stage object detection include the YOLO series [27], single shot detector (SSD) series [28], 129 
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etc. Andrianakos et al. [29] applied the SSD algorithm to recognize assembly parts and the operator’s hand for 130 
automatic monitoring of assembly operation execution. With the advantages of simple structure, fast, and 131 
higher accuracy, some researchers applied the YOLO algorithm to assembly part recognition. Chen et al. [30] 132 
applied the YOLOv3 algorithm to the location and judgment of assembly tools, so as to recognize the 133 
operator’s assembly actions. Wang et al. [21] utilized YOLOv3 to predict the positions of elements (operator, 134 
robot, assembly parts and tools, etc.) in the assembly line, calculated the corresponding target movement speed 135 
based on the position information, and finally carried out motion recognition based on the above information. 136 
However, these YOLO series algorithms, which adopt the structure of coupled head and anchor-based, still 137 
have some disadvantages in balancing speed and accuracy. 138 

As a new YOLO series algorithm for object detection, YOLOX improves the accuracy and optimizes the 139 
inference speed [27]. We apply YOLOX to the recognition of assembly parts in HRC assembly. Assembly parts 140 
often have the problem of disordered parts placement and occlusion, which will affect the recognition of 141 
assembly parts. To solve these problems in the HRC assembly, and recognize assembly parts accurately, an 142 
improved YOLOX algorithm is designed based on the YOLOX-S network. The improved YOLOX algorithm 143 
makes the network focus on assembly parts by adding CBAM [31] at the end of the backbone network and 144 
replaces the confidence loss function in the original algorithm with the Focal Loss function [32] to improve the 145 
recognition performance of assembly parts that are difficult to recognize. 146 

2.3 Research gap 147 

The operator's intention inference is closely related to assembly actions and assembly parts, and directly 148 
affects the robot's responsive operation. The assembly parts corresponding to the same assembly action may be 149 
different, so the operator's intention will also change, and the robot's assistance will also be different. In a 150 
complex and flexible assembly environment, there are many kinds of assembly parts and different assembly 151 
sequences, so it is challenging to recognize the operator's intention. Chen et al. applied YOLOv3 to locating and 152 
judging assembly tools to directly recognize assembly actions, and the convolutional pose machine was used to 153 
estimate the operating times of the repetitive assembly action. Wang et al. [33] investigated the transfer 154 
learning-based AlexNet network for synchronous recognition of human actions and corresponding assembly 155 
parts, providing a basis for high-performance HRC. Zhang et al. [34] developed Bi-stream CNN for human 156 
action recognition, which combined action and object recognition by simultaneously parsing and fusing video 157 
frames from two perspectives of workspace and nearby objects to avoid confusion caused by similar actions. 158 
The aforementioned studies can capture detailed information well, but there are some limitations. Although 159 
researchers adopted some processing methods of extracting frames or down-sampling, the computational cost is 160 
still relatively high when processing video streams. 161 

In this paper, we propose the human intention recognition method from three aspects. 1) To improve the 162 
real-time performance of HRC assembly, we adopt the ST-GCN lightweight model to recognize assembly 163 
actions. 2) Considering the problem of disordered parts placement and occlusion, an improved YOLOX 164 
algorithm is designed to recognize assembly parts. 3) Considering the flexibility of the assembly process, we 165 
study different assembly sequences. By combining the information of assembly actions and assembly parts, we 166 
can more accurately recognize the operator's current assembly intention in the complex assembly environment 167 
and infer the robot's responsive operation. 168 

3. Framework for operator's intention recognition in the HRC assembly 169 

In the HRC assembly, it is a premise for the robot to accurately recognize the operator's assembly action and 170 
understand the operator's intention. As shown in Figure 1, to better realize the collaboration between operator 171 
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and robot to complete the assembly tasks, this paper proposes the framework for operator's intention 172 
recognition in the HRC assembly. The framework consists of two modules. The first module is based on the 173 
ST-GCN model to extract skeleton features and recognize the operator's assembly actions. The second module 174 
is based on the improved YOLOX algorithm integrating CBAM and the Focal Loss function to recognize 175 
assembly parts. Finally, the operator's intention can be accurately recognized by combining assembly action 176 
information and assembly part information. 177 
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Fig. 1 Framework for operator's intention recognition in the HRC assembly 179 

In the framework, we take the assembly video sequence as input, extract skeleton data based on OpenPose 180 
[35], and adopted the ST-GCN model to recognize the operator's assembly actions. Meanwhile, we recognize 181 
assembly parts based on the improved YOLOX algorithm. Finally, for the flexibility of assembly sequence, we 182 
design a rule-based reasoning method to recognize the operator’s intention by combining the action information 183 
with the part information. 184 

In this paper, decelerator assembly tasks are taken as an example to study the operator's assembly action 185 
recognition method and assembly part recognition method. Table 1 lists five assembly actions in the decelerator 186 
assembly tasks. The decelerator assembly tasks include five types of parts: key, shaft, gear, bushing, and 187 
bearing. 188 

Table 1 Assembly actions in the decelerator assembly tasks 189 

Assembly tasks Assembly actions 
1 Key assembly 
2 Gear assembly 
3 Left bearing assembly 
4 Bushing assembly 
5 Right bearing assembly 

4. ST-GCN model for assembly action recognition 190 

The operator's assembly action recognition in the HRC assembly should be fast and accurate. Compared 191 
with the RGB image and optical flows-based action recognition methods, the skeleton-based action recognition 192 
method is more lightweight and has a faster inference speed. Therefore, we introduce the ST-GCN model based 193 
on the skeleton to recognize the operator’s assembly action. 194 

GCN can process non-Euclidean distance data and extract topological graph features. The spatial-temporal 195 

graph ( , )G V E=  can be constructed on a skeleton sequence. The node set { }| 1, , , 1, 2, ,tiV v t T i N= = ⋅⋅⋅ = ⋅⋅ ⋅  196 

represents that a skeleton sequence includes T  frames, and each frame contains N  joints of the operator. 197 
E  represents the edge set. The graph covers the joints change information of the assembly action sequence. 198 
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The structure of intra-skeleton and inter-frame connection is similar to the convolution operation on images. 199 
The CNN model can be extended to space graph to realize space graph convolution operation, which can be 200 
written as: 201 

 
( )

( ) ( ( , )) ( , ) ( )
tj ti

out ti in ti tj ti tj ti tj
v B v

f v f P v v v v Z vω
∈

= ⋅∑  (1) 202 

This operation consists of the normalizing term ( )ti tjZ v , sampling function ( , )ti tjP v v , and weight function 203 

( , )ti tjw v v . The sampling function ( , )ti tjP v v  is defined on the neighbor set { }( ) | ( , )ti tj tj tiB v v d v v D= ≤  of a 204 

node tiv . ( , )ti tjd v v  depicts the minimum distance from tjv  to tiv . 205 

Then, the concept of the neighborhood is extended to also include temporally connected joints as: 206 

 { }( ) | ( , ) ,| | 2ti qj tj tiB v v d v v K q t γ= ≤ − ≤  (2) 207 

The parameter γ  controls the temporal range to be included in the neighbor graph. 208 

As shown in Figure 2, the ST-GCN model has 9 layers, each of which contains a spatial GCN and a 209 
temporal GCN. Firstly, we can obtain the assembly sequences from the assembly action video streams. Then, 210 
skeleton features are extracted from the corresponding frames. Finally, the assembly actions are classified 211 
through average pooling and the full connection layer. 212 

 213 

Fig. 2 ST-GCN model 214 

ST-GCN model has three partitioning strategies, i.e. uni-labeling, distance partitioning, and spatial 215 
configuration partitioning [18]. In this paper, spatial configuration partitioning is adopted to recognize assembly 216 
actions. 217 

5. Improved YOLOX model for assembly part recognition 218 

In HRC assembly, the operator frequently interacts with different assembly parts to accomplish complex 219 
product assembly tasks. Since the actions of the operator have high similarity and the same action may relate to 220 
different assembly parts corresponding to different assembly sequences, the operator intention recognition in 221 
HRC assembly is difficult and has low accuracy, if we only use the results of the skeleton-based operator's 222 
assembly action recognition. 223 

To improve the accuracy and effectiveness of operator intention recognition in HRC assembly, the operator's 224 
assembly action recognition should be combined with the assembly part recognition. In this section, we use the 225 
YOLOX-S network to design an improved YOLOX model that embeds CBAM and the Focal Loss function to 226 
recognize the assembly parts. 227 

On the one hand, the attention mechanism refers to the selective attention of human vision to local 228 
information, which can focus on the key information and improve the computing performance of the YOLOX-S 229 
network. Since CBAM is a lightweight attention module with strong generality, the CBAM module is embedded 230 
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into the YOLOX algorithm to reduce the background interference, so that the network can better focus on the 231 
assembly parts.  232 

On the other hand, YOLOX belongs to the one-stage object detection algorithm, which has the common 233 
sample imbalance problem. To solve this problem, we use the Focal Loss function to replace the confidence loss 234 
function in the original YOLOX algorithm. The Focal Loss function focuses on increasing the weight of 235 
assembly parts that are difficult to classify and improving the recognition performance. 236 

5.1 CBAM  237 

The attention mechanism initially achieved ideal results in machine translation [36] and is gradually applied 238 
in the field of computer vision [37]. The CBAM combines the channel attention module (CAM) and spatial 239 
attention module (SAM), which is illustrated in Figure 3. 240 

 241 
Fig. 3 CBAM schematic 242 

The calculation formula is as follows: 243 

 
' ( )
'' ( ) '

c

s

F M F F
F M F F

= ⊗
= ⊗

 (3) 244 

In CAM, spatial information of the input F  is aggregated by using average pooling and max pooling. The 245 
generated descriptors are forwarded to multilayer perception and then added. After activation by sigmoid 246 
function, channel attention vector ( )CM F  is generated, and channel attention output 'F  is obtained by 247 
multiplying ( )CM F  and F . 248 

In SAM, the pooling operation is applied along the channel axis, and then the generated feature descriptor is 249 
concatenated. The spatial attention vector ( )sM F  is obtained after convolution reduction and sigmoid 250 
function activation, and the final feature ''F  is obtained by multiplying 'F  and ( )sM F . The optimized 251 

YOLOX-S network structure embedded with CBAM is shown in Figure 4. 252 
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 253 

Fig. 4 YOLOX-S structure embedded with CBAM 254 

As shown in Figure 4, we introduce CBAM behind the three valid feature layers of the backbone output, 255 
namely dark3, dark4, and dark5 branches. CBAM_1 corresponds to the 1024-dimension channel of the dark_5 256 
branch, CBAM_2 corresponds to the 512-dimension channel of the dark_4 branch, and CBAM_3 corresponds 257 
to the 256-dimension channel of the dark_3 branch. On the one hand, the YOLOX model embedded with 258 
CBAM can improve its focusing ability on assembly parts. On the other hand, the introduction of CBAM in this 259 
paper does not change the number of channels, so it has little effect on the inference speed. 260 

5.2 Focal Loss 261 

Focal Loss is proposed to solve the problem of sample imbalance, which can make the model focus more on 262 
the samples that are difficult to classify during training. Chen et al. [38] proposed an extended Focal Loss and 263 
generated the class-discriminative Focal Loss for extremely imbalanced object detection toward autonomous 264 
driving, which improved the accuracy without requiring more training and inference time. Lee et al. [39] 265 
proposed a new deconvolution deep neural network with focal regression loss to detect small traffic lights, and 266 
the results show that the introduction of focal regression loss improves detection accuracy. 267 

Assembly parts often have problems of disorder and occlusion, which will affect the recognition of 268 
assembly parts. We introduce the Focal Loss function to solve the sample imbalance problem, which makes the 269 
network structure more focused on the recognition of disordered and occluded assembly parts. The Focal Loss 270 
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function is shown in Formula (4): 271 

 
(1 ) log( ) 1

( )
(1 ) log(1 )

if y
FL

otherwise

η

η

α θ θ
θ

α θ θ
 − − =

= 
− − −

 (4) 272 

where {1, 1}y∈ −  specifies the ground-truth class and [0,1]θ ∈  is the model’s estimated probability for the 273 
class with the label 1y = . α  is used to balance the ratio of positive and negative samples. The modulating 274 
factor (1 )ηθ−  can reduce the loss contribution of easily classified parts, where [0,5]η ∈ . 275 

We used the Focal Loss function to replace the binary cross entropy loss function of the original confidence 276 
loss function. As shown in Equation (5), the optimized loss function consists of Intersection over Union (IoU) 277 
loss value IoULoss , confidence loss value FocalLoss  , and classification loss value ClassLoss . 278 
 IoU Focal ClassLoss Loss Loss Loss= + +  (5) 279 

6 Case study 280 

This section takes the HRC-based decelerator assembly tasks as an example and establishes datasets for 281 
assembly action recognition and assembly part recognition based on the Azure Kinect DK camera to verify the 282 
proposed method. 283 

6.1 Assembly action recognition 284 

(1) Creation of assembly action dataset (AAD): AAD is created based on the operator's assembly actions on 285 
the HRC-based decelerator assembly tasks. The assembly operations are collected in six directions, i.e. 286 
front-left, upper-left, dead ahead, upper-front, front-right, and upper-right. The assembly actions of five 287 
operators are recorded. The RGB-D video comprises depth mode (640×576 resolutions) and color mode 288 
(1280×720 resolutions). A total of 450 video clips are collected, and each video is 5~6s, to generate the AAD. 289 
The dataset prepared in this paper follows the format of the Kinetics dataset [40]. 290 

(2) Computing platform: The experiment is carried out with Windows 10 (64bit) system. The CPU card and 291 
graphics card are Intel i7-10875H and NVIDIA RTX 2060 (6G), respectively. ST-GCN model is built based on 292 
python3.7 language and PyTorch deep learning framework. The training parameters are shown in Table 2, in 293 
which the initial learning rate is 0.1 and the learning rate attenuates 0.1 times when the iterative times reach 20, 294 
30, 40, and 50. 295 

Table 2 Training parameters of the ST-GCN model 296 

Parameters Values 
Batch Size 64 
Initial learning rate 0.1 
Weight decay coefficient 0.0001 
Epochs 70 

(3) Evaluation index:  297 
1) Top-1 refers to taking the largest probability vector as the assembly action predicted result. If the 298 

classification result is correct, then the prediction is correct. This paper uses the Top-1 index to evaluate the 299 
assembly action recognition performance of the ST-GCN model on AAD. The calculation of the Top-1 index is 300 
shown in Equation (6): 301 

 11 ( ( ))L true pred
k kk

Top class rank class Lϕ− = =∑  (6) 302 

where ϕ  is the judgement function. If the condition is true, the value is 1; otherwise, it is 0. true
kclass  303 

represents the real classification of the k -th assembly action, and 1( )pred
krank class  represents the highest 304 

probability in the prediction classification of the k -th assembly action. L  is the number of assembly actions. 305 
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In this paper, 5L = . 306 

2) The parameter is an important index to evaluate the model. The parameters directly affect the memory of 307 
the model operation. In this paper, we use the parameters to measure the processing efficiency of the ST-GCN 308 
model. 309 

(4) Experimental results and discussions 310 
1) We randomly select 405 video clips as the training dataset and 45 video clips as the test dataset. Figure 5 311 

(a) and Figure 5 (b) demonstrate the loss curve and Top-1 curve of the ST-GCN model training on our AAD. 312 

  
(a) Loss curve (b) Top-1 curve 
Fig. 5 Loss curve and Top-1 curve of ST-GCN model training on AAD   313 

As shown in Figure 5, with the increase of iterative times, the training loss value keeps decreasing and the 314 
Top-1 index keeps rising. From the 35th iteration, the Top-1 index levels off and remains at 0.40. Table 3 shows 315 
the Top-1 index comparison of the ST-GCN model on the Kinetics dataset [40] and our AAD. 316 

Table 3 Top-1 index comparison of ST-GCN model on Kinetics dataset and our AAD 317 

Datasets Kinetics AAD 
Top-1 30.7% 40.0% 

The Top-1 value obtained by ST-GCN training on AAD is 40.0%, which is better than the recognition effect 318 
of the ST-GCN model on the Kinetics dataset, but the accuracy of assembly action recognition is still not very 319 
high in general. 320 

Table 4 shows the Top-1 index and sample quantity of five assembly action recognition in the test dataset. In 321 
this paper, the test samples of each assembly action in the test dataset are 9. 322 

Table 4 Top-1 index and sample quantity of five assembly action recognition in the test dataset 323 

Assembly actions Top-1 Number of samples 
Key assembly 88.89% 9 
Gear assembly 55.56% 9 

Left bearing assembly 22.22% 9 
Bushing assembly 22.22% 9 

Right bearing assembly 11.11% 9 
Average/Summation 40% 45 

Among the five assembly actions, the recognition accuracy of key assembly action is relatively high, and 324 
that of gear assembly action is 55.56%. The right bearing assembly and bushing assembly actions are only 325 
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different in the distance moved on the shaft, and the overall similarity is high, resulting in low recognition 326 
accuracy. In the process of the left bearing assembly and the key assembly, the height of the right hand is 327 
different, and the left hand reaches a different height and horizontal position at the end. That is, except for the 328 
wrist joint, the positions of the other joint nodes are basically unchanged, resulting in the left bearing assembly 329 
action is recognized as the key assembly action. We can know that the accuracy of assembly actions is not high, 330 
it is necessary to combine the recognition of assembly parts. 331 

2) As shown in Table 5, we compare the parameters of the ST-GCN model with some classical CNN models, 332 
including AlexNet, ResNet18, and VGG16 [41]. 333 

Table 5 Comparison of parameters index between ST-GCN model and classical CNN model 334 

Models ST-GCN AlexNet ResNet18 VGG16 
Parameters 3.1M 61.1M 11.69M 138.36M 

According to the results, the ST-GCN model is naturally more lightweight than CNN-based models. We use 335 
the trained model to test the video on the existing workstation. The ST-GCN model runs at approximately 15 336 
frames/s, which basically meets the requirement of online assembly action recognition. 337 

6.2 Assembly part recognition 338 

(1) Creation of assembly part dataset (APD): Based on the above video clips, 4500 images containing five 339 
operators, six positions, and five assembly actions are extracted to generate the APD. 1500 images are selected 340 
from each assembly action. The number of images containing different assembly parts is shown in Table 6. 341 

Table 6 Number of assembly parts 342 

Classes Number of samples 
Key 1500 
Shaft 4500 
Gear 3000 

Bushing 1500 
Bearing 1500 

(2) Image annotation: The assembly parts are labeled by the labelImg software [42]. 343 
(3) The hardware configuration is consistent with that of the ST-GCN model. The optimized YOLOX 344 

network is built based on the python3.7 language and PyTorch deep learning framework. The training 345 
parameters of YOLOX are shown in Table 7. 346 

Table 7 Training parameters of the YOLOX algorithm 347 

Parameters Values 
Batch Size 4 

Initial learning rate 0.001 
Weight decay coefficient 0.0005 

Epochs 300 

(4) Evaluation index: We use the average precision (AP) and mean average precision (mAP) as the 348 
performance evaluation indexes. In this paper, AP is used to evaluate the recognition effect of a certain type of 349 
assembly part, as shown in Equation (7): 350 

 
1

0
( )AP p r dr= ∫  (7) 351 

where p  represents the precision and r  represents the recall. The mAP is the mean AP value of five 352 

categories of assembly parts. 353 
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(5) Experimental results and discussions 354 
90% (4050) of 4500 images are randomly selected as the training dataset and 10% (450) as the test dataset. 355 

Figure 6(a) shows the mAP (IoU=0.5) comparison curve of original YOLOX and improved YOLOX for 356 
assembly part recognition, and Figure 6(b) shows the mAP (IoU=0.5~0.95) comparison curve. 357 

  
(a) IoU=0.5 (b) IoU=0.5~0.95 

Fig. 6 The mAP comparison curve of original YOLOX and improved YOLOX for assembly part 358 

According to the changing trend of mAP in Figure 6, the mAP of the improved YOLOX algorithm for 359 
assembly part recognition is generally improved. Table 8 shows the specific comparison results. 360 

Table 8 Comparison results 361 

Model Key Shaft Gear Bushing Bearing mAP (IoU=0.5) mAP (IoU=0.5~0.95) 
Original 
YOLOX 

90.21% 99.78% 100.00% 90.95% 91.01% 94.39% 74.67% 

Improved 
YOLOX 

91.29% 99.83% 100.00% 93.32% 100.00% 96.89% 75.47% 

Table 8 shows that the mAP of the improved YOLOX algorithm for assembly part recognition reaches 96.89% 362 
when IoU=0.5, which is 2.50 percentage points higher than that of the original YOLOX algorithm for assembly 363 
part recognition. When IoU=0.5~0.95, the mAP of the improved YOLOX algorithm reaches 75.47%, which is 364 
0.80 percentage points higher than the original YOLOX algorithm. According to the AP of key, shaft, gear, 365 
bushing, and bearing parts in Table 8, the AP of the gear part is 100.00%, and the AP values of other assembly 366 
parts have been improved to different degrees. In particular, the improved YOLOX model shows good 367 
performance in the recognition of bushing and bearing, which indicates that the improvement can enhance the 368 
recognition effect of occluded or disordered parts. The improved algorithm also enhances the recognition 369 
performance of the key to a certain extent, although it is not obvious, which indicates that the improvement is 370 
effective for small-size parts recognition. Based on the above analysis, the introduction of CBAM and Focal 371 
Loss function can make the YOLOX network focus more on shielded or small-sized assembly parts, and 372 
improve the system performance. 373 

The two-stage object detection algorithms can not be well guaranteed in real time. Here, we conduct a 374 
comparative experiment with two one-stage object detection algorithms (SSD, YOLOv3) to verify the 375 
performance of improved YOLOX for assembly part recognition. We selected mAP (IoU=0.5), mAP (IoU= 376 
0.5~0.95), and FPS as the evaluation indexes of algorithm accuracy. The comparison results of different models 377 
are shown in Table 9. 378 
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Table 9 Performance comparison between SSD, YOLOv3, original YOLOX, and improved YOLOX 379 

Model Backbone mAP (IoU=0.5) mAP (IoU=0.5~0.95) FPS 

SSD VGG16 84.75% 45.72% 41.67 

YOLOv3 Darknet-53 97.48% 73.89% 21.79 

Original YOLOX Modified CSP v5 94.39% 74.67% 55.49 

Improved YOLOX Modified CSP v5 96.89% 75.47% 54.37 

Table 9 shows that the improved YOLOX model proposed in this paper is superior to SSD and original 380 
YOLOX models in the recognition accuracy of assembly parts. The inference speed of the YOLOX algorithm is 381 
faster than that of the SSD algorithm, and the FPS value of the improved YOLOX algorithm has little change, 382 
only decreasing by 1.12. YOLOv3 has the higher recognition accuracy for assembly parts than improved 383 
YOLOX but has a low FPS value. In conclusion, considering the recognition accuracy and speed, the improved 384 
YOLOX model can accurately capture the features of assembly parts and improve the recognition performance. 385 

6.3 Operator’s intention recognition based on assembly action and assembly part information 386 

6.3.1 Assembly action information 387 

As shown in Figure 7, to observe the performance of the trained ST-GCN model for assembly action 388 
recognition, frame 1 and frame 40 of “key” assembly action recognition are selected for analysis. It can be seen 389 
from Figure 7 that the key assembly action is correctly classified by the ST-GCN model. 390 

  
(a) Frame 1 (b) Frame 40 

Fig. 7 Recognition results of key assembly action 391 

Figure 8 shows partially captured pictures from frame 1, frame 30, and frame 70 of right bearing assembly 392 
action recognition. When recognizing the right bearing assembly action, the assembly actions in frame 1 and 393 
frame 30 are wrongly recognized as the gear assembly, and the assembly action in frame 70 is correctly 394 
recognized as the right bearing assembly. On that basis, this assembly action is wrongly classified as the gear 395 
assembly. 396 
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(a) Frame 1 (b) Frame 30 (c) Frame 70 
  Fig. 8 Recognition results of right bearing assembly action 397 

According to our test results and analysis, it can be concluded that the trained ST-GCN model can recognize 398 
some of the decelerator assembly actions accurately. However, for some other assembly actions, there are 399 
problems of occlusion, the similarity of different actions, and other factors, besides, large errors exist in 400 
inferring the location of occluded joints, which leads to errors in recognizing assembly actions. 401 

The accuracy of the operator’s assembly action recognition is not very high due to high action similarity and 402 
limited body movement range reasons in HRC decelerator assembly, and sometimes the assembly actions are 403 
wrongly recognized, so we need to combine it with assembly part recognition results to better recognize the 404 
operator’s intention for processing the assembly tasks. 405 

6.3.2 Assembly part information 406 

The assembly part recognition information can assist recognize the operator’s intentions. In the situation 407 
that the operator’s assembly action is accurately recognized, the assembly parts recognition strengthens the 408 
correct result. In the situation that the operator’s assembly action is not correctly recognized, the assembly parts 409 
recognition will help to rectify the wrong result.  410 

Figure 9 shows the assembly part recognition results of frame 1 and frame 40 in the key assembly process. 411 
It can be seen from Figure 9 that two parts have been recognized in frame 1 and frame 40, including the shaft 412 
and key. The AP values of key part recognition in frame 1 and frame 40 are 86.8% and 79.5% respectively. 413 
While the AP values of shaft part recognition in frame 1 and frame 40 are 93.1% and 92.6% respectively, a bit 414 
higher than the key part recognition results since the size of the key is relatively small and the YOLOX model 415 
is not very good at small-size object detection. 416 

  
(a) Frame 1 (b) Frame 40 

Fig. 9 Part recognition results in the key assembly process 417 
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(a) Frame 1 (b) Frame 30 (c) Frame 70 

Fig. 10 Part recognition results in the right bearing assembly process 418 

Figure 10 shows the assembly part recognition results of frames 1, 30, and 70 in the right bearing assembly 419 
process. Five parts have been recognized in frames 1, 30, and 70, including the left bearing, gear, shaft, bushing, 420 
and right bearing. To clearly show the part recognition results in the right bearing assembly process, Table 10 421 
lists the AP corresponding to frames 1, 30, and 70 in Figure 10. It can be seen that the AP of shaft recognition in 422 
Figure 10 is relatively lower than that in Figure 9 because there are some shelters (i.e. gear, bearing, bushing) 423 
that affect the recognition accuracy. The AP of gear recognition is relatively high due to its large size and 424 
distinct features, and the AP of the key recognition is relatively low due to its small size. The AP of bearing 425 
recognition also varies with the change of position. 426 

Table 10 AP of part recognition in the right bearing assembly process 427 

Frame 
Frame 1 Frame 30 Frame 70 
Part AP Part AP Part AP 

Part recognition 

Left bearing 65.4% Left bearing 66.2% Left bearing 74.4% 
Gear 80.9% Gear 81.9% Gear 83.7% 
Shaft 66.1% Shaft 65.7% Shaft 73.5% 
Bushing 65.0% Bushing 63.9% Bushing 78.1% 
Right bearing 81.9% Right bearing 72.9% Right bearing 74.0% 

6.3.3 Operator’s intention recognition 428 

The case study includes five types of assembly actions, considering the flexibility in the assembly process, 429 
the sequence of assembly actions is optional. As shown in Table 11, in order to express the assembly sequences 430 
more clearly, we number the assembly actions and assembly parts. 431 

Table 11 Numbers of assembly actions and parts 432 

Assembly actions and parts Numbers 
Key assembly A1 
Gear assembly A2 

Left bearing assembly A3 
Bushing assembly A4 

Right bearing assembly A5 
Key P1 
Shaft P2 
Gear P3 

Bushing P4 
Bearing P5 

The assembly sequences in this case study are shown in Figure 11(a). We can know that it is optional to 433 
perform the bushing assembly or left bearing assembly after the gear assembly, and the subsequent assembly 434 
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actions will also change accordingly. As shown in Figure 11(b), the sequences of corresponding assembly parts 435 
will also change. 436 

  

(a) The sequences of assembly actions (b) The sequences of assembly parts 
Fig. 11 The sequences of actions and parts in the assembly process 437 

In this case study, there are three alternatives. In different alternatives, the recognizable assembly parts 438 
corresponding to the same assembly action may be different, which will change the recognition result of 439 
human behavior intention and the response of the robot. In this paper, we combine the recognition of 440 
assembly actions and assembly parts to accurately recognize the operator’s assembly behavior intention, 441 
and infer the assembly tasks that have been completed and the next assembly task to be carried out. 442 

As shown in Figure 7, it is recognized that the operator is performing the key assembly action. 443 
Combined with the shaft and key parts recognized in Figure 9, we can accurately recognize that the 444 
operator is assembling the key part. Clearly, the next assembly task is gear assembly. 445 

As shown in Figure 8, there is uncertainty about assembly action recognition, sometimes the assembly 446 
action is recognized as right bearing assembly and sometimes as gear assembly. Combined with the 447 
recognized parts information in Section 6.3.2, if left bearing, gear, shaft, bushing, and right bearing parts 448 
are recognized, and the total number of parts is five, the assembly behavior intention will be recognized as 449 
performing the fifth assembly task. If gear and shaft parts are recognized and the number of parts is two, 450 
the assembly behavior intention will be recognized as performing the first assembly task. Combining the 451 
recognition information of assembly action in Figure 8 with the assembly parts in Figure 10 and Table 10, 452 
it can be determined with high confidence that the operator is performing the right bearing assembly task 453 
because the assembly parts include left bearing, gear, shaft, bushing, and right bearing and the number of 454 
parts is five. At the same time, according to the recognition information of assembly parts and assembly 455 
actions, we can infer that all the five assembly tasks have been completed and the robot will leave. 456 

We comprehensively analyze the integration of assembly actions and assembly parts. Figure 12 shows 457 
the human assembly behavior intention recognition based on logical rules. The assembly action and 458 
assembly parts corresponding to each task are clearly defined. When the key and shaft are recognized 459 
simultaneously, we can infer that the operator is currently performing the first assembly task. According to the 460 
recognition results of assembly actions, we can also judge the ongoing assembly task. In this paper, we consider 461 
that the operator is currently performing the first assembly task when the conditions for both the assembly 462 
action and the assembly parts are met simultaneously. Based on logical rules, we can know that the operator 463 
needs to obtain gear before performing the second assembly task and then assemble gear from the right side. 464 
We can infer that the “A1&P1&P2” condition triggers the robot to perform the response of gear grabbing. By 465 
analogy, the operator can be recognized as performing the second assembly task based on the "A2&P2&P3" 466 
condition. 467 
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 468 
Fig. 12 Human assembly behavior intention recognition based on logical rules 469 

However, in the actual assembly process, the assembly sequence selected by different operators is 470 
inconsistent. As shown in Figure 12, after completing the gear assembly task, the operator has the option to 471 
perform either bushing assembly or left bearing assembly. If the bushing assembly task is completed first, after 472 
the robot grabs the bearing, the operator can also choose to finish the left bearing assembly or the right bearing 473 
assembly first. We can know that the same assembly action corresponds to different assembly parts, and the 474 
operator's behavioral intention will also change accordingly. When we recognize the operator performing the 475 
right bearing assembly action through the ST-GCN model, we recognize the operator's assembly intention 476 
according to the detected assembly parts. If five assembly parts are recognized, the operator is inferred to be 477 
currently completing the last task and the robot can leave. If four assembly parts are recognized, it is inferred 478 
that the operator also needs to complete the left bearing assembly task next, and the robot also needs to grasp 479 
the bearing. We clearly understand that the operator's behavioral intention can be accurately recognized from 480 
the combined information of the assembly action and the assembly parts. 481 

6.3.4 Discussion 482 

(1) The human behavior intention recognition method proposed in this paper mainly solves the following 483 
problems. First, the skeleton-based lightweight model is adopted to recognize the operator’s assembly actions. 484 
However, the accuracy of assembly action recognition is limited, which cannot always ensure the correct 485 
recognition of assembly action. Moreover, for different assembly sequences, the assembly parts corresponding 486 
to the same assembly action may be different. Therefore, based on logic rules, we combine skeleton-based 487 
assembly action and image-based assembly part recognition information to accurately recognize the operator's 488 
assembly intention in a complex assembly environment. As for the human behavioral intention recognition 489 
method, an improved YOLOX model integrating CBAM and Focal Loss function is developed to recognize the 490 
assembly part in the HRC assembly. We can understand what kind of assembly task the operator is currently 491 
performing and what kind of assembly parts are being assembled more accurately. In the future, we will 492 
consider the weight distribution and dependence between skeleton features and part features to optimize the 493 
decision model for operator intention recognition. 494 

(2) We use the ST-GCN model to recognize the operator’s assembly actions based on the body skeleton. 495 
However, the accuracy is relatively low due to many reasons, such as occlusion, the similarity of different 496 
actions, and the inconsistency of different operators' actions. In the future, we will on the one hand optimize the 497 
ST-GCN model by integrating the time series model and improving the pose estimation algorithm from the 498 
perspective of the joints’ number and location. On the other hand, we will standardize the body movement of 499 
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different assembly actions and perfect AAD by adding assembly action samples. 500 
(3) In this paper, five assembly tasks are taken as research cases to describe the trigger rules of the robot. In 501 

the future, we expect to improve the robot's proactive decision-making ability through the deep reinforcement 502 
learning model, and then combine the operator's intention recognition with the adaptive control of the robot. In 503 
this process, we need to think about how the robot can actively make decisions to assist the operator when 504 
performing the assembly task. For example, the operator's assembly action is biased because of the different 505 
amplitude, and the robot needs to adaptively adjust the running state. If the robot makes a mistake, the robot 506 
needs to make a proactive decision to update the assembly operation. At the same time, we will take the whole 507 
decelerator assembly process as the research object, improve the experiments related to human behavior 508 
intention recognition and robot adaptive control, and verify the feasibility of the theoretical method. By 509 
improving the robot's proactive decision-making ability, HRC assembly can be better promoted. 510 

7. Conclusion 511 

Assembly is important to ensure product quality. Human-robot collaborative (HRC) assembly has become 512 
prevailing due to its advantages of repeatability, high accuracy, hard work bearing, and flexibility. In HRC 513 
assembly, how to recognize the operator’s assembly intentions accurately is a vital problem for the robot during 514 
the assembly process. In this paper, we propose a human intention recognition method by combining assembly 515 
action information and assembly part information, which improves the accuracy of intention recognition by 516 
combining assembly context information. On the one hand, ST-GCN is adopted to dynamically recognize the 517 
operator's actions in HRC assembly based on a video dataset. On the other hand, an improved YOLOX 518 
algorithm is designed to recognize assembly parts based on the image dataset derived from the video dataset. In 519 
the improved YOLOX algorithm, CBAM is introduced to improve the focusing capability of the YOLOX 520 
network on the assembly parts, and the Focal Loss function is introduced to focus on disordered, occluded, and 521 
small-sized assembly parts. 522 

In the case study, taking the HRC decelerator assembly task as an example, ST-GCN is used to recognize 523 
the operator’s assembly actions. The results show that the assembly actions with high similarity have low 524 
recognition accuracy, and the operator's intention could not be accurately inferred only through the recognition 525 
of assembly actions. The improved YOLOX algorithm is used to recognize assembly parts on APD, and the 526 
results show that the improved YOLOX model can improve the recognition accuracy of the parts with obscure 527 
features, occlusion, and small size. On this basis, combined with the recognition results of assembly actions and 528 
assembly parts, the current process can be further inferred based on the rule reasoning, which effectively 529 
recognizes the operator's intention and infers the robot’s responsive operation in the HRC assembly. This is 530 
beneficial to promote the robot’s cognitive intelligence and accelerate HRC assembly. 531 

Future research can be also done to: 1) improve the recognition accuracy of the operator’s assembly actions 532 
by designing an improved ST-GCN model and standardizing the operator’s body movements; 2) optimize the 533 
decision model of operator intention recognition and study the end-to-end intention recognition method; 3) 534 
study the adaptive decision-making of the robot based on deep reinforcement learning. 535 
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