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ABSTRACT

Hypersonic laminar flow over a canonical 25–55� double cone is studied using computational fluid dynamics, bispectrum analysis, and
dynamic mode decomposition (DMD) with a freestream Mach number of 11.5 and unit Reynolds number of 1:6� 105 m�1. The present
study focuses on the evolution and nonlinear behavior of perturbation modes in the flow. The presence of the perturbation modes is first
described in detail through the results of direct numerical simulation. The results of high-order spectrum analysis (bispectrum) then reveal
complex nonlinear interactions in the flow. By examining the evolution of such interactions, the frequency broadening phenomenon of the
fully saturated flow is explained, and the unsteady dynamics of the fully saturated flow are recognized to be caused by the nonlinear satura-
tion of linear instability in the flow. This causality is further confirmed by the DMD results of the Stanton number near the reattachment
region. The origins and dynamics of unsteady saturated flow in the hypersonic laminar flow are, therefore, demonstrated.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0130901

I. INTRODUCTION

Hypersonic flow over a double cone is one of the typical flows of
shock-wave/boundary-layer interaction (SBLI).1 The flow takes advan-
tage of strong interaction and has no finite-span effects compared to
its two-dimensional counterpart (i.e., a double wedge). It has been,
therefore, extensively selected to study shock-induced separation.

Flow unsteadiness in SBLI is one of the significant features in
hypersonic laminar flow over a double cone.2–5 Different physical
mechanisms can account for the unsteadiness. One of the possible
mechanisms is that the unsteadiness of major shock structures is an
inviscid phenomenon consistent with the pulsation mode in super-
sonic spiked-body flow.6 In addition, the Kelvin–Helmholtz instability
in the shear layer, which has dominant frequencies of 45–70 kHz, was
reported by Tumuklu et al.7 Additionally, there is one plausible mech-
anism that is related to self-sustained global instability for separated
flows.8 The mechanism is evident in numerical studies of hypersonic
compression-ramp flows,9–12 oblique shock-wave/laminar boundary-
layer interaction,13,14 hypersonic double wedge flow,15,16 and hyper-
sonic double cone flow.17 For example, Hao et al.17 performed a global
stability analysis (GSA) of hypersonic flow over a 25–55� double cone
with various Reynolds numbers and a direct numerical simulation for
the highest Reynolds numbers. The authors identified that the devel-
opment of perturbations in the early stage of flow evolution is due to

the intrinsic global instability, which is suggested by a consistent
linear-growth rate between the most unstable global mode and the
temporal direct numerical simulation (DNS) history of the azimuthal
velocity.

However, the dynamics of flow unsteadiness in the linear-growth
stage are not necessarily the same as those in the fully saturated flow.18

The mechanism that gives rise to the unsteady dynamics of saturated
flow is still unclear. There may be two possible sources contributing to
the unsteady dynamics. When there is only one global unstable sta-
tionary mode revealed by the GSA, as indicated by the study of oblique
SBLI flow,13 the flow is three-dimensional and stationary in the linear-
growth stage. Such three-dimensional stationary flow then evolves
with the emergence of secondary instability in a transitional stage,
leading the flow toward an unsteady saturated stage. When there are
multiple global unstable modes (stationary or oscillating) revealed by
the GSA, as indicated by the study of compression-ramp flow,9

although the flow in the linear-growth stage is primarily three-
dimensional and stationary, the unsteady dynamics of oscillating
modes appear significant in the late linear-growth stage. Such unsteady
features contributed by the oscillating modes may also be a potential
source to determine the unsteady behavior when the flow becomes sat-
urated. In both scenarios, the onset of the unsteady dynamics of flows
almost begins at the commencement of a transitional stage. At the
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transitional stage, the presence of multiple perturbation modes has
been reported in many works in the literature. Robinet13 observed that
primary global instability and secondary instability are simultaneously
present with nondimensional flow structure wavelengths of 0.8 and
0.4, respectively. By analyzing the power spectrum density, Cao et al.9

observed that the wavelengths of multiple modes and the wavelength
of the second harmonic of the most unstable stationary mode coexist
in the flow field. Recently, Cao et al.11 studied another hypersonic
compression-ramp flow with a Reynolds number that was approxi-
mately double that of the previous one. The presence of multiple
modes is also observed at the transitional stage. In addition, they found
a second harmonic mode after the linear-growth stage by DNS results,
which features a doubled wavenumber of the most unstable global
mode revealed by the GSA. Thus, investigations of the nonlinear
behaviors of these multiple perturbation modes can help to clarify the
unsteady dynamics of the saturated flow.

The present study is an extension of Hao et al.,17 of which some
questions remain to be answered. For example, before the flow evolves
to the fully saturated stage, there is a period of a transitional stage.
How much and in what way can this transitional stage affect the flow
dynamics at the fully saturated stage? In addition, our previous GSA
results revealed multiple modes; however, only the most unstable sta-
tionary mode was discussed and compared with the DNS results in the
linear-growth stage. How do the other modes contribute to the flow
evolution and interact with each other nonlinearly? To answer these
questions, a bispectrum technique and dynamics mode decomposition
(DMD) are applied to the DNS data.

The following content of this paper is organized as follows. The
flow configuration and numerical setup are described in Sec. II. In Sec.
III, the evolution of perturbation modes in different stages is discussed
by using DNS and DMD techniques, and the nonlinear behavior of
these perturbation modes is investigated by a high-order spectrum
analysis (bispectrum). Conclusions are given in Sec. IV.

II. FLOW CONFIGURATION AND NUMERICAL SETUP
A. Direct numerical simulation

The DNS has previously been reported by Hao et al.17 An over-
view of the simulation methodology and setup is provided here.
Further details may be found in the study by Hao et al.17

Figure 1 depicts the experimental model that was tested in the
LENS I reflected shock tunnel and LENS XX expansion tunnel at the
Calspan-University of Buffalo Research Center. Surface pressure and
heat flux measurements19,20 were conducted in the hypersonic flow
regime with relatively low Reynolds numbers to maintain laminar
flow. Special emphasis was given to the high-enthalpy effects. The
25–55� double cone features a sharp tip and two conical sections of
equal length (L¼ 0.1016 m). The coordinate system is created with the
origin at the nose, the x direction is along the cone axis, the y direction
is perpendicular to the axis, and the z direction satisfies the right-hand
rule. Note that the direction of velocity components u, v, w, are parallel
with the direction of x, y, z, respectively. In addition, the polar angle h
is defined by h ¼ arccosðy=rÞ, where r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðy2 þ z2Þp

and y> 0 in
the present study. The length of the conical section L is used as the
characteristic length of the flow. The 3D computational grid is con-
structed by rotating a base grid (750� 350) around the axis over an
angle of 72� to make the DNS affordable. This azimuthal domain
extent is also chosen because the corresponding critical wavenumbers

(m) of modes obtained by the GSA are close to integer multiples of 5
(described in Sec. III). Note that information on the grid independence
study has been reported in the previous work.17

An in-house multiblock parallel finite-volume solver called
PHAROS, which has been successfully applied in many studies,21–26 is
employed for the simulation. An axisymmetric simulation of the pre-
sent flow is first calculated to obtain a base-flow solution. Then, the
initial flow field is constructed by duplicating the base-flow solution in
the azimuthal direction. No external or internal disturbances are intro-
duced in the present flow. The three-dimensional simulation is calcu-
lated with the following numerical schemes. The inviscid fluxes are
computed by the advection upstream splitting method27 and recon-
structed by the monotone upstream-centered schemes for conserva-
tion law reconstruction.28 The viscous fluxes are calculated by
applying a second-order central difference. A second-order implicit
scheme29 is employed for time marching.

One of the double cone experiments30 conducted in the LENS
I tunnel (run 35) is considered in the present study. The freestream
conditions are Re1 ¼ 1:6� 105 m�1; M1 ¼ 11:5; T1 ¼ 138:9 K;
q1 ¼ 5:515� 10�4 kg=m3, and u1 ¼ 2713 m=s. The air is calori-
cally perfect, with a constant specific heat ratio of 1.4 due to its low
total enthalpy. The boundary conditions are given as follows: The pro-
file from the corresponding axisymmetric solution is extracted to pro-
vide the inlet boundary conditions at the same streamwise station. The
azimuthal boundaries are set as periodic boundary conditions. Simple
extrapolation is used to determine the outflow boundary condition.
The model surface is assumed to be no-slip, and the wall temperature
is fixed at Tw¼ 300 K. The physical time step of the simulation is set
as 20 ns. The simulation is conducted for a total of 14ms ðtu1=L
¼ 374Þ of physical time to obtain a fully saturated flow and capture
enough periods of low-frequency unsteadiness. The sampling fre-
quency is set to 0.5MHz for data analysis.

A pseudo-schlieren image of the base flow is depicted in Fig. 2 to
provide a basic picture of the flow. Figure 3 shows typical contours of
surface Stanton number and density gradient magnitude by the DNS
results at tu1=L¼ 55, 125, and 347. These three instants are inten-
tionally selected to present flow structures in three main stages
(defined in Sec. III) of flow evolution, which are linear-growth stage,
transitional stage, and fully saturated stage. The surface Stanton num-
ber (St) is defined by

FIG. 1. Schematic of the double cone configuration.
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St ¼ qw
0:5q1u31

; (1)

where qw is the surface heat flux. The flow shows significant three-
dimensionality, which is evidenced by the unsteady separation bubbles,
and separation/reattachment lines. A more detailed three dimensional
depiction of the present flow is presented in our previous work.17
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: (2)

B. Dynamic mode decomposition

In the present study, a frequency-orthogonal modal decomposi-
tion of the three-dimensional flow field is performed using dynamic
mode decomposition (DMD) to separate the different dynamics from
a broadband frequency spectrum. The method was first proposed by
Schmid31 to identify important information contained in a separated
frequency component in an unsteady flow field. In summary, the orig-
inal dynamic system will be reduced to a set of (reduced) modes,
where each mode is linked with a single frequency behavior, the sum
of which approximates the whole unsteady system.

Following the DMD methodology, the original dynamic system
can be represented by Eq. (2), where ai is the amplitude of the ith
DMDmode (/i), and the Vandermonde matrix (Vand) is the temporal
evolution of the dynamic modes. Through the logarithmic mapping
ki ¼ ln ðliÞ=Dt, the eigenvalues li can be converted into a complex
stability plane. The dynamic information about the growth rate ri and
angular frequency xi of a specific DMDmode is then computed by

ri ¼ RE kið Þ ¼ ln jlij=Dt; (3)

xi ¼ IM kið Þ ¼ Arg lið Þ=Dt: (4)

C. Bispectrum

The nonlinear behaviors in the flow are studied using a bispec-
trum analysis.32 For a continuous time-varying signal q(t), the bispec-
trum is defined by

B f1; f2ð Þ ¼ lim
T!1

1
T
E Q f1ð ÞQ f2ð ÞQc f1 þ f2ð Þ½ �; (5)

where T is the temporal duration of the signal qðtÞ;QðtÞ is the Fourier
transform of q(t), the superscript c represents the conjugate transpose,
and E½.� is the expectation operator. The bispectrum can indicate the
presence of interactions between a group of signal components at f1, f2,
and f1 þ f2 obtained from a time-varying signal. For example, a qua-
dratic nonlinearity is the production of a harmonic by a wave with a fre-
quency f0 coupling with itself, f0 þ f0 ! 2f0. Note that the bispectrum
can only indicate the presence of quadratic nonlinearity and is not effec-
tive in detecting other forms (e.g., cubic nonlinear interactions).

III. PERTURBATIONMODES IN THE FLOW

In this section, we identify the perturbation modes for hypersonic
laminar flow over a double cone. An azimuthal velocity at a given

FIG. 2. Contours of the density gradient magnitude of the base flow. The blue
dashed line and the red dashed-dotted line indicate the streamwise stations of x/
L¼ 0.98 and 1.10, respectively.

FIG. 3. Contours of surface Stanton number and density gradient magnitude by DNS results at (a) tu1=L¼ 55, (b) 125, and (c) 347. St ranges from 0.02 to 0.14, and the
black lines indicate isolines of zero-skin friction.
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streamwise station of x=L ¼ 0:98 (the blue dashed line in Fig. 2) is
used to represent perturbation quantitatively. The velocity is defined
by

Aw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NjNk

XNj

j¼1

XNk

k¼1

Vazi

u1

� �2
vuut ; (6)

where Vazi ¼ w cosðhÞ � v sinðhÞ and Nj and Nk are the numbers of
grid cells in the radial and azimuthal directions, respectively. The tem-
poral history of this velocity is shown in Fig. 4. By examining the fea-
tures in the flow history, the whole simulation can be separated into
three main stages. The linear-growth stage consists of a linear expo-
nential growth section and a short period of the saturated section,
which ranges from approximately tu1=L¼ 5 to 115. The second stage
(tu1=L¼ 115 to 240) is a transitional process from the linear-growth
state to the fully saturated stage. After a period of transition, a fully sat-
urated flow is finally established from tu1=L¼ 240.

A. Perturbation modes in the linear-growth stage

Perturbation modes in the linear-growth stage can be revealed by
a previous GSA,17 as shown in Fig. 5. The figure presents the variations
in the growth rates and the frequencies of the most unstable modes as
a function of azimuthal wavenumber for the base flow. Modes 1–4 are
the primary stationary mode, primary oscillatory mode, secondary sta-
tionary mode, and secondary oscillatory mode, respectively. The azi-
muthal wavenumbers for the most unstable modes 1–4 are 33, 30, 5,
and 17, respectively, which are the critical wavenumbers in the present
study. Additionally, the nondimensionalized oscillating frequency of
the most unstable oscillating mode 2 atm¼ 33 is approximately 0.2.

By comparing the GSA results and DNS results, we noted that
although GSA modes are obtained based on a linearized Navier–Stokes
equation,8 a similar perturbation mode can also be observed from the
flow field by DNS. Thus, in the following content, if one mode by DNS
is almost identical to the mode revealed in the GSA, the mode will be
named the same mode as in the GSA for convenience. Figure 6 shows

the four contours of azimuthal velocity within the linear-growth stages
by DNS [Figs. 6(a)–6(d)] and GSA results [Figs. 6(e)–6(h) correspond-
ing to modes 1–4]. These four typical DNS contours share high similari-
ties with the perturbation modes of the GSA.

By examining the evolution of the flow field and features shown
in Figs. 4 and 6, the development of perturbation modes during the
early stage of flow evolution can be described as follows. After flow ini-
tialization, the perturbation in the flow grows linearly under stationary
mode 1 at first. At the late linear stage, the perturbation grows with
the oscillating mode 2 setting in. Meanwhile, a new perturbation mode
occurs in the flow field, which is recognized as stationary mode 3. The
emergence of mode 3 can also be seen in Fig. 7, which shows that the
azimuthal wavenumber of coherence structures in the flow field
evolves from roughly m¼ 30 to 5. A similar phenomenon is also
reported by Cao et al.10 In their study, a new mode is identified after
the linear-growth stage by flow patterns (spanwise velocity), which
exhibit a wavenumber that is twice that of the linear-growth stage.
Apart from the emergence of mode 3, mode 4 also becomes significant
at the late linear-growth stage. As indicated in Fig. 8, the high energetic
components in Fig. 8(a) feature critical wavenumbers of mode 1 and
mode 2, whereas the high energetic components in Fig. 8(b) can also
distribute in the low wavenumber region. The highly energetic spots
with low wavenumbers in Fig. 8(b) suggest the emergence of a pertur-
bation mode (mode 4) with a critical wavenumber of 15.

FIG. 4. Temporal history of the root mean square of the azimuthal velocity at
x/L¼ 0.98.

FIG. 5. Variations in (a) the growth rates and (b) the frequencies of the most unsta-
ble modes as a function of azimuthal wavenumber for the base flow.
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FIG. 6. Contours of the azimuthal velocity superimposed with shock locations and dividing streamlines by DNS at (a) tu1=L¼ 55, h¼ 42.5�, (b) tu1=L¼ 72, h¼ 40.5�, (c)
tu1=L¼ 115, h¼ 30.0�, and (d) tu1=L¼ 100, h¼ 13.5�, and by the GSA at (e) m¼ 33, (f) 30, (g) 5, and (h) 17. The contour levels of the GSA modes are evenly spaced
between60.1 of the maximum jw 0j for modes 1 and 2 and60.5 of the maximum jw 0j for modes 3 and 4.
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B. Perturbation modes in the transitional stage

Perturbation modes in the transitional stage can be revealed by a
DMD analysis in the present study. Our dataset for the following
DMD analysis is constructed by snapshots of azimuthal velocity within
the transitional stage (tu1=L¼ 125–160) at time step¼ 0.05ms. The
resultant number of snapshots is n¼ 24 in this setup, and the resolved
frequency can reach fL=u1 ¼ 0.375 with the minimum resolvable fre-
quency of fL=u1 ¼ 0.015. The setup is sufficient for the purpose of
capturing critical modes from the DNS results, because increasing the
sampling frequency resulted in additional similar perturbation modes.
The computation domain for the modal analysis covers a range of
0:4 < x=L < 1.4 with the entire r/L range and h ¼ 30�. Note that the
resultant DMDmodes with a given h are an instantaneous representa-
tion of perturbation motions.

Figure 9 shows the eigenvalue spectrum of the DMD results for
azimuthal velocity within the transitional stage. Six DMD modes are
highlighted by colored symbols in the figure, and the modes are shown
in Fig. 10 to represent typical modes within the resolved frequency. As
can be seen in the figure, there is a stationary mode that is marked by

the red symbol. By examining the real part of the DMD mode [shown
in Fig. 10(a)], the DMD mode is roughly identical to both the DNS
results [Fig. 6(c)] and mode 3 of the GSA. For oscillating modes with
fL=u1 ¼ 0:04 and 0:11 [Figs. 10(b) and 10(c)], the modes share a
similar structure as mode 4 revealed by the GSA. For oscillating mode
with critical frequency close to 0.2 [Figs. 10(d)–10(f)], the modes show
similar variations to mode 2 but with more pairs of repeating coher-
ence structures in the upstream half of the separation region. For oscil-
lating modes with high frequency [Fig. 10(f)], the entire separation
region is almost occupied by the coherence structures, and it is found
that the pairs of coherence structures within the separation bubble
increase with increasing oscillating frequency. Note that the cause of
the coherence structures is still unclear and awaits further
investigation.

Figure 11 shows the difference in the spectra of the St signal
before and after the transitional stage. Figure 11(a) shows the temporal
history of the azimuthally averaged surface St signal at x=L ¼ 1:10
(the red dashed line in Fig. 2), and the corresponding power spectral
densities (PSDs) for the linear-growth stage (tu1=L¼ 5 to 80) and the
fully saturated stage (tu1=L¼ 280–374) are provided in Figs. 11(b)

FIG. 7. Contours of the azimuthal velocity in wall-normal slices extracted at x/
L¼ 0.98 at (a) tu1=L¼ 55 and (b) 115.

FIG. 8. PSD of the azimuthal velocity in wall-normal slices extracted at x/L¼ 0.98
at (a) tu1=L¼ 55 and (b) 115.

FIG. 9. (a) Spectrum of eigenvalues
resulting from the DMD for azimuthal
velocity within the transitional stage. (b)
Growth rate of DMD modes with fL=u1
< j0.34j. The colored cycle symbols indi-
cate the DMD modes in Fig. 10.
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and 11(c), respectively. The PSD curves are obtained by applying
Welch’s method33 with two segments, a 50% overlap and a Hamming
window. Before the transitional stage, there is a peak PSD located at
fL=u1 � 0:2. As expected, this value is almost the same as the oscillat-
ing frequency of mode 2 predicted by the GSA. However, after the
flow is saturated, the frequency of the peak PSD shifts toward
fL=u1 ¼ 0:1. Meanwhile, frequency broadening is also observed in
the low-frequency region by comparing these two PSD curves. The
generation of the discrepancies mentioned above can be accounted for
the nonlinear behavior during the flow evolution. Thus, a higher-order
spectrum analysis is applied to identify such nonlinear behavior
features.

Figure 12 shows the bispectrum of the azimuthally averaged sur-
face Stanton number signal at three different stages at x=L ¼ 1:10. A
peak at the bispectrum of a frequency pair ðf1; f2Þ indicates that a qua-
dratic interaction exists between modes at f1, f2, and f1 þ f2.
Interactions between these frequencies may be f1 þ f2 ! ðf1 þ f2Þ or
ðf1 þ f2Þ � f1 ! f2 or ðf1 þ f2Þ � f2 ! f1. The bispectrum cannot dis-
tinguish these sum or difference interactions by itself. Normally, with
the help of contextual clues and supporting evidence, interactions can
finally be determined. The fundamental frequency f0 is set as
fL=u1 ¼ 0:2, which is close to the oscillating frequency of mode 2
revealed by the GSA.

In Fig. 12(a), the bispectrum shows a peak at (0, 1). Considering
that the spectrum is obtained from the linear-growth stage, the zero
frequency can be related to stationary mode 1, and f0 can be related to

the oscillating frequency of mode 2 revealed by the GSA. Thus, it is
likely that this interaction represents 0þ 1 ! 1. Around the region of
peak (0, 1), a high level of bispectrum magnitude (B) is observed. As
indicated by the presence of the St amplitude modulation shown in
Fig. 12(a) and mode 2 in Fig. 11(b), these high values represent the
interaction eþ 1 ! ðeþ 1Þ, which should be one of the sources con-
tributing to the spectral broadening depicted in Fig. 11. Here, e stands
for a small frequency deviation from the zero frequency, and in the
present study, it can be a low frequency contributed by the amplitude
modulation mentioned above. The origins of this modulation may be
due to the typical oscillating mode 4 [Fig. 10(b)] with critical frequency
fL=u1 < 0:04. Note that the St amplitude modulation arises from
approximately tu1=L¼ 55.

In Fig. 12(b), the nonlinearity becomes more significant during
the transitional stage. The presence of self-interactions can be read
from the bispectrum along a 45� line of the coordinate. Starting from
the origins of the coordinate, there is an apparent peak located at
(0, 0). This interaction ð0þ 0 ! 0Þ may be interpreted by the multi-
stationary modes (modes 1 and 3 in Fig. 5). Evidence of this view is
supplied by the difference between Figs. 12(a) and 12(b) at point
(0, 0), as mode 3 significantly appears after the linear-growth stage.
The next significant peak along the 45� line is at point (1, 1). This
peak represents a self-interaction of the fundamental frequency. An
interesting feature is the spectral support in the vicinity of the self-
interaction, indicated by a dashed circle shown in the figure.
Combined with another two bispectrum plots, this feature may be

FIG. 10. Real part of DMD modes showing contours of modal azimuthal velocity fluctuation superimposed with shock locations and dividing streamlines. The modes corre-
spond to (a) the red symbol with fL=u1 ¼ 0, (b) the blue symbol with fL=u1 ¼ 0.04, (c) the green symbol with fL=u1 ¼ 0.11, (d) the magenta symbol with fL=u1 ¼ 0.16, (e)
the yellow symbol with fL=u1 ¼ 0.20, and (f) the cyan symbol with fL=u1 ¼ 0.32 in Fig. 9.
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read as an interaction that occurs in the middle process of the
generation of subharmonics. The interaction can be represented as
ð1� Dþ 1Þ � 1 ! ð1� DÞ, where D is a small deviation from the
fundamental frequency. When D is somewhere between 0 and 1/2, we
have the feature of Fig. 12(b) mentioned above. With the flow devel-
oped, D evolves and reaches 1/2. A peak is, therefore, obtained at the
point ð1; 1=2Þ, which indicates an interaction of ð1=2þ 1Þ�
1 ! 1=2. Note that the subharmonic generation may account for the
shift in the peak frequency, as shown in Fig. 11.

In Fig. 12(c), the resultant subharmonic then self-interacts as
indicated by the local peak at ð1=2; 1=2Þ and interacts with stationary
modes as indicated by the local peak at ð1=2; 0Þ. In addition, along the
axes, there are three significant spots located around ð0; 0Þ; ð1=2; 0Þ,

FIG. 11. (a) Temporal history of the azimuthally averaged surface St signal at
x/L¼ 1.10, (b) the corresponding PSD of the St signal at the linear-growth
stage (tu1=L¼ 5 to 80), and (c) the corresponding PSD of the St signal at the
fully saturated stage (tu1=L¼ 280 to 374).

FIG. 12. Bispectrum of the azimuthally averaged surface Stanton number signal at
the (a) linear-growth stage (tu1=L¼ 5 to 80), (b) transitional stage (tu1=L¼ 125
to 160), and (c) fully saturated stage (tu1=L¼ 280 to 374). The axes are normal-
ized by the fundamental frequency f0.
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and (1, 0). These spots indicated the interactions of
eþ e ! ðeþ eÞ; eþ 1=2 ! ðeþ 1=2Þ, and eþ 1 ! ðeþ 1Þ, which
contribute to the frequency broadening as shown in Fig. 11. Overall,
nonlinear features in the bispectrum of the fully saturated flow can be
well explained by the modes revealed by linear instability theory. Thus,
it is reasonable to believe that the unsteadiness of the saturated flow is
due to the nonlinear interaction of critical perturbation modes in the
present flow.

C. Perturbation modes in the fully saturated stage

In Sec. III B, we provide a view that the unsteady dynamics of sat-
urated flow are due to the nonlinear interaction of critical perturbation
modes in the present flow. In this section, a detailed analysis based on
the DMD method is conducted to further confirm this view by exam-
ining the unsteady dynamics of thermal streaks.

Our database for the wall surface DMD analysis is constructed by
n¼ 1700 snapshots of St with a time step of 0.002ms (tu1=L¼ 280 to
374). The current setting of the database results in a frequency resolu-
tion of 5:5� 10�3 < fL=u1 < 9.3, which is sufficient to resolve the
low-frequency phenomenon in the present study. The computation
domain for the DMD covers the range 1.0< x/L< 1.35 and
9� < h < 81�, which includes the dynamically interesting interaction
region (reattachment region).

Figure 13(a) illustrates the spectrum of eigenvalues resulting
from the DMD algorithm. As the processed input data are real values,
the resultant modes are in the form of complex conjugate pairs, result-
ing in a symmetrical spectrum. In addition, as the saturated flow is a
quasi-steady flow, it is expected that almost all eigenvalues lie on the
unit circle jlij ¼ 1.34 The blue “diamond” symbols shown in the figure
are a subset of dynamically important modes ðNsub ¼ 37Þ that have
been selected by the sparsity promoting DMD (SPDMD) algorithm.
This algorithm was developed by Jovanovi�c et al.35 for the purpose of
automatically selecting dynamically important modes from all stan-
dard DMDmodes. It does not simply select DMDmodes according to
their magnitude but identifies the modes that have the greatest influ-
ence on the complete snapshot sequence. Figure 13(b) presents the
subset ðNsub ¼ 37 and 9) of dynamically important modes selected by
the SPDMD. The selected subset modes are distributed mainly in the
low-frequency region and present a broadband low-frequency feature.
This is consistent with the feature of the PSD curve shown in Fig. 11
(c). Among these modes, there are four modes (marked as red dia-
monds) selected by the SPDMD with Nsub ¼ 9. The

nondimensionalized frequencies for these four modes are
fL=u1 ¼ 0.039, 0.080, 0.121, and 0.168, respectively.

Figure 14 shows the real part of the four modes ðNsub ¼ 9Þ of the
Stanton number at a given frequency component, which is defined by
St0 in the present study. As can be seen in the image, a high level of
surface Stanton number fluctuation is found downstream of the reat-
tachment lines. Each mode typically has flow patterns (red and blue
spots) as indicated by the dashed circle in Fig. 14(a). These flow pat-
terns describe an oscillation of the thermal streak and account for the
corrugate reattachment line, as observed in previous work.17 The PSD
contours of the four modes also suggest that unsteady dynamics of the
saturated flow are related to the linear modes mentioned in Sec. IIIA.
As shown in Fig. 15, these spectra show a high PSD magnitude down-
stream of the reattachment line with wavenumbers located at some
critical values (such as m¼ 5, 30, 35 and their couplings). The satu-
rated flow has interactions between different linear modes, leading to
these spectra containing high energy content around these critical
wavenumbers.

An animation is also reconstructed by superimposing the mean
flow field with these four DMD modes to further study the three-
dimensionality of the present flow. The reconstruction is described as
follows.36 The reconstructed real-value flow variable consists of two
parts. The first part is /m, which represents the mean mode. The sec-
ond part is perturbations contributed from each mode, which is
expressed as

PN
i ðaf � RE ai;opt/ie

ixi tþri t þ cc
� �Þ. Here, “cc” indicates

the contribution of the complex conjugate of /i, and af is an optional
amplification factor. Since the present flow is a quasi-steady flow, the
growth rate ðriÞ of each mode is nearly zero and is neglected during
the reconstruction.37 The animation shows contours of the surface
Stanton number in the range St ¼[0.02, 0.14] at eight equally spaced
phase angles ðxitÞ, which is jp=4ðj ¼ 0;…; 7Þ.

Figure 16(a) (Multimedia view) shows the reconstructed anima-
tion of surface Stanton number by DMD, and Fig. 16(b) shows the
animation of surface Stanton number by DNS. In the reconstructed
animation, the dynamics of the thermal streaks near flow reattachment
are well demonstrated. The heat flux peak and valley appear alterna-
tively along the azimuthal direction, and the number of these struc-
tures is mainly determined by the critical wavenumber of the linear
modes. These heat flux features form as a whole and exhibit another
oscillatory motion along the azimuthal direction with an azimuthal
wavenumber of 5. By comparing the St distribution in these two ani-
mations, overall, unsteady motions shown in the DMD animation can
basically reproduce the motions shown in the DNS animation. This

FIG. 13. (a) Spectrum of eigenvalues
resulting from the DMD for the Stanton
number. (b) Magnitude of DMD modes
(normalized by the max magnitude in the
plot). Blue diamonds indicate a subset of
SPDMD with Nsub¼ 37 and red diamonds
indicate a subset of SPDMD with
Nsub¼ 9.
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suggests that the dynamics of the thermal streaks in the DNS are due
to the nonlinear saturation of critical linear modes in the flow.
Additionally, the similarity may also suggest that critical design
parameters (e.g., wall heat flux) can be well predicted by applying a
reduced order model in the SBLI flow, leading to significant computa-
tional cost savings.

IV. CONCLUSIONS
Hypersonic laminar flow over a canonical 25–55� double cone is

studied using computational fluid dynamics, bispectrum analysis, and
dynamic mode decomposition with a freestream Mach number of
11.5 and unit Reynolds number of 1:6� 105 m�1. The study is con-
ducted to clarify the unsteady dynamics of fully saturated flow by

FIG. 15. Power spectral densities of the
modes are shown in Fig. 16. (a) Mode /
1 (fL=u1 ¼ 0.039), (b) mode / 2 (fL=u1
¼ 0.080), (c) mode / 3 (fL=u1 ¼ 0.121),
and (d) mode / 4 (fL=u1 ¼ 0.168).

FIG. 14. (a) Real part of DMD modes
showing contours of modal Stanton num-
ber fluctuation with 1.0< x/L< 1.35 and
9� < h < 81�. The solid line denotes the
averaged zero-skin friction. (a) Mode / 1
(fL=u1 ¼ 0.039), (b) mode / 2 (fL=u1
¼ 0.080), (c) mode / 3 (fL=u1 ¼ 0.121),
and (d) mode / 4 (fL=u1 ¼ 0.168).

FIG. 16. (a) Reconstructed animation of surface Stanton number by DMD. (b) Animation of surface Stanton number by DNS. Multimedia views: https://doi.org/10.1063/
5.0130901.1; https://doi.org/10.1063/5.0130901.2
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investigating the nonlinear behavior of perturbation modes at the tran-
sitional stage. The significant findings are listed as follows.

The presence of the critical perturbation modes is first identified
by the DNS results. Apart from the most unstable stationary mode
and the most unstable oscillating mode, which are significant in the
linear-growth stage, there are new modes arising in the flow after the
linear-growth stage. These critical multiple perturbation modes inter-
act, and their interactions are studied using a bispectrum analysis. The
bispectrum results then explain the generation of the typical frequency
broadening phenomenon and indicate that the unsteady dynamics of
the saturated flow are caused by the nonlinear saturation of the linear
mode in the flow. This causality is further confirmed by the DMD
analysis for the surface heat flux.

The findings in the present work demonstrate how perturbation
modes evolve, interact with each other, and finally contribute to the
unsteady dynamics of the fully saturated flow, providing a better
understanding of the formation and dynamics of the unsteady satu-
rated flow under the condition of free external perturbation and global
instability. It is worth noting that such unsteady dynamics will be
essentially different if the flow conditions change. Consider the
dynamics of thermal streaks as an example for the following discus-
sion. If flow conditions are globally stable and no perturbations are
introduced, the reattachment line will be a straight line, and there will
be no thermal streaks.14,16 If flow conditions are globally stable and
perturbations are introduced, the dynamics of the thermal streaks will
be determined by the perturbations, and the perturbations are ampli-
fied by a convective mechanism, as indicated by Dwivedi et al.38–41

and Bugeat et al.42,43 If flow conditions are globally unstable and no
perturbations are introduced, the dynamics of the thermal streaks will
behave as we present in the present study. However, if flow conditions
are globally unstable and perturbations are introduced, the dynamics
of the thermal streaks are still not fully understood, and it is likely to
be determined by both convective and intrinsic mechanisms. Most
shock-wave/turbulent boundary-layer (STBLI) interactions with large
separation belong to this category,44–50 as the turbulent boundary layer
continuously introduces perturbations into the separated flow. The
convective/intrinsic mechanisms may also be a potential way to
explain the other dynamics that occurred in STBLI flows (e.g., low-
frequency motions of separation bubbles), which is very worthwhile
for future study. Thus, the findings in the present study also provide a
preliminary understanding of the study on the dynamics in STBLI
flows.
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