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ABSTRACT

The acoustic, vortical, and entropic (thermal) components of the second-mode instability, regarded as an asymptotic behavior of the free-
stream counterparts, were found to interact with each other in a well-defined way. However, the mechanisms of the energy growth of each
component and the resulting second mode instability remain to be clarified. The present paper provides a quantitative energy analysis of the
key sources responsible for the modal growth in the momentum potential theory framework. The acoustic, vortical, and entropic compo-
nents are governed by energy source effects and interexchange effects, characterized by explicit transport terms and relationships between
the growth rate and the energy source. The thermal-acoustic source, induced by the interaction between the fluctuation pressure and
the fluctuation entropy, is revealed to be the most pronounced cause of the second-mode instability in the hypersonic boundary layer. The
thermal-acoustic source is further decomposed into the dissipative (viscous) part and the non-dissipative (inviscid) part. The dissipative
thermal-acoustic source is dominant near the wall surface and destabilizes the second mode. The non-dissipative thermal-acoustic source desta-
bilizes the second mode significantly at the critical layer, while the dissipative thermal-acoustic source stabilizes the second mode in this region.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0141414

I. INTRODUCTION

It is well known that the transition from laminar to turbulent in
the hypersonic boundary layer is crucial to the design of hypersonic
vehicles.1 Premature transition increases heating to the vehicle surface
significantly, which is highly challenging to the thermal protection sys-
tem (TPS) design. The laminar–turbulent transition in the hypersonic
boundary layer in low-disturbance environments is primarily caused
by the modal growth of instability modes.2 Numerous experimental
investigations,3–7 linear stability theory (LST) studies,8–12 and numeri-
cal simulations13–17 have been conducted to study the modal growth
of hypersonic boundary layer instability modes. Mack8 first identified
that multiple instability modes co-exist in the hypersonic boundary
layer at a high Mach number, typically like Mach number M> 4. In
addition, wall cooling can make the second mode dominant at a lower
Mach number. In the supersonic boundary layer, the first mode can be

regarded as the counterpart of the Tollmien–Schlichting mode. The
second and higher modes are high-frequency sound waves trapped in
the waveguide between the solid wall and the sonic line.1

The theoretical study by LST shows the existence of unstable
modes in the hypersonic boundary layer by mathematically giving the
growth rate of these modes. However, it is still a mystery how these
unstable modes are amplified downstream from a physical perspective.
There have been attempts to provide a physical interpretation of the
growth of small disturbances in the flow field based on energy
approaches. Reynolds18 proposed a two-dimensional (2D) kinetic
energy equation for incompressible parallel shear flows. The total dis-
turbance kinetic energy growth rate is related to a production term
due to the Reynolds stress and a dissipation term due to the viscous
effect. The small 2D disturbance in the incompressible boundary layer
grows if and only if the production term outweighs the dissipation
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term. Kuehl19 derived a Lagrangian acoustic energy equation by ignor-
ing the viscous effect for the compressible boundary layer. With the
Lagrangian acoustic energy equation, Kuehl showed that the second
mode is related to a forced, resonating, thermo-acoustic standing wave
trapped in a thermo-acoustic impedance well formed by the sonic line
and the solid wall. The thermo-acoustic Reynolds stress draws energy
from the mean flow, which is the energy source for the amplification
of the second mode. Tian and Wen20 performed the stability analysis
for the second mode in a Mach 6.0 boundary layer based on the fluctu-
ating internal energy. The second mode has the largest growth rate
when the wall-normal transport of energy is in phase to the change in
fluctuating internal energy in the vicinity of the critical layer, similar to
the mechanism of the Rijke tube that “depends upon the phase of the
vibration at which the transfer of heat takes place.”21 With the energy
approach, the results of Kuehl19 and Tian20 provide some insight into
the physical mechanism of the second mode from different perspec-
tives. However, their results do not explicitly present the relation
between the growth rate of the second mode and energy sources. This
point is one of the motivations and contributions of the present paper.

The other motivation is that the aforementioned energy analyses
ignored the earlier evolvement of the second mode instability wave
through the receptivity process. It is well known that infinitesimal free-
stream disturbances can be decomposed into different modes, includ-
ing the vortical, acoustic, and entropic components, and each of them
is governed by an individual equation.22 However, when the three
types of freestream disturbances enter the boundary layer, they couple
with each other and the base flow in quite a complicated manner.
Therefore, although the evolution of the second mode is closely linked
with the slow acoustic waves and others,16 the energy analysis consid-
ering the decomposed components is difficult to perform. Recently,
Unnikrishnan and Gaitonde23 utilized the momentum potential the-
ory (MPT) to decompose the second mode into the vortical, acoustic,
and entropic components and found that they interact with each other
and the base flow in a well-described process. The highlight is that the
MPT technique provides a straightforward way to reveal the coupling
of the three components without the leading-edge receptivity analysis.
In detail, the momentum potential theory (MPT) proposed by Doak24

obtained an energy budget equation for disturbances in a time-
stationary mean flow field. The fluctuation momentum density is
decomposed into vortical, acoustic, and thermal components. The
transport of the total energy flux is governed by the superimposition
of the source terms due to each MPT component and an additional
source term. The vortical component displays a series of rope-shaped
recirculation-cell patterns in the boundary layer, while both acoustic
and thermal components display “trapped” structures. Furthermore,
Unnikrishnan and Gaitonde examined source terms in the boundary
layer with different wall temperatures based on the MPT’s energy bud-
get equation and claimed that the thermal source is the primary source
for the growth of the second mode. The finding of Unnikrishnan and
Gaitonde is inspiring. However, their conclusion that the modal growth
of the second mode is caused by the thermal source is mainly based on
numerical observations of the term magnitude itself. The work lacks a
direct link between the growth rate and source terms in Doak’s energy
budget equation, yielding a debatable question. Long et al.25 applied
MPT to study the sound radiation mechanism of the supersonic mode
in a Mach 6.0 boundary layer over the highly cooled wall. Doak’s energy
budget equation is developed into three independent energy budget

equations for eachMPT component. The effect of different source terms
on each energy flux was clarified, and energy exchange terms between
different MPT components were revealed.

In the present study, having considered the decomposition into
vortical, acoustic, and entropic components, direct evidence is shown
on the dominant energy source of the second mode instability by
establishing explicit relationships between the growth rate and the
energy source terms. The LST results of the Mach 6.0 boundary layer
with different wall temperatures and different Reynolds numbers are
analyzed with MPT. The modal growth of the second mode is studied
by developing an integrated form of the MPT energy budget equation
to establish a direct link between the growth rate and MPT sources,
which enables a quantitative analysis of the contribution of MPT sour-
ces to the modal growth of the second mode. The roles of different
source terms in the amplification of the second mode are, thus, identi-
fied intuitively and systematically for the first time.

II. MOMENTUM POTENTIAL THEORY

For clarity of the context, Doak’s momentum potential theory is
briefly summarized as follows: The momentum density m (� qu, q is
density, u is the velocity vector) is selected as the primary dependent
vector field to be decomposed. According to the Helmholtz theorem,
the vector field m can be split into its solenoidal vortical component
mB and an irrotational component. The latter can be expressed as a
gradient of a scalar potential�w

m � qu ¼ mB �rw; r �mB ¼ 0: (1)

For a time-stationary flow field, any instantaneous flow quantity
f consists of a mean part (denoted by �f ) and a fluctuation part
(denoted by f 0) as follows:

�m ¼ �mB �rw; m0 ¼ mB �rw0: (2)

The mean continuity equation and the fluctuation continuity equation
can be expressed as follows:

r � �m ¼ 0;
@q0

@t
þr �m0 ¼ 0: (3)

The mean momentum density �m is divergence-free. By substituting
the corresponding Eq. (2) into Eq. (3), the mean scalar potential �w can
be assumed to be zero, and a Poisson equation is obtained for the sca-
lar potential of fluctuation as follows:

@q0

@t
¼ r2w0: (4)

For a single-chemical-component continuum in the thermal
equilibrium state, the density q can be defined as a function of the
thermodynamic pressure p and entropy S as follows:

q ¼ q p; Sð Þ: (5)

Consequently,

@q0

@t
¼ @q

@p
@p0

@t
þ @q

@S
@S0

@t
;

@q
@p

¼ 1
cRT

;
@q
@S

¼ � c� 1ð Þq
cR

: (6)

Hence, the scalar potential w0 can be assumed to be a linear superposi-
tion of an acoustic potential w0

A and a thermal potential w0
T as follows:
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w0 ¼ w0
A þ w0

T ;
1

cRT
@p0

@t
¼ r2w0

A; � c� 1ð Þq
cR

@S0

@t
¼ r2w0

T :

(7)

The fluctuation momentum density m0 is, therefore, expressed as a
superposition of the vortical component m0

B, acoustic component
m0

A, and thermal componentm0
T ,

m0 ¼ m0
B þm0

A þm0
T ; m0

A ¼ �rw0
A; m0

T ¼ �rw0
T : (8)

In this study, the Poisson equations for w0 and w0
A are solved.

Subsequently, w0
T and m0

B are obtained using w0
T ¼ w0 � w0

A and
m0

B ¼ m0 �m0
A �m0

T , respectively. The Dirichlet boundary condi-
tions for the Poisson equations are formulated by integration along
the boundaries, as in Unnikrishnan and Gaitonde23 and Daviller
et al.26

Another critical aspect of the Doak’s MPT approach is the energy
budget equation, which can be written as follows:

r �H0m0 ¼ �m0 � f0 þ p0

R
@S0

@t
; (9)

whereH0m0 is the mean energy flux.
The total fluctuation enthalpy H0 and the acceleration vector f0

are defined as follows:

H0 ¼ CpT þ u � u
2

� �0
; f0 ¼ X� uð Þ0 � TrSþ 1

q
r � s

� �0
;

(10)

where X and s denote the vorticity vector and the viscous stress ten-
sor, respectively. Cp is the specific heat at constant pressure, and T is
temperature.

Because the fluctuation momentum densitym0 is a superposition
of the vortical, acoustic, and thermal components, the termm0 � f0 can
be split into multiple source terms due to different components.
Substituting Eq. (8) into Eq. (9) yields

r �H0m0 ¼ � m0
B � f0 þm0

A � f0 þm0
T � f0

� �
þ p0

R
@S0

@t
: (11)

The left-hand-side term in Eq. (11) is the divergence of the mean
energy flux. The first three terms on the right-hand side indicate
energy sources due to the interaction of the vector f0 with different
MPT components. In addition to the source terms due to the MPT

components, the source term, p
0
R
@S0
@t , is the interaction between fluctua-

tion pressure and entropy. It is noted that fluctuation pressure and
entropy are related to the acoustic and thermal components in Eq. (7),

respectively. Thus, the source, p0
R
@S0
@t , represents the thermo-acoustic

coupling effect in the disturbances flow field. For convenience of dis-

cussion, the vortical source �m0
B � f0 , acoustic source �m0

A � f0 , and
thermal source �m0

T � f0 are designated as PB, PA, and PT , respec-
tively. The source due to the thermo-acoustic coupling effect is desig-
nated as Pta.

III. GROWTH RATE IN MPT

The growth rate analysis was performed on the second mode
obtained from 2D spatial LST because the most unstable second mode

is two-dimensional, while the most unstable first mode is oblique (the
first mode with a wave angle close to 60� has the largest amplification
rate at M¼ 4.5 with insulated wall8). Considering instability modes in
a two-dimensional (2D) spatial LST, Eq. (11) can be rewritten as fol-
lows (see Appendixes A and B for details):

2r quð Þ0H0 þ @ qvð Þ0H0

@y
¼ PB þ PA þ PT þ Pta: (12)

Here, u is the streamwise velocity, v is the surface normal velocity, and
r ¼ �ai is the growth rate in the 2D spatial LST. ai is the imaginary
part of the complex wavenumber a in the 2D spatial LST. There are

two terms: 2rðquÞ0H0 and @ðqvÞ0H0
@y on the left-hand side of Eq. (12).

Consequently, it is difficult to clarify the effect of different source
terms on the growth rate r. To eliminate the y derivative term, Eq.
(12) is integrated from y ¼ 0 to y ! þ1 with the following bound-
ary condition:

y ¼ 0 : qvð Þ0 ¼ 0

y ! þ1 : qvð Þ0 ¼ 0

(

)
ð1
0

@ qvð Þ0H0

@y
dy ¼ qvð Þ0H0 jy!1 � qvð Þ0H0 jy¼0 ¼ 0: (13)

Finally, we have

2r
ðþ1

0
quð Þ0H0dy ¼

ðþ1

0
PBdy þ

ðþ1

0
PAdy þ

ðþ1

0
PTdy

þ
ðþ1

0
Ptady: (14)

Furthermore, Eq. (14) is rewritten as follows:

r ¼

ðþ1

0
PBdy þ

ðþ1

0
PAdy þ

ðþ1

0
PTdy þ

ðþ1

0
Ptady

2Qx

¼ rB þ rA þ rT þ rta: (15)

Here, is denoted as
Ðþ1
0 ðquÞ0H0dy ¼ Qx . The contribution of each

source term to the growth rate r is defined as follows:

rB ¼

ðþ1

0
PBdy

2Qx
; rA ¼

ðþ1

0
PAdy

2Qx
; rT ¼

ðþ1

0
PTdy

2Qx
;

rta ¼

ðþ1

0
Ptady

2Qx
:

(16)

IV. LINEAR STABILITY ANALYSIS

In the 2-D spatial LST with the parallel flow assumption, the
small disturbance is expressed by the traveling-wave form of
u0ðx; y; tÞ ¼ ûðyÞeiðxt�axÞ. The circular frequency x is real, the wave-
number a is complex, and ûðyÞ is the complex eigenfunction.

The linearized Navier–Stokes equations for small disturbances
are written in the matrix form11 as follows:
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@

@y
L0

@û
@y

� �
þ L1

@û
@y

¼ H1û þ iaH2û: (17)

Here, vector û ¼ ðû; @û@y ; v̂; p̂; T̂ ; @T̂@y ; iaû; iav̂; iaT̂ ÞT . L0, L1, H1, and
H2 are 9� 9 matrices.

The boundary condition for Eq. (17) is as follows:

y ¼ 0 : û ¼ v̂ ¼ T̂ ¼ 0

y ! 1 : jûj ¼ jv̂j ¼ jT̂ j ¼ 0:

(
(18)

Finally, Eq. (17) is discretized along with boundary conditions (18). A
matrix eigenvalue problem is formulated as follows:

Aû ¼ iaBû: (19)

In the present 2-D spatial LST, dimensional flow parameters are
normalized by the steady-state free-stream conditions. Specifically,
velocities are normalized by the free stream velocity u�1, temperature
by the free stream temperature T�

1, density by the free stream density
q�1, and pressure by q�1u�1

2. The characteristic length used to nor-

malize length scales is the local boundary layer thickness Lref ¼
ffiffiffiffiffi
x�
Reu

q
,

where x� is the distance from the leading edge of the flat plate and Reu
is the unit Reynolds number. The superscript “*” represents dimen-
sional variables. In the following texts, the Reynolds number Re is
based on the reference scale Lref . The gas is assumed to be calorically
and thermally perfect with Pr¼ 0.72 and c¼ 1.4. The viscosity l� is
approximated by Sutherland’s law,

l�

lref
¼ Tref þ a

T� þ a
T�

Tref

� �1:5

; (20)

where a¼ 110.4K is a constant, the reference temperature is
Tref ¼ 273.15K, and the reference viscosity is lref ¼ 1.716� 105 Pa s.

Two-dimensional spatial LST analyses are performed to calculate
the eigenmode for the canonical M¼ 6.0 flat plate boundary layer
case, and then, MPT components and source terms are extracted from
the LST mode and analyzed in detail. In the present paper, only mode
S is considered since in most cases it evolves into the unstable second
mode.27 First, the M¼ 6.0 flat plate boundary layer over the adiabatic
wall with Re¼ 1000, 5000, and 9000 is studied to reveal the viscous
effect on the modal growth of the second mode. The free stream tem-
perature T�

1 ¼ 300K. In this case, the recovery temperature is

Tr � 7.02 T�
1. Afterward, LST analyses of three cases with wall tem-

peratures Tw ¼ 0.7 Tr , 1.0 Tr (adiabatic wall), and 1.3 Tr at Re¼ 5000
are performed to take the wall temperature effect into consideration.
Self-similar solutions of the steady state of the Mach 6.0 flat plate
boundary layer with Tw ¼ 0.7 Tr , 1.0 Tr , and 1.3 Tr are plotted in
Fig. 1. Here, Y is the non-dimensional wall normal coordinate by the
local boundary layer thickness Lref . It is evident that wall temperature
significantly affects the boundary layer thickness. The boundary layer
is thicker with higher wall temperature.

Figure 2 shows 2D spatial results of the Mach 6.0 flat plate
boundary layer over the adiabatic wall with Re¼ 1000, 5000, and
9000. Nondimensional phase speed Cph ¼ x

ar
of two discrete modes is

plotted in Fig. 2(a). Three horizontal dashed doted lines indicate the
phase speed of fast acoustic waves (upper, Cph ¼ 1þ 1

M), entropy/vor-
ticity waves (middle, Cph ¼ 1), and slow acoustic waves (lower,
Cph ¼ 1� 1

M) in the free stream. Two discrete modes exist in the 2D
spatial LST results. The fast mode (mode F) has the same phase speed
as fast acoustic waves at the leading edge (non-dimensional circular

frequency x ¼ x�
u�1

ffiffiffiffiffiffiffiffiffi
x�l�1
q�1u�1

q
¼ 0 in Fig. 2), while the slow mode (mode

S) has the same phase speed as slow acoustic waves here.27 The mode
F synchronizes with the Mode S at x� 0.156, 0.157, and 0.158 with
Re¼ 1000, 5000, and 9000, respectively. The non-dimensional growth
rate r of the modes F and S is plotted Fig. 2(b). The mode S is unstable
and has the largest growth rate at x� 0.159, 0.166, and 0.166 with
Re¼ 1000, 5000, and 9000, respectively. The mode S evolves into the
second mode in the vicinity of the synchronization point,27 where the
mode S has the same phase speed as the Mode F, in the considered
case. Downstream of the synchronization point, the mode S is more
unstable with a larger Re.

Figure 3 shows 2D spatial results of the Mach 6.0 flat plate
boundary layer with Tw ¼ 0.7 Tr , 1.0 Tr , and 1.3 Tr at Re¼ 5000. The
mode F synchronizes with the mode S at x� 0.157 with different Tw.
The cold wall destabilizes the second mode (the mode S around the
synchronization point) significantly, while the hot wall stabilizes the
second mode. The most unstable second mode locates at x� 0.171,
0.166, and 0.162, respectively.

V. GROWTH RATE ANALYSIS OF THE MODE S

Because the second mode in present cases is related to the unsta-
ble mode S where the synchronization occurs,1 the mode S obtained

FIG. 1. Distributions of (a) streamwise velocity and (b) temperature in the Mach 6.0 flat plate boundary layer with different wall temperatures.
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from LST is analyzed by MPT in Secs. V and VI. For convenience of

discussion, the notation qx ¼ ðquÞ0H0 is adopted. It is noted that
Qx ¼

Ð1
0 qxdy appears in Eqs. (15) and (16) as denominators, which

makes an essential difference in the contribution of MPT sources to
the amplification of the second mode. Figure 4 shows qx

jQx j of the mode

S at x¼ 0.1 (lower frequency than the second mode), 0.15 (in the
region of the second mode), and 0.2 (higher frequency than the second
mode) with different wall temperature and R. In all cases, the magni-
tude of qx

jQx j is relatively small in most regions of the boundary layer

near the wall and becomes negative with a large magnitude near the
boundary layer edge. Consequently, Qx is negative for the mode S.
Based on Eq. (15), the results indicate that negative MPT sources in
conjunction with a negative Qx eventually destabilize the mode S.

Figure 5 shows the distribution of MPT sources of the mode S
normalized by 2Qx . There exists a negative correlation between PB

2Qx

and PT
2Qx

. This observation is consistent with the results of
Unnikrishnan and Gaitonde,23 and they attribute this phenomenon to
the vortical-entropy coupling effect. MPT sources are significant near
the wall and around the critical layer (u ¼ Cph). Here, the critical layer
is the location where singularity occurs in the inviscid stability

equations and the solution is still large in the complete viscous theory.
Another important observation is that Pta

2Qx
is positive everywhere in all

cases, which indicates that the thermal-acoustic source Pta always
destabilizes the mode S.

The contribution of MPT sources to the growth rate r of the
mode S over the adiabatic wall with different Re is plotted in Fig. 6.
The vertical dashed-dotted line indicates the synchronization point
(SP) of the modes F and S. In all cases with different Re, rta, and rB
are positive, while rA and rT are negative. The thermal-acoustic
source Pta and the vortical source PB destabilize the mode S while the
acoustic source PA and the thermal source PT stabilize the mode S.
For all three cases with different Re, similar tendencies are shown
which may indicate a universal law in this state. More importantly, the
term rta, yielded by the thermal-acoustic source, is the most pro-
nounced positive contribution among all in the vicinity of the SP. It
has been shown by Fedorov1 that the synchronization between the fast
and slow modes signifies the unstable second mode. Consequently,
Fig. 6 provides direct evidence that the thermal-acoustic source is
highly important in the evolvement of the second mode instability.
The contribution of MPT sources to the growth rate r of the mode S
at Re¼ 5000 with different wall temperatures are also plotted in Fig. 7.

FIG. 2. (a) Phase speed Cph ¼ x
ar
and (b) growth rate r ¼ �ai of the mode S and the mode F in the Mach 6.0 boundary layer over the adiabatic wall with different Re. x is

the non-dimensional circular frequency.

FIG. 3. (a) Phase speed Cph ¼ x
ar
and (b) growth rate r ¼ �ai of the mode S and the mode F in the Mach 6.0 boundary layer with wall temperature Tw ¼ 0.7 Tr , 1.0 Tr , and

1.3 Tr at Re¼ 5000.
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The results are similar to those in Fig. 6. A notable difference is that the
magnitude of rA, rB, rT , and rta is larger with lower wall temperature.
Meanwhile, the role of the peak rta is not affected by the wall cooling
effect, which makes the conclusion more general and convincing.

The negative correlation between rB and rT is attributed to the
negative correlation between vortical source PB and thermal source PT
due to the vortical-entropy coupling effect (see Fig. 5). The acoustic
source PA is not correlated with the thermal-acoustic source Pta in Fig.
5, while their contribution to the growth rate rA and rta is negatively
correlated in Figs. 6 and 7. In author’s previous MPT work on the
supersonic mode,25 the independent energy budget equation for each
MPT component is developed in the following form:

r �H0m0
B ¼ PB þ ExAB þ ExTB

r �H0m0
A ¼ PA þ ExBA þ ExTA þ Pta

c

r �H0m0
T ¼ PT þ ExBT þ ExAT þ c� 1ð ÞPta

c
:

8>>>>><
>>>>>:

(21)

On the right-hand side of Eq. (21), terms in the form Exab are energy
exchange terms from a component and b component to the acoustic
component (“A,” “B,” and “T” represent the acoustic, vortical, and
thermal component, respectively). The thermal-acoustic source Pta is

split into two parts Pta
c and ðc�1ÞPta

c , which affect the acoustic energy flux

H0m0
A and the thermal energy flux H0m0

T , respectively. Specifically,

acoustic source PA is correlated with Pta
c in the acoustic energy budget

equation in Eq. (21). As shown in Figs. 8 and 9, rtac is perfectly balanced

with rA except for the second mode. However, the difference between
rA and � rta

c for the second mode is small compared to the magnitude

of rta. Therefore, the net effect of rA and rta can be approximated as
ðc�1Þrta

c . Because the net effect of correlated rB and rT always stabilizes

the mode S, it is concluded that the rise of the second mode is attrib-

uted to the thermal part of the thermal-acoustic source, ðc�1ÞPta
c .

VI. THERMAL-ACOUSTIC SOURCE

By analyzing the contribution of MPT sources to the growth rate
r of the mode S, the thermal part of the thermal-acoustic source
ðc�1ÞPta

c is revealed to be the cause of the modal growth of the second
mode. In this section, the thermal-acoustic source Pta is further ana-
lyzed based on the linearized energy conservation equation.
Particularly, the viscous and inviscid effects are discussed in detail.

The linearization of the energy conservation equation for a 2D
parallel flow field with unique mean pressure gives the following:

qT
@S0

@t
þ u

@S0

@x
þ v0

@S
@y

� �
¼ U0: (22)

Here, U ¼ r � ðkrTÞ þ s � ðruÞ includes both the thermal conduc-
tion effect and viscous dissipation effect. k is the coefficient of thermal
conductivity. Equation (22) can be rewritten as follows:

FIG. 4. qx
jQx j of the mode S at x¼ 0.1, 0.15, and 0.2 with (a) Re¼ 1000 and Tw ¼ 0.7 Tr ; (b) Re¼ 5000 and Tw ¼ 1.0 Tr ; (c) Re¼ 9000 and Tw ¼ 1.3 Tr .
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@S0

@t
þ u

@S0

@x
¼ �v0

@S
@y

þ U0

qT
: (23)

The left-hand side of Eq. (23) is the rate of change in the fluctua-
tion entropy observed in the reference frame with the mean stream-
wise velocity u. The first term on the right-hand side of Eq. (23),
�v0 @S@y, is the entropy exchange between neighboring layers with differ-
ent mean entropy due to normal fluctuation velocity, while the second
term U0

qT is related to irreversible processes.

Considering disturbances with the harmonic waveform, we have
the following:

Ŝ ¼ � v̂
i au� xð Þ

@S
@y

þ 1
qT

Û
i au� xð Þ : (24)

Equation (24) is valid for nonneutral instability waves. For a neutral
instability wave, ðau� xÞ¼ 0 and U0

qT ¼ v0 @S@y at the critical layer.

However, we are concerned about the physical mechanism of the
unstable second mode. The neutral instability wave case is not taken
into consideration in the present study.

Furthermore, two new variables g andW0 are introduced as follows:

@g
@t

þ u
@g
@x

¼ v0;
@W0

@t
þ u

@W0

@x
¼ U0: (25)

g is the disturbance displacement andW0 is the energy loss per volume
due to the viscous effect observed in the reference frame with the
mean streamwise velocity u.

The harmonic waveform of g andW0 is as follows:

ĝ ¼ v̂
i au� xð Þ ; Ŵ ¼ Û

i au� xð Þ : (26)

Then, Eq. (24) can be expressed as follows:

Ŝ ¼ �ĝ
@S
@y

þ Ŵ
qT

: (27)

Finally, we have

S0 ¼ �g
@S
@y

þ W0

qT
: (28)

The first part is fluctuation entropy caused by disturbance displace-
ment between neighboring layers with different mean entropy. The
second part is fluctuation entropy due to the dissipative effect (viscos-
ity and thermal conductivity). Thus, the fluctuation entropy S0 is con-
sidered to be composed of the “non-dissipative part” S0nd ¼ �g @S

@y and
the “dissipative part” S0d ¼ W0

qT.
Furthermore, the thermal-acoustic source Pta is split into two

parts:

Pta ¼ p0

R
@S0

@t
¼ �p0

R
@g
@t

@S
@y

þ p0

R
@W0

@t
: (29)

Again, the first part �p0
R
@g
@t

@S
@y is due to the non-dissipative effect

denoted as Pnd and the second part
p0
R
@W0
@t is due to the dissipative effect

denoted as Pd .

FIG. 5. Distribution of MPT sources of the mode S normalized by 2Qx at Re¼ 5000 and Tw ¼ 1.0 Tr with (a) x¼ 0.1; (b) x¼ 0.15; and (c) x¼ 0.2. The location of the criti-
cal layer (CL) is marked with a horizontal dotted line.
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FIG. 6. Contribution of MPT sources on
the growth rate r of the mode S over the
adiabatic wall with (a) Re¼ 1000, (b)
Re¼ 5000, and (c) Re¼ 9000. The loca-
tion of the synchronization point (SP) is
marked with a vertical dashed-dotted line.

FIG. 7. Contribution of MPT sources on
the growth rate r of the mode S at
Re¼ 5000 with (a) Tw ¼ 0.7 Tr , (b)
Tw ¼ 1.0 Tr , and (c) Tw ¼ 1.3 Tr . The
location of the synchronization point (SP)
is marked with a vertical dashed-dotted
line.
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FIG. 8. Balance between rA and rta
c over

the adiabatic wall with (a) Re¼ 1000, (b)
Re¼ 5000, and (c) Re¼ 9000.

FIG. 9. Balance between rA and rta
c at

Re¼ 5000 with (a) Tw ¼ 0.7 Tr , (b)
Tw ¼ 1.0 Tr , and (c) Tw ¼ 1.3 Tr .
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Figure 10 shows the Pta, Pnd , and Pd (normalized by 2Qx) of
the mode S at x¼ 0.1, 0.15, and 0.2 with Re¼ 5000, Tw ¼ 1.0 Tr .
Figure 11 shows the Pta, Pnd , and Pd (normalized by 2Qx) of the
mode S at x¼ 0.15 with different Tw and Re. In all cases, Pta has

two positive peaks near the wall and the critical layer, which indi-
cates that the thermal-acoustic source destabilizes the mode S
effectively in these two regions. At the critical layer where singu-
larity occurs in the inviscid case, both the magnitude of Pnd and

FIG. 10. Pta, Pnd , and Pd normalized by
2Qx at (a) x¼ 0.1; (b) x¼ 0.15; (c)
x¼ 0.2 with Re¼ 5000, Tw ¼ 1.0 Tr .
The location of the critical layer (CL) is
marked with a horizontal dashed line.

FIG. 11. Pta , Pnd , and Pd normalized by
2Qx at x¼ 0.15 with (a) Re¼ 1000,
Tw ¼ 0.7 Tr ; (b) Re¼ 5000, Tw ¼ 1.0 Tr ;
(c) Re¼ 9000, Tw ¼ 1.3 Tr . The location
of the critical layer (CL) is marked with a
horizontal dashed line.
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Pd become particularly large. At x¼ 0.15 (the second mode), Pta
always overlaps Pd near the wall. The viscous effect dominates the
thermal-acoustic source near the wall for the second mode, while
Pnd is negligible there. Pnd dominates the positive Pta around the
critical layer, especially for high Re cases. The results indicate that
Pnd dominates and destabilizes the second mode around the criti-
cal layer, which is consistent with the inviscid nature of the second
mode. At x¼ 0.1 and 0.2, Pta becomes negligible near the wall. Pd
dominates Pta in the vicinity of the critical layer except for a very
small region where the inviscid singularity effect is significant.
The results demonstrate that 1) the viscous and inviscid effects
dominate the thermal-acoustic term Pta for the second mode near
the wall and the critical layer, respectively, and 2) the viscous
effects dominate the thermal-acoustic term Pta near the critical
layer (except for a small region around the critical layer where the
singularity effect arises) for mode S not related to the second
mode.

VII. CONCLUSIONS

Theoretical analyses based on momentum potential theory
were conducted to clarify the dominant source resulting in the
amplification of the second mode in the Mach 6.0 boundary layer
flow field. By integrating Doak’s energy budget equation along the
normal direction, the contribution of the MPT source term to the
growth rate of the unstable mode S is identified. The vortical part rB
is negatively correlated with the entropic part rT due to the vortical-
entropy coupling effect, while the thermal-acoustic part rta is nega-
tively correlated with the acoustic part rA. The net effect of rB and
rT is always negative, which stabilize the second mode. The net
effect of rta and rA can be approximated as the thermal part of rta,
ðc�1Þ

c rta, which is the cause of the amplification of the second mode.

The pronounced positive peak of the thermal-acoustic source Pta,
appearing in the vicinity of the synchronization point, provides
direct evidence that Pta is the most likely to be responsible for the
evolvement of the second-mode instability. The thermal-acoustic
source Pta is further split into the non-dissipative part and the dissi-
pative part. The dissipative (viscous) thermal-acoustic source term
destabilizes the second mode near the wall. In the vicinity of the crit-
ical layer, both dissipative (viscous) and non-dissipative (inviscid)
terms can be responsible for the resulting positive thermal-acoustic
contribution, depending on the wall temperature and Reynolds
number. Although these results offer a new perspective to under-
stand the modal growth of the second mode, the dynamic of instabil-
ity needs further investigations.
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APPENDIX A: STREAMWISE DERIVATIVE OF THE TIME
AVERAGE TERM

In the 2D spatial LST, any two fluctuation quantities (real
value) can be expressed as follows:

f 0 ¼ f̂ e�aixþi arx�xtð Þ þ f̂
þ
e�aix�i arx�xtð Þ

g 0 ¼ ĝ e�aixþi arx�xtð Þ þ ĝþe�aix�i arx�xtð Þ
;

8<
: (A1)

where f̂ and ĝ are the complex-valued eigenfunctions of y in the wall
normal direction, the superscript þ indicates the corresponding con-
jugate. The product of these two fluctuation quantities is as follows:

f 0g 0 ¼ f̂ ĝ e�2aixþi2 arx�xtð Þ þ f̂ ĝþe�2aix þ f̂
þ
ĝ e�2aix

þ f̂
þ
ĝþe�2aix�i2 arx�xtð Þ; (A2)

due to

ð2p
x

0
f̂ ĝ e�2aixþi2 arx�xtð Þdt ¼ 0;

ð2p
x

0
f̂
þ
ĝþe�2aix�i2 arx�xtð Þdt ¼ 0: (A3)

The time average of Eq. (A3) is as follows:

f 0g 0 ¼ x
2p

ð2p
x

0
f 0g 0dt ¼ f̂ ĝþ þ f̂

þ
ĝ

� �
e�2aix: (A4)

Take partial differential of Eq. (A4) with x yields the following
equation:

@f 0g 0

@x
¼ �2ai f̂ ĝþ þ f̂

þ
ĝ

� �
e�2aix ¼ �2aif 0g 0 : (A5)

Thus, we have

@ quð Þ0H0

@x
¼ �2ai quð Þ0H0 ¼ 2r quð Þ0H0 : (A6)

APPENDIX B: VERIFICATION

Figure 12 shows the comparison between both sides of Eq.
(15) for the S mode with Re¼ 5000, Tw ¼ 1.0 Tr . The difference
between r ¼ �ai and the sum of rB, rA, rT , and rta is negligible.
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