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ABSTRACT 
 

The study of transient pressure waves in both low and high frequency domains has been 

a new research area to provide potentially high-resolution pipe fault detection methods. 

In previous research works, radial pressure waves were evidently observed after 

stopping the laminar pipe flows by valve closures, but the generation mechanism and 

components of these radial pressure waves are unclear. This paper intends to clarify this 

phenomenon. To this end, this study firstly addresses the inefficiencies of the current 

numerical scheme for the full two-dimensional (full-2D) water hammer model. The 

modified efficient full-2D model is then implemented into a practical 

reservoir-pipeline-valve system, which is validated by the well-established analytical 

solutions. The generation mechanism and components of the radial pressure waves, 

caused by different flow perturbations from valve operations, in transient laminar flows 

are investigated systematically using this efficient full-2D model. The results indicate 

that non-uniform changes in the initial velocity profile form pressure gradients along the 

pipe radius. The existence of these radial pressure gradients is the driving force of the 

formation of radial flux and radial pressure waves. In addition, high radial modes can be 

excited, and the frequency of flow perturbations by valve oscillation can redistribute the 

energy entrapped in each high radial mode. 
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INTRODUCTION 
 

Water hammer or hydraulic transients are a series of positive and negative 

pressure waves (i.e., unsteady pressure fluctuations), with propagation speeds up to 1 

km/s in elastic water pipelines. These fluctuations are often caused by sudden changes 

in initial and boundary flow conditions of fluid piping systems. In urban water supply 

systems (UWSS), water hammer is easily and frequently triggered by opening/closing of 

valves, starting/stopping of pumps and variations in inflow or outflow. Understanding 

and predicting these pressure fluctuations are of great practical importance, because 

water hammer may cause major problems, such as noise and vibration, cavitation 

erosion, hydraulic equipment damage, and pipe collapse. The traditional application of 

transient analysis is mainly for the prediction of pressure history in pipeline systems to 

assist the design and evaluation of pipeline strength and placement of transient control 

devices [1-3]. 

For many years, one-dimensional (1D) and quasi-2D water hammer models are 

commonly adopted for predicting such pressure history. In these models, radial inertia 

and viscous terms are neglected due to the slight compressibility of the water and the 

small expansion of the pipe wall (referred to as the plane wave assumption) [4]. Both 1D 

and quasi-2D models consist of a set of partial differential equations (PDEs) and 

appropriate numerical schemes are used to approximate the solutions. The most 

popular scheme for the 1D model is the method of characteristics (MOC) for its 

simplicity, stability and efficiency of numerical implementation [1, 5]. For the quasi-2D 

model, the Vardy-Hwang scheme [6] is a commonly used scheme, (e.g. [7]), which solves 
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the axial direction by the MOC and the radial direction by the finite difference method 

(FDM). The merits of this scheme are well summarized in [5], but it has been proved to 

be very computationally intensive. Zhao and Ghidaoui [8] addressed the inefficiency 

problem of the Vary-Hwang scheme by decoupling the original scheme into two 

tridiagonal systems. This makes it possible to use the quasi-2D model in practical 

pipelines, such as reservoir-pipeline-valve (RPV) systems. Thereafter, Duan, Ghidaoui 

and Tung [9] extended this efficient quasi-2D model to complex pipe systems with 

multiple pipe connections. Many application results have demonstrated that both 1D 

and quasi-2D models, based on the plane wave assumption, give satisfactory results in 

the prediction of pressure history for the design purpose [6, 10, 11]. More recently, 

various commercial computational fluid dynamics (CFD) packages, considering the 

pressure variation along the pipe radius, have been applied successfully to investigate 

transient pipe flows, e.g., transient wave propagation and flow evolution [12], and 

transient wave-blockage interaction [13]. Similarly, the computational efficiency of 

these CFD packages has become the main concern for their extensive applications, 

especially for practical pipeline systems. 

In recent years, the transient analysis is becoming more widely used in many 

high accuracy demanding fields. For example, pipeline defects (e.g., leakage and 

blockage) detection in the UWSS has attracted more attention due to the water and 

energy shortage worldwide. Many methods have been proposed for pipeline defects 

detection, among which the transient-based method [14, 15] is regarded as a promising 

detection approach, because it has the desirable merits of high efficiency, low cost and 
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non-destructive applications. The injected transient wave is modified by pipeline defects 

as it propagates in the pipeline. The wave contains physical information on the size and 

location of these defects, which can be detected inversely based on the modified 

transient wave. Many theoretical and experimental studies [16-28] have successfully 

applied this transient-based method using low-frequency waves (LFW), which mainly 

depends on the longitudinal and plane wave propagating features. Lee, Duan, Tuck and 

Ghidaoui [29] found that LFW have a long detection range, but fault detection using 

LFW suffers from low spatial resolution; whist high-frequency waves (HFW) have the 

opposite features. It is suggested that practical defects detection should involve both 

the LFW and HFW; where LFW is first used to identify potential defective sections, 

followed by the application of HFW in the region of interest to pinpoint the defects [29]. 

However, as the wavelength approaches the diameter of the pipe, radial pressure waves 

will be generated and the plane wave assumption in current 1D and quasi-2D models 

might be violated.  

The full-2D water hammer model, including all terms neglected in current 1D and 

quasi-2D models, is a potential tool for investigating the radial pressure waves excited by 

HFW. The full-2D model was proposed by Mitra and Rouleau [30] to observe the radial 

and axial variations of transient pressure waves caused by valve closures. The full-2D 

model was solved numerically by an implicit matrix factorization method; in this way, the 

2D problem was decomposed into two 1D problems, saving significant computational 

effort. Despite this improvement, the numerical method in [30] still contains 

inefficiencies due to (i) the complexity of coefficient matrixes; and (ii) the application of 
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uniform grids, because very fine grids were needed to capture the detailed physical 

phenomena in the boundary layer near the pipe wall. Recently, a high-order finite 

volume scheme for the full-2D model was developed [31, 32] to investigate the 

properties of HFW in a pressurized water pipeline. However, this previous study was 

limited to relatively idealized flow situations, i.e., inviscid and initially stagnant flows; 

thus, their results mainly provided basic understanding of acoustic wave propagation in 

a water-filled pipeline. Meanwhile, the way of transient generation adopted in this 

previous study was also very simple, and common ways of transient generation, such as 

valve operations in practical RPV systems, were not included and examined. 

In fact, flows in the practical UWSS always have non-uniform (or non-plane) 

velocity profiles due to the existence of viscosity; and in general, transients are 

generated by a change in flowrate due to hydraulic device operations (e.g., valves and 

pumps). Such practical flow situations might have an influence on the generation and 

propagation of radial pressure waves. For example, radial pressure waves were observed 

by Mitra and Rouleau [30] after stopping a laminar flow by valve closures, but the 

generation mechanism and components of these radial pressure waves are not clear 

from their study. Therefore, it is important to investigate the generation mechanism and 

components of radial pressure waves excited in viscous and initially non-static flows 

under various valve operations, which is the main scope of this research. 

This study first addresses the inefficiency problem of the original Mitra-Rouleau 

scheme by: (i) transforming the original scheme into tridiagonal systems; and (ii) 

implementing non-uniform computational grids. The modified efficient scheme is then 
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extended into a typical RPV system to simulate a water hammer event. The efficient 

model is validated by numerical data from the analytical 1D Zielke’s model, which has 

been extensively confirmed by lab experiments [11, 33, 34]. Afterwards, the modified 

and validated full-2D model is used to investigate systematically the radial pressure 

wave behavior in transient laminar pipe flows under different flow perturbations 

induced by various valve operations. Particularly, the generation mechanism and 

detailed components of radial pressure waves are studied and examined in this study. 

Finally, the findings and practical implications of this research are discussed at the end 

of this paper. 

 
MODELS AND METHODS 
 
Full-2D Water Hammer Model Derivation 
 

The 2D non-conservative form Navier-Stokes equations for a compressible 

Newtonian fluid in axis symmetric flow field, written in a cylindrical coordinate system 

[4], are as follows, 
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where t = time; x = axial coordinate along pipe centerline; r = radial coordinate from 

pipe centerline; ρ = fluid density; u′ = axial velocity; v′ = radial velocity; p′ = pressure; μ 
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= dynamic viscosity; κ = volume viscosity; Fx = body force along x; Fr = body force along 

r. 

To derive the full-2D water hammer model from Eqs. (1), two assumptions are 

made herein: 

(1) In classic water hammer problems, the compressibility of the fluid (water) is 

only considered in the continuity equation Eq. (1a). Since water is slightly compressible 

and the pipe wall is rigid in this study, the spatial variation of fluid density ρ in radial and 

axial momentum equations due to the spatial variation of internal pressure can be 

neglected. Meanwhile, the volume viscosity can also be neglected due to this slight 

compressibility of fluid (i.e., water) for this investigation. However, the small spatial 

variation of fluid density ρ in continuity equation should be included since the value of 

wave speed a0 is finite. The equation of state for a slightly compressible fluid is [30] 
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where a0 = wave speed; k = bulk modulus. 

(2) The body forces Fx and Fr are negligible due to the relatively small scales of 

pipe size and pipeline gradient in UWSS focused in this study [1, 4, 5, 30]. 

These two assumptions reduce Eqs. (1) to 
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where ρ0 = mean density of the fluid (water). 

In this study, the above full-2D model is further expressed in dimensionless form 

so as to inspect the principle and physics behind the problem with more general results. 

The chosen dimensionless variables are as follows [30]: u = u′/u0, where u0 is the initial 

average axial velocity; v = v′/u0; p = (p′ – pe′)/ρ0u0a0, where pe′ = pressure at x = 0; τ = 

a0t/R, where R = pipe radius; ξ = x/R; η = r/R. This results in the following dimensionless 

full-2D model, 
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where M = u0/a0 is the Mach number; K = μ/Rρ0a0. 

 
Original Mitra-Rouleau Scheme 
 

Mitra and Rouleau [30] numerically solved the full-2D model in Eqs. (4) by an 

implicit matrix factorization method. In water hammer applications, the values of 

factors M and K on the right-hand side (RHS) of Eqs. (4) are negligibly small compared 

with one unit (i.e., M << 1 and K << 1); thus, terms on the RHS of Eqs. (4) were handled 

explicitly and terms on the left-hand side (LHS) were handled implicitly. The time 

derivatives on the LHS of Eqs. (4) were discretized by the three-point backward 
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difference given by (∂Z/∂τ)n+1 = (3Zn+1 – 4Zn + Zn–1)/2Δτ, where Z = p, u or v; Δτ = size of 

time step; n = n-th time step; and Z(τ, ξ, η) = Z(nΔτ, ξ, η) = Zn(ξ, η). By expressing the RHS 

of Eqs. (4) as R1, R2 and R3, Eqs. (4) were written in matrix form ax = b as 
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where a = coefficient matrix; x = unknown vector consisting of variables at time step 

n+1; b = known vector consisting of variables at time steps n and n–1. Then the 

coefficient matrix a in Eq. (5) was approximately split into two individual coefficient 

matrixes 

 
aaa   (6) 

where aξ = coefficient matrix in the ξ-direction; aη = coefficient matrix in the η-direction. 

aξ and aη are in the following form [30] 
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Substituting Eq. (6) into Eq. (5), it became 

 bxaa =
 (7) 

A two-step algorithm was used to determine the unknown variables pn+1, un+1 

and vn+1 in the vector x. Firstly, they swept in the ξ-direction and solved Eq. (8) to get 

x*. 
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 bxa
* =

 (8) 

where x* = (p* n+1, u* n+1, v* n+1)T was an intermediate vector, in which p* n+1, u* n+1 and v* 

n+1 were intermediate variables. Secondly, they swept in the η-direction and solved Eq. 

(9) to get the unknown vector x = (pn+1, un+1, vn+1)T. 
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In this way, the 2D problem was decomposed into two 1D problems, which 

reduced the computational burden. The spatial derivatives in aξ and aη of Eqs. (8) and (9) 

were approximated by the upwind scheme. 

The whole flow field was spatially discretized into I and J uniform sections in the 

ξ- and η- directions, respectively. Donating the known vector b on the RHS of Eq. (5) as b 
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expressed as 
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where Δξ = spatial step in the ξ-direction; Δη = spatial step in the η-direction; i = i-th 

spatial step in the ξ-direction; j = j-th spatial step in the η-direction. 

Similarly, for the cross located at (iΔξ, jΔη), Eq. (9) could be written as 
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Therefore, the governing equations at fixed (j, n+1) for all inner points along the 

ξ-direction (i.e., i ranges from 2 to I–1) could be written in matrix form as AξX
*= B, 

where X* = [(u*n+1)1,j, (p*n+1)1,j, …, (u*n+1)i,j, (p*n+1)i,j, …, (u*n+1)I,j, (p*n+1)I,j]T = unknown 

vector; B = [(T1
n)2,j, (T2

n)2,j, …, (T1
n)i,j, (T2

n)i,j, …, (T1
n)I-1,j, (T2

n)I-1,j]T = known vector; Aξ is a 

coefficient matrix in the following form 
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 (12) 

where E = 2/3(Δτ/Δξ); F = 1 + 2/3(Δτ/Δξ). 

Similarly, the governing equations at fixed (i, n+1) for all inner points along the 

η-direction (i.e., j ranges from 2 to J–1) could be written in matrix form as AηX = X*, 

where X = [(vn+1)i,1, (pn+1)i,1, …, (vn+1)i,j, (pn+1)i,j, …, (vn+1)i,J, (pn+1)i,J]T = unknown vector; Aη 

is a coefficient matrix in the following form 
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 (13) 
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where Z = 2/3(Δτ/Δη); Y = 1 + 2/3(Δτ/Δη); Vj = 2/3(Δτ/(j–1)Δη). 

Although the 2D problem has been decomposed into two 1D problems, the 

original Mitra-Rouleau scheme is still computationally intensive due to the complexity of 

the two coefficient matrixes in Eqs. (12) and (13). Moreover, it is not convenient and 

practical to capture detailed physics in the boundary layer near the pipe wall by uniform 

grids along the radial direction (from pipe centerline to pipe wall) implemented in the 

original Mitra-Rouleau scheme. 

 
Modified Mitra-Rouleau Scheme 
 

Inspired by the previous work of Zhao and Ghidaoui [8], the efficiency of existing 

scheme for the full-2D model can be enhanced by transforming the original matrixes in 

Eqs. (12) and (13) to two tridiagonal matrixes in Eqs. (14) and (15), which can be solved 

by the LU factorization method efficiently. Meanwhile, the non-uniform computational 

grid (the grid size expressed as Δηj) is also implemented along the radial direction to 

enhance the efficiency and reliability. In general, the application cases of this study 

demonstrate that, for the same expected accuracy and computer environment, 

compared with the original scheme, only about 1/6 of the CPU time and 1/2 of the 

computer memory are needed for the modified scheme.  
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where Wj = 2/3(Δτ/ηj) – 1 – 2/3(Δτ/Δηj); Xj = 1 + 2/3(Δτ/Δηj) + 2/3(Δτ/ηj). 

 
Initial and Boundary Conditions 
 

Then the modified Mitra-Rouleau scheme is extended into a RPV experimental 

system (Fig. 1), with following initial and boundary conditions 

Initial Conditions 
 

The initial flow (τ = 0) in the pipe is a Poiseuille laminar flow. The initial values for 

the axial velocity u, radial velocity v and pressure p are given below 

 ( )  K8;0;12 2 ==−= pvu  (16) 

The initial axial velocity profile along the pipe radius and the area-averaged 

velocity is plotted in Fig. 2. 
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Boundary Conditions 
 

The no-slip condition at the pipe wall (η = 1) is 

 
3;0;0 R

p
vu =




==


 (17) 

The symmetry condition at the pipe centerline (η = 0) is 

 0;0;0 =



==







p
v

u  (18) 

The upstream reservoir (ξ = IΔξ) with constant pressure 

 


K8;0;1 ===



pvR

u  (19) 

Different Operations on the Downstream Valve 
 

To generate transients, the downstream valve is operated in the following two 

patterns: 

(i) Sudden valve closure 

 ( )12 2 −= u  when τ = 0; 0=u  when τ > 0; 
2R

up
+




−=






 (20) 

(ii) Valve oscillation with frequency fin 

 ( )  ( ) 12cos125.0 2 +−=  infu  when τ < τ0; 0=u  when τ > τ0; 
2R

up
+




−=






 (21) 

where τ0 = time duration of the valve oscillation. 

 
MODEL VERIFICATION AND NUMERICAL VALIDATION 
 

The validity of the present code is firstly examined by numerical data from [30]. 

Detailed system parameters of this numerical experiment are listed in Table 1. Note that 

the reflection-free condition is applied to the upstream boundary. An initial Poiseuille 
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laminar flow in the pipe is stopped by a downstream valve (at ξ = 0) closure with closing 

time τ0 = 0.4. The pressure history at the valve for three different radial points is plotted 

in Fig. 3. A good agreement can be observed between numerical data from the present 

code and [30].  

The modified scheme is further extended into a classical RPV water hammer 

experimental system (Fig. 1). Initially, keeping the downstream valve fully open, a 

steady laminar flow with average axial velocity u0 is formed in the pipe. As mentioned, 

transients are caused by various operations on the downstream valve. 

 
Model Verification (Grid Independence Tests) 
 

In the modified Mitra-Rouleau scheme, uniform and non-uniform spatial grids 

are adopted in the ξ- and η- directions, respectively. In transient pipe flows, the 

high-resolution grid is essential for the finite difference scheme to accurately calculate 

hydraulic variables. For this purpose, three different grid sizes, as shown in Table 2, are 

tested to verify the modified full-2D model, in which Nr is the number of non-uniform 

grid along the radial direction. The upstream boundary is a reservoir with constant 

pressure (i.e., Eq. (19)). 

As shown in Fig. 1, transients are caused by a typical operation of sudden 

downstream valve closure. Then pressure along the pipe radius (termed as radial 

pressure) is measured at the valve and the mid-length of the pipe. The area-averaged 

pressure traces are calculated and plotted in Fig. 4. As shown in Fig. 4, the pressure is 

normalized by the steady state pressure head at the downstream valve and the time is 

normalized by the system theoretical period Tth = 4L/a0. The pressure gets convergence 
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as the mesh becomes finer. The result of Nr = 80 demonstrates sufficient accuracy; thus, 

it will be chosen as the computational grid in the numerical validation. 

 
Numerical Validation 
 

The analytical 1D Zielke’s and quasi-2D models for transient laminar flows have 

been widely validated by experimental tests in the literature, for their capability of 

capturing area-averaged pressure head traces [6, 10, 11]. But the two-dimensionality of 

transient pipe flows has not yet well verified due to the difficulty of measuring 

two-dimensional data in experimental tests. Therefore, the modified full-2D model of 

this study is validated herein by the 1D Zielke’s model for modeling the area-averaged 

transient pressure head. Afterwards, the radial pressure waves in transient laminar pipe 

flows are analyzed based on the validated full-2D model in the numerical applications. 

Transients are caused by a sudden downstream valve closure; then radial 

pressure is measured at the valve and the mid-length of the pipe to calculate the 

area-averaged pressure. The area-averaged pressure trace of the full-2D model is plotted 

in Fig. 5. Good agreement between the full-2D model and Zielke's model in both 

pressure amplitude and pressure phase can be observed in Fig. 5. This demonstrates the 

validity of the present full-2D model for modelling transient laminar pipe flows. 

 
NUMERICAL APPLICATIONS 
 

The validated full-2D model is applied to a RPV system (Fig. 1) to investigate the 

generation mechanism and components of radial pressure waves. Three tests are 

conducted, in which transients (fast flow perturbations) are caused by different 
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operations on the downstream valve (specifically, sudden closure for Test 1, low 

frequency perturbation for Test 2, and high frequency perturbation for Test 3). Actually, 

the definitions of low frequency flow perturbation and high frequency flow perturbation 

are system dependent, which will be clarified later for the case study. For the study of 

UWSS, the fluid used in this part is water and the wave speed a0 is assumed to be 1485 

m/s for relatively rigid pipes [1]. The initial condition in the pipe is a Poiseuille flow with 

Re = 100 (Eq. (16) and Fig. 2). 

Because the following results involve high radial modes, there is a need to review 

related fundamental theory herein. Louati and Ghidaoui [31] showed that the radial 

wave number krm for a water-filled pipe can be determined by the no-flux boundary 

condition at the pipe wall J1(αrm) = 0, where αrm = krmR; J1 is the Bessel function of first 

kind of order 1. J1(αrm) = 0 gives αrm = 0, 3.83171, 7.01559, 10.17347, …, etc, then the 

radial wave number krm (krm = αrm/R) and cut-off frequency fm (fm = a0krm/2π) of the m-th 

radial mode can be calculated accordingly. The group velocity Vgm of m-th radial mode is 

given by Eq. (22) and the result for the test system in Table 3 is plotted in Fig. 6 [31]. For 

simplicity of illustration, these high radial modes are defined as mode 1 (M1), mode 2 

(M2), etc., in the following study. 

 
( )

a

kaa
V rm

gm
/

/ 22



 −
=  (22) 

 

Flow Perturbation by Sudden Valve Closure 
 

For Test 1 in Table 3, transients are caused by a sudden and complete 

downstream valve (at ξ = 0) closure at time 0. The temporal variations of pressure at the 
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valve for two radial locations, at the pipe axis paxis (at η = 0) and pipe wall pwall (at η = 1), 

are plotted in Fig. 7. Note that the area-averaged pressure pavg at the valve is plotted for 

convenient comparison. To intuitively observe the spatial variation of pressure in the 

radial direction (validity of the plane wave assumption), the pressure difference Δp 

between the pipe axis and wall (Eq. (23)) is also plotted in Fig. 7. 

 
wallaxis ppp −=  (23) 

Fig. 7 shows that the worst-case moment for the plane wave assumption (i.e., 

largest value of radial pressure difference Δp) is observed at time 0 when the valve is 

suddenly closed. The pressure at the pipe wall pwall remains 0.0 and the pressure at the 

pipe axis paxis leaps to its peak value of 2.0, which is twice the area-averaged pressure 

pavg. This is due to the velocity profile of the initial Poiseuille laminar flow. As shown in 

Fig. 2, the velocities at the pipe axis and pipe wall as well as area-averaged velocity are 2, 

0 and 1, respectively. When the valve is closed at time 0, all the three velocities are 

reduced to 0. Based on the normalized Joukowsky’s equation [35], Δp = –Δu/u0, the paxis, 

pwall and pavg should become 2, 0 and 1, respectively. Because of the existence of the 

relative large pressure variation within the pipe cross section, the radial flux (or radial 

velocity) is formed, and so is the radial pressure waves. Afterwards, both pressure curves 

(paxis and pwall) fluctuate with decreasing amplitude due to the existence of the viscosity.  

It is also noticed that no matter how the radial pressure changes at the valve, the 

area-averaged pressure (black curve in Fig. 7) maintains the constant value of 1.0, which 

is exactly the equivalent pressure information that 1D and quasi-2D models can only 

obtain. 
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The radial pressure profiles at nine time points (i.e., denoted as t1 ~ t9) within one 

period of the pressure fluctuation, as shown in the enlarged view of Fig. 7, are selected 

and plotted in Fig. 8(a). Fig. 8(a) shows that there are two pressure antinodes, where the 

radial pressure fluctuation has the maximum amplitude, locating at the pipe axis (at η = 

0.0) and pipe wall (at η = 1.0). Moreover, a pressure node is observed at η = 0.625, which 

agrees well with the theoretical result of the node location η ≈ 0.627 of M1 for this 

studied case [31, 32].  

To gain an insight into the components of radial pressure waves caused by a 

sudden valve closure, the time domain signal in Fig. 7 is transformed into the frequency 

domain by a fast Fourier transform (FFT) algorithm shown in Fig. 8(b). For clarity, the 

amplitude in Fig. 8(b) is plotted in a logarithmic coordinate. Fig. 8(b) shows that the first 

four frequency peaks of radial pressure waves are 4454, 8315, 12180 and 15740, which 

are consistent with the theoretical cut-off frequency of first four high radial modes in Fig. 

6 (i.e., 4528, 8291, 12022 and 15745 by Eq. (22)) [31, 32]. Note that the group velocity 

for radial pressure waves in cut-off frequency should be 0 (Fig. 6), which means that the 

pressure signals (Fig. 7) measured at the valve would be the superposition of several 

radial standing waves. According to Fig. 8(b), most of the energy is distributed in the 

frequency mode of 4454 (i.e., M1), which also results in the pressure node location at η 

= 0.625. 

Furthermore, the temporal variations of pressure at mid-length of the pipe (i.e., 

at ξ = 25) are plotted in Fig. 9. According to Fig. 9, the wave front arrives at the 

mid-length at time 0.125Tth. Shortly after the wave front, the pressure difference 
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between the pipe axis and pipe wall (i.e., Δp) is approximately equals to 0. To explain 

this, the velocity profiles at the mid-length before (i.e., at 0.120Tth) and after (i.e., at 

0.130Tth) the wave front are plotted in Fig. 10. The result clearly shows that the passage 

of the wave front almost induces a uniform shift in velocity profile across the pipe radius 

[36]. Based on the Joukowsky’s equation [35], the pressure along the pipe radius should 

uniformly jump to 1; and therefore, the wave shortly after the wave front is a plane 

wave and no localized high radial modes are excited. As shown in Fig. 9, this plane wave 

is followed by high radial modes (i.e., waves after 0.130Tth). These high radial modes 

propagating from the downstream valve, with group velocity Vgn < a0 (Fig. 6), should 

arrive later than the wave front (wave dispersion). 

 

Low Frequency Flow Perturbation by Valve Oscillations 
 

For Test 2 in Table 3, transients are generated by periodically oscillating the 

downstream valve (at ξ = 0). During such valve oscillation process, the axial velocity 

profile at the valve is given as u1 = 0.5·[2(η2–1)]·[cos(2πfin1τ)+1] (i.e., Eq. (21)), where fin1 

is the induced flow perturbation (i.e., valve oscillation) frequency. The ratio of fin1 to fr is 

0.2, i.e., fin1/fr = 0.2 < 1, which is defined as low frequency flow perturbation in this study. 

The duration of this perturbation process is 0.125Tth. 

To inspect, the temporal variations of pressure at the valve are plotted in Fig. 11, 

which reveals that the pressure difference between pipe axis and pipe wall (Δp) changes 

periodically during the valve oscillation. The radial pressure profiles for nine time points 

(i.e., t1 ~ t9) within one period of the valve oscillation, as shown in the left enlarged view 

of Fig. 11, is plotted in Fig. 12(a). As is shown in Fig. 12(a), the pressure variation along 
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the radial direction is quite evident. The pressure signal during the valve oscillation is 

transformed into the frequency domain in Fig. 12(b) by a FFT algorithm. The largest 

frequency peak with the value of 1485, which contains the most energy, is the frequency 

of the periodic valve oscillation (fin1 = 0.2fr = 1485 Hz). In addition, the radial modes M1, 

M2 and M3 are also excited, but the energy carried by these high radial modes is 

relatively limited. 

Similar to Test 1, according to Fig. 11, the plane wave assumption experiences 

the worst-case moment at time 0.125Tth when the valve is completely closed. The 

pressure at the pipe axis paxis reaches its maximum value of 2.0, which is twice the 

area-averaged pressure pavg. Then both local pressure curves (i.e., paxis and pwall) 

fluctuate periodically with amplitude damping. The pressure profiles for nine time points 

(i.e., t1 ~ t9) within one general fluctuation, as shown in the right enlarged view of Fig. 11, 

are selected and plotted in Fig. 13(a). It can be seen from Fig. 13(a) that the pressure 

node locates approximatively at η = 0.625. As is shown in Fig. 13(b), the pressure signal 

after the valve closure is also transformed into the frequency domain. Several high radial 

modes (i.e., M1, M2, M3 and M4) are motivated, but most of the energy is trapped in 

the M1, which can explain the location of the pressure node at η = 0.625 in Fig. 13(a). 

Fig. 14 shows the temporal variations of pressure at the mid-length (i.e., ξ = 25) 

of the pipe. Similar with Test 1, no localized high radial modes are excited because the 

passage of the wave front uniformly changes the velocity profile along the pipe radius 

(like Fig. 10). According to Fig. 14, the signal, ranging from 0.125Tth to 0.25Tth, 

corresponding to valve-induced flow perturbation becomes a plane wave. This could be 
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attributed to the relatively limited energy carried by the high radial modes, with an 

order of 100 in comparison with the case of valve oscillation with an order of 103 (see Fig. 

12(b)). 

 

High Frequency Flow Perturbation by Valve Oscillations 
 

For Test 3 in Table 3, the generation mechanism of transients is the same as Test 

2 (i.e., periodic oscillation of the downstream valve), but with a relatively high frequency. 

The axial velocity profile at the valve is given by u2 = 0.5·[2(η2–1)]·[cos(2πfin2τ)+1], where 

fin2 is the valve oscillation frequency. In Test 3, fin2 equals to the radial wave frequency fr, 

i.e., fin1/fr = 1, which is defined as high frequency flow perturbation in this study. The 

time duration of the valve operation is 0.125Tth. 

The variations of pressure with time at the valve are plotted in Fig. 15. According 

to Fig. 15, the pressure difference (Δp) between the pipe axis and pipe wall is much 

larger than that of Test 2. One reason for this is that the valve oscillation frequency (fin2) 

is comparable to the radial wave frequency (fr). Within one period of valve oscillation, 

there is no enough time for the radial wave to influence the whole pressure profile 

across the pipe cross section. Again, the radial pressure profiles for nine time points (i.e., 

t1 ~ t9), within one general period of valve oscillation, as shown in Fig. 15, are plotted in 

Fig. 16(a). This result shows that the pressure node and antinode locate at the pipe wall 

(η = 1.0) and pipe axis (η = 0.0), respectively. This can also be attributed to the relative 

high frequency of valve oscillation compared with radial wave frequency (fr). The 

pressure signal during the valve oscillation is transformed into the frequency domain (Fig. 

16(b)) by a FFT algorithm. It is shown in Fig. 16(b) that most of the energy is distributed 
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in the frequency of valve oscillation (i.e., 7425 Hz). Although the energy trapped in high 

frequency modes is still relatively limited, the value is now much larger than that of the 

Test 2. 

In this test case, the valve is completely closed at time 0.125Tth. Unlike Test 1 and 

Test 2, both pressure curves (paixs and pwall) fluctuate disorderly after the complete valve 

closure as shown in Fig. 15. The pressure profiles for nine time points within one general 

period, as shown in the enlarged view of Fig. 15, after the valve closure are plotted in Fig. 

17(a). According to Fig. 17(a), it indicates that two pressure nodes (i.e., around η = 0.35 

and 0.80) exist along the radial direction, which are close to the theoretical pressure 

node locations of M2 (i.e., η ≈ 0.343 and 0.787) [31]. To explore the components of 

radial pressure waves in Fig. 17(a), the pressure signal after the valve closure is 

transformed into the frequency domain and plotted in Fig. 17(b). The obtained result 

reveals that several high radial modes (i.e., M1, M2, M3 and M4) are excited. Moreover, 

the amplitude of M2 is comparable to the amplitude of M1. In other words, the energy 

almost trapped equally in M1 and M2. Therefore, both M1 and M2 are dominant among 

high radial modes. This can explain the disorder of both pressure curves (paxis and pwall) 

in Fig. 15 after the complete valve closure under the condition of high frequency valve 

oscillation. 

The temporal variations of pressure at mid-length of the pipe (i.e., at ξ = 25) are 

plotted in Fig. 18. Similar with Test 1 and Test 2, no localized high radial modes are 

excited. However, the amplitude of the radial pressure waves, coming from the 

downstream valve, is larger than that of the Test 1 and Test 2. This is because more 
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energy is distributed into the high radial modes, which are now in an order of 101 or 102 

for Test 3 in Fig. 16(b), during the valve oscillation. 

 

RESULTS DISCUSSION 
 

The results and findings above demonstrate that radial pressure waves can be 

excited by different operations on the downstream valve. A recent research conducted 

by Louati and Ghidaoui [31] has observed that radial pressure waves cannot be excited if 

the wave generator has the same diameter with the pipe. This is due to the inviscid and 

initially stagnant flow condition considered in [31]. Under such idealized flow condition, 

if the transient source size equals to the pipe diameter, the generated transient pressure 

will be independent of the pipe radius and propagate as a plane wave (M0). However, 

another generating mechanism of radial pressure waves has been identified for viscous 

and initially non-static flows in the present study, even though the downstream valve, 

having the same size as the pipe diameter, is used as the transient generator. That is, the 

non-uniform change in the initial velocity profile forms pressure gradients along the 

radial direction, which thereafter becomes the driving force of the formation of radial 

flux and radial pressure waves during transient flow process. In the practical UWSS, 

flows usually distribute with certain axial velocity profiles along the radial direction; thus, 

radial pressure waves caused by the non-uniform change in initial velocity profiles could 

occur and should also be considered in applications. From this perspective, the results of 

this study may be more close and useful to practical situations. 

Furthermore, it has also shown that radial pressure waves may have very 

different behavior under different transient generation conditions (i.e., valve operations). 
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Specifically, for Test 1 with the typical operation of sudden and complete valve closure, 

high radial modes can be excited and most of the energy is carried by M1. As a result, a 

pressure node exists at η = 0.625 along the radial direction, which is useful to the better 

selection of pressure measurement locations during practical transient applications. For 

Test 2, during the relatively low frequency flow perturbation, the dominant energy is 

carried exactly by the valve oscillation (flow perturbation) frequency. After the complete 

valve closure at time 0.125Tth, the amplitude of each excited high radial mode stays 

almost the same with Test 1. This implies that the valve oscillation with a low frequency 

of fin1 (e.g., fin1 = 0.2fr in this study) has a limited influence on the energy distribution 

among high radial modes. In Test 3, which is used for investigating the relatively high 

frequency flow perturbation, most of the energy is carried by the perturbation 

frequency during the valve oscillation. This is similar with Test 2. However, after the 

complete valve closure at time 0.125Tth, the amplitude of M2 is almost identical to the 

M1 (see Fig. 17(b)), which indicates that the valve oscillation with the frequency of fin2 

(i.e., fin2 = 1.0fr) redistributes the energy among different high radial modes. Moreover, 

the pressure amplitude measured at the mid-length of the pipe is larger than that of Test 

1 and Test 2. 

The obtained results have also demonstrated that the maximum pressure 

(especially the local pressure at the pipe axis), caused by the fast valve closure or high 

frequency valve oscillation, can be much larger than the maximum pressure predicted by 

the 1D and quasi-2D models where a plane wave assumption is imposed. For viscous 

laminar pipe flows, the axial velocity is distributed parabolically along the radial 
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direction (i.e., Fig. 2) because of the no-slip boundary condition. The maximum velocity 

occurs at the pipe axis and it is twice the area-averaged velocity. The present full-2D 

model can give the true localized pressure variation along the radial direction. However, 

the pressure in the 1D and quasi-2D models can only be obtained from a perspective of 

the area-averaged quantity. Therefore, the traditional 1D and quasi-2D models might 

underestimate the destructive effects of the water hammer due to neglecting the 

influence of radial pressure waves during the complex transient process.  

Consequently, the development and results of the efficient full-2D model in this 

study are useful to the design of qualified pipelines and related accessories for pipe 

system safety with regard to the pressure prediction, and to the utilization of transient 

waves for pipe diagnosis with regard to the selection and analysis of different wave 

modes and frequencies. 

 

CONCLUSIONS 
 

This paper investigates systematically the radial pressure wave behavior in 

transient laminar flows under different flow perturbations by valve operations. Firstly, 

the inefficiency problem of the current full-2D model has been addressed in this study 

by proposing a more efficient numerical scheme. Then the modified efficient full-2D 

model is extended into a RPV system to simulate the whole process of the water 

hammer, which is validated by the 1D analytical Zielke’s model. With the efficient full-2D 

model, the generation mechanism and components of radial pressure waves excited by 

different valve operations are investigated extensively.  
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The obtained results have demonstrated that radial pressure waves can be 

induced from the non-uniform change in the initial velocity profile under valve 

operations, which forms pressure gradients along the radial direction. After transient 

generation, the existence of radial pressure gradients becomes the driving force of the 

formation of radial flux and radial pressure waves. This formation mechanism and results 

should be considered and included in the practical transient analysis (including transient 

design and utilization), since the flows in practical water piping systems are usually 

viscous and non-static. The results analysis also revealed that the generated radial 

pressure waves are composed of different high radial modes. Moreover, the 

valve-induced flow perturbations (with different frequencies) may influence the energy 

distribution among different high radial modes. Specifically, the results of this study 

indicate that most of the energy is carried by M1 for cases of flow perturbations by 

sudden valve closure and low frequency valve oscillation, while for high frequency flow 

perturbation, the energy is almost entrapped equally in M1 and M2. 

From the results and findings of this study, it is demonstrated that the developed 

efficient full-2D model has made it possible to understand the radial pressure wave 

behavior in transient laminar pipe flows. This model may be useful to the design of 

qualified pipeline systems, as well as helpful to more accurate detection of defects 

(leakage and blockage) in pipelines. Finally, it is also noted that only initial laminar flows 

and valve-based transient generation are considered in current study, and further 

investigation will be required for turbulent flows and other complex transient 

phenomena in the future work. 
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NOMENCLATURE 
 

a0 wave speed 

fin the valve oscillation frequency 

fr radial wave frequency  

Fr body force along r 

Fx body force along x 

I total number of spatial grids in the ξ-direction 

i i-th spatial step in the ξ-direction 

J total number of spatial grids in the η-direction 

j j-th spatial step in the η-direction 

K μ/Rρ0a0 

k bulk modulus 

krm radial wave number of the m-th radial mode 
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L total length of the pipe 

M Mach number u0/a0 

Nr the grid number along the pipe radius 

n n-th time step 

p′ pressure 

p dimensionless pressure (p′ – pe′)/ρ0u0a0 

pavg area-averaged pressure 

paxis pressure at the pipe axis 

pwall pressure at the pipe wall 

pe′ pressure at x = 0 

R pipe radius 

r radial coordinate from pipe centerline 

Re Reynolds number 

Tth system theoretical period 4L/a0 

t time 

u0 the initial average axial velocity 

u′ axial velocity 

u dimensionless axial velocity u′/u0 
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Vgm group velocity of m-th radial mode 

v′ radial velocity 

v dimensionless radial velocity v′/u0 

x axial coordinate along pipe centerline 

Δη spatial step in the η-direction 

Δξ spatial step in the ξ-direction 

Δτ size of time step 

η dimensionless radial coordinate r/R 

κ volume viscosity 

μ dynamic viscosity 

ξ dimensionless axial coordinate x/R 

ρ fluid density 

ρ0 mean density of the fluid (water) 

τ dimensionless time a0t/R 

τ0 time duration of the valve oscillation 

ω frequency in radius per second 
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Figure Captions List 
 

Fig. 1 A reservoir-pipeline-valve (RPV) experimental system 

Fig. 2 The initial velocity profile (solid line) and area-averaged velocity (dashed 

line) for laminar pipe flows 

Fig. 3 Pressure time-history at the downstream valve for three different radial 

points 

Fig. 4 Pressure time-history for various grid density at (a) the downstream 

valve; (b) the mid-length of the pipe 

Fig. 5 Pressure time-history at (a) the downstream valve; (b) the mid-length of 

the pipe 

Fig. 6 Cut-off frequency (dashed line) and group velocity for each mode 

Fig. 7 The temporal variations of pressure at the downstream valve 

Fig. 8 (a) Radial pressure profiles at nine time points within one period of the 

pressure fluctuation; (b) the pressure signal after valve closure in the 

frequency domain 

Fig. 9 The temporal variations of pressure at mid-length of the pipe 

Fig. 10 The change of velocity profile (before and after the wave front) at 

mid-length of the pipe 

Fig. 11 The temporal variations of pressure at the downstream valve 

Fig. 12 (a) Radial pressure profiles at nine time points within one period of the 
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valve oscillation; (b) the pressure signal during the valve oscillation in the 

frequency domain 

Fig. 13 (a) Radial pressure profiles at nine time points within one period of the 

the pressure fluctuation after the valve closure; (b) the pressure signal 

after the valve closure in the frequency domain 

Fig. 14 The temporal variations of pressure at mid-length of the pipe 

Fig. 15 The temporal variations of pressure at the downstream valve 

Fig. 16 (a) Radial pressure profiles at nine time points within one period of the 

valve oscillation; (b) the pressure signal during the valve oscillation in the 

frequency domain 

Fig. 17 (a) Radial pressure profiles at nine time points within one period of the 

the pressure fluctuation after valve closure; (b) the pressure signal after 

the valve closure in the frequency domain 

Fig. 18 The temporal variations of pressure at mid-length of the pipe 
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Table Caption List 
 

Table 1 System parameters of the numerical experiment conducted by Mitra and 

Rouleau [30] 

Table 2 System parameters of numerical experiments for grid independent tests 

(Re = 100) 

Table 3 System parameters of three numerical applications (Re = 100) 
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Fig. 1 A reservoir-pipeline-valve (RPV) experimental system 
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Fig. 2 The initial velocity profile (solid line) and area-averaged velocity (dashed line) for 

laminar pipe flows 
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Fig. 3 Pressure time-history at the downstream valve for three different radial points 
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Fig. 4 Pressure time-history for various grid density at (a) the downstream valve; (b) the 

mid-length of the pipe 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
-1.5

-1

-0.5

0

0.5

1

1.5

(a)

Time (4L/a
0
)

P
re

ss
u
re

 (
g
h

/a
0
u

0
)

 

 

N
r
=50 N

r
=80 N

r
=100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
-1.5

-1

-0.5

0

0.5

1

1.5

(b)

Time (4L/a
0
)

P
re

ss
u
re

 (
g
h

/a
0
u

0
)

 

 

N
r
=50 N

r
=80 N

r
=100



Journal of Fluids Engineering – ASME 

 

 FE-17-1786, Duan 45 

 

 

  

Fig. 5 Pressure time-history at (a) the downstream valve; (b) the mid-length of the pipe 
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Fig. 6 Cut-off frequency (dashed line) and group velocity for each mode 
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Fig. 7 The temporal variations of pressure at the downstream valve 
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Fig. 8 (a) Radial pressure profiles at nine time points within one period of the pressure 

fluctuation; (b) the pressure signal after valve closure in the frequency domain 
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Fig. 9 The temporal variations of pressure at mid-length of the pipe 
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Fig. 10 The change of velocity profile (before and after the wave front) at mid-length of 

the pipe 
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Fig. 11 The temporal variations of pressure at the downstream valve 
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Fig. 12 (a) Radial pressure profiles at nine time points within one period of the valve 

oscillation; (b) the pressure signal during the valve oscillation in the frequency domain 
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Fig. 13 (a) Radial pressure profiles at nine time points within one period of the the 

pressure fluctuation after the valve closure; (b) the pressure signal after the valve 

closure in the frequency domain 
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Fig. 14 The temporal variations of pressure at mid-length of the pipe 
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Fig. 15 The temporal variations of pressure at the downstream valve 
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Fig. 16 (a) Radial pressure profiles at nine time points within one period of the valve 

oscillation; (b) the pressure signal during the valve oscillation in the frequency domain 
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Fig. 17 (a) Radial pressure profiles at nine time points within one period of the the 

pressure fluctuation after valve closure; (b) the pressure signal after the valve closure in 

the frequency domain  
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Fig. 18 The temporal variations of pressure at mid-length of the pipe 
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Table 1 System parameters of the numerical experiment conducted by Mitra and 

Rouleau [30] 

a0 (m/s) R (m) μ/ρ0 (m2/s) Re τ0 Δτ = Δξ = Δη 

1325 1.25e-02 3.97e-05 100 0.4 0.05 
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Table 2 System parameters of numerical experiments for grid independent tests (Re = 

100) 

a0 (m/s) R (m) L (m) μ/ρ0 (m2/s) τ0 Nr 

1325 0.2 10 3.97e-05 0 50 

1325 0.2 10 3.97e-05 0 80 

1325 0.2 10 3.97e-05 0 100 
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Table 3 System parameters of three numerical applications (Re = 100) 

Test No. L/R a0 (m/s) μ/ρ0 (m2/s) τ0 Valve operation 

1 50 1485 1e-6 0 Sudden closure 

2 50 1485 1e-6 0.125Tth oscillation fin1 = 0.2fr 

3 50 1485 1e-6 0.125Tth oscillation fin2 = 1.0fr 
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