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1. Introduction 20 

In 2009, Typhoon Morakot wrought catastrophic damage on Taiwan, leaving 461 people dead and 21 

192 others missing, with a cost of roughly 110 billion New Taiwan dollars (NTD), which is close 22 

to 3.3 billion United States dollars (USD) in damages. The extreme amount of rain triggered 23 

enormous mudslides and flooding throughout southern Taiwan. Typhoon Morakot not only tested 24 

how the Taiwan government could relieve the victims of a severe disaster, but also drew attention 25 

to the need to improve the safety of infrastructure to reduce the impact of disasters. There are over 26 

twenty thousand bridges located across Taiwan. As bridges have an important role in facilitating 27 

transportation, damage to bridges by disasters not only threatens the safety of users, but can also 28 

disrupt traffic flows and cause residents to be locked in place. 29 

 30 

Cracking in concrete bridges is an inevitable problem resulting from natural processes and can 31 

invite spectacular failure of the entire bridge. Cracks not only provide access to harmful and 32 

corrosive chemicals inside concrete, but also allow water and deicing salts to penetrate through 33 

bridge decks, which can damage superstructures and bridge esthetics. Routine inspections are 34 

widely adopted and are carried out manually by certified bridge inspectors every two years, as 35 

stipulated in the National Bridge Inspection Standard by Federal Highway Administration (FHWA) 36 

in USA. Inspection results are mainly based on the inspectors’ observations and visual assessment 37 

[1, 2]. However, such bridge detection methods have several limitations. The inspection process is 38 

laborious, time-consuming, and influenced by the subjective behavior of individual inspectors. The 39 

visual inspection only provides qualitative information on defects. Moreover, finding experienced 40 

bridge inspectors poses a challenge for the construction industry, which is now facing a pressing 41 
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shortage of experienced and highly trained inspection personnel [2, 3]. 42 

 43 

In order to overcome these issues, considerable research has been conducted in an effort to develop 44 

automated bridge crack inspection tools to reduce the field work required for inspectors [4]. For 45 

example, Oh and Jang et al. (2009) suggest certain image processing algorithms for detecting and 46 

tracing cracks combined with the use of a robot mechanism [5]. Zhu et al. (2010) propose an 47 

automated bridge condition assessment system with a focus on detecting large-scale bridge 48 

concrete columns [6]. Yu et al. (2012) designed a robot which can detect fissures underneath a 49 

bridge. They provided a safe and effective machine vision technology to detect the bridge [7].  Bu 50 

et al. (2014) developed an automatic bridge inspection approach by employing Support Vector 51 

Machines to classify cracks based on wavelet-based image features. The researchers tested 50 52 

different image samples, and both ‘complex’ and ‘normal’ images were considered. The resulting 53 

recognition accuracy rates of the crack ranged from 74% to 93.26%, varying according to the 54 

different image types, training set types, and the feature extraction methods used [8]. Li, et al. 55 

(2014) also put forward a method consisting of crack extraction, an electronic distance 56 

measurement algorithm, and an image segmentation algorithm to detect cracks [3]. Further 57 

increasing the reliability and accuracy of the results remains an ongoing effort in this research area. 58 

The algorithm and the restricted conditions employed in this study contribute to this effort to 59 

improve crack detection. The objective of this study is to develop an automatic bridge crack 60 

detection method based on self-organizing map optimization through image processing technology. 61 

Several stages of image recognition for bridge cracks are utilized to process 216 images of 62 

randomly selected bridges located in northern Taiwan. The model presented here can improve the 63 

accuracy of bridge crack inspections and reduce the cost of labor. 64 
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2. Bridge Crack Inspection 65 

Degradation often occurs during the final stage of reinforcement concrete structures’ life cycle. 66 

The various degrees of maintenance and service conditions of structures in different natural 67 

environments derive from disparate degradation rates and consequences. In Taiwan, bridges very 68 

easily deteriorate due to high humidity, frequent earthquake loading, and overloading by heavy 69 

vehicles [9]. The acceleration of degradation in reinforced concrete structures can be attributed to 70 

natural factors and human factors. The natural factors causing cracks in and damage to the 71 

structures mainly include strong winds, storm erosion, earthquakes, flooding, and other force 72 

majeure, while human factors may be the improper or wrong use of the structures, such as vehicle 73 

overload and irregular maintenance. The cracks on surfaces often show the initial fatigue reaction 74 

of the bridge components and forecast the failure of reinforced concrete structures [10]. Once the 75 

crack emerges, the degradation of the entire structure will follow in a short time, reducing in the 76 

overall strength and durability of the structure. Thus, in order to extend the service life of concrete 77 

structures, timely monitoring and remedial management are extremely necessary to avoid more 78 

serious deterioration. 79 

 80 

Current bridge crack inspection systems, implementation methods, and rating records for detection 81 

vary among countries all over the world. The Federal Highway Administration (FHWA) specifies 82 

four condition states to evaluate the elements of a bridge: Good, Fair, Poor, and Severe [1], and 83 

also employs a scale of 0-9 and NA to rate the National Bridge Inventory (NBI) conditions [2]. 84 

The Japan Highway Public Corporation classifies the performance degradation of bridge elements 85 

as I, II, III and IV [11]. However, the degradation level should be considered first before rating. 86 

For instance, when a crack exists in components, the crack shape, amplitude, and interval are key 87 
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aspects that should be evaluated to assign more accurate ratings. A standardized bridge inspection 88 

system has not yet been formulated in Taiwan. However, local bridge authorities have developed 89 

their distinctive and practical assessment criteria and rating record modes. 90 

 91 

In Taiwan, the predominant nondestructive evaluation method currently employed is visual 92 

inspection conducted by professional inspectors, with its relative advantages in cost and speed. 93 

The DERU evaluating method is a visual inspection assessment approach to bridge management 94 

developed by the Taiwan Area National Freeway Bureau, which divides component degradation 95 

into the degree of degradation (Degree), the scope of degradation (Extend), the importance of the 96 

degradation phenomenon to components (Relevancy) and maintenance urgency (Urgency) four 97 

parts with employing 4 levels (shown in Table 1) to evaluate [9]. The DERU criterion enables 98 

bridges to be evaluated in as short a time as possible, which greatly enhances inspection efficiency. 99 

However, visual inspection to a great extent relies on the naked-eye observation of the component 100 

appearance to judge the degradation degree and scope. Or in other words, this method completely 101 

depends on the subjective evaluation of the inspector. Considering the number of bridges in total, 102 

the increasing number of bridges damaged by natural disasters in Taiwan in particular, the 103 

manpower shortage affecting related bridge management institutions, and the difficulty in 104 

training learners with relevant professional knowledge, carrying out regular, effective bridge 105 

inspections has become an enormous challenge. Especially after serious natural disasters, the 106 

workload of inspectors is even more onerous. Thus, the results of visual inspection are quite biased 107 

due to the different inspecting habits of individuals, and often have questionable reliability. 108 

Table 1 DERU Rating System criteria 109 

 0 1 2 3 4 
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D Not applicable Good Fair Poor Severe 

E Not applicable <    10%  <    30%  <   60%    < 

R Not applicable Marginal Small Medium Large 

U Not applicable Routine 

Maintenance 

3 years 1 year Urgent 

Maintenance 

 110 

3. Data Collection 111 

This research employs a digital camera to capture concrete bridge cracks in order to develop an 112 

image recognition program and process image identification. Before shooting, the choice of the 113 

bridges included in the sample for the present study was based on the DERU visual inspection 114 

results. Ten concrete bridges in northern Taiwan are selected, and the crack images were randomly 115 

chosen from the artificial field shooting database. According to the manual of highway 116 

maintenance which was published by the Taiwan Highway Administration, routine highway 117 

maintenance needs to be conducted every two years [12]. Thus the bridges that have been 118 

maintained recently were filtered out from this research. According to the DERU bridge detection 119 

assessment criteria issued by the Join Engineering Consultants, when the D value is greater than 2 120 

(Degree value refers to the severity degree of bridge degradation, from grade 1 to grade 4), the 121 

damage intensity will be visible in appearance and maintenance is needed. 122 

 123 

The training samples used to research and develop the image recognition system of this study are 124 

the close-range images of concrete bridge cracks documented by the handheld digital cameras. 125 

Field environmental conditions must be taken into careful consideration when shooting onsite to 126 

obtain the images for training purposes. Since image processing is necessary before recognition, 127 

greater uniformity and consistency of the image acquisition conditions is desired to avoid errors 128 

in the image processing. The intensity of illumination in shooting is the major element influencing 129 
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the digital camera photos. Changes in the sun position give rise to a variety of natural illuminations 130 

at each time point. Additionally, the intensities of illumination generated by natural light and 131 

artificial light are entirely different, specifically the illumination intensity of artificial light is more 132 

than that of natural light by several-fold. 133 

 134 

Generally speaking, due to the light and shadow, the color of a concrete structure crack is deeper 135 

and darker compared to the color of the surrounding surface. Natural light and auxiliary light is 136 

critical in affecting the black shadow area of the cracks, as well as reflected light sources on the 137 

concrete surfaces, all impacting the system recognition results. Because of the uncontrollability of 138 

the climate, seasons, and time with respect to the nature light in the field, more easily controlled 139 

artificial lighting is employed to assist with shooting. In order to reduce the effects of natural light 140 

in this study, a natural light shield was applied to completely eliminate the uncontrolled factors of 141 

natural light. Setting the camera flash and fixing the shooting angle play a significant role in 142 

standardizing the artificial light source. Thus the taking lens was fixed to be perpendicular to the 143 

degradation structure plane in this study. 144 

 145 

According to the user manual of the digital camera used in this study, the size of each color image 146 

is 3088×2056 pixels, which is more convenient for storage and clear enough for identifying the 147 

subjects. Excessively high-resolution photos may cause redundancy of image details in the training 148 

process. Thus, the sample images obtained for this study are all based on the above conditions. 149 

The guiding principle of the crack recognition program in this research is to facilitate image 150 

processing from the color difference between cracks and bridge surface for computer recognition. 151 

In order to put this program into practice, the classification rule must be set up through the training 152 



8 

 

procedure. After screening the bridges with respect to the Taiwan Bridge Management System 153 

(TBMS), ten bridges were randomly selected as the training sample with 20-30 pictures for each 154 

bridge. For the training stage, special attention was paid to shoot on-site such that photos would 155 

only contain a main line crack while avoiding shots of multiple cracks existing at the same time. 156 

The 216 sequentially numbered image samples were acquired assuming the above constraints. 157 

From this set of 216 images a random sample of 40 images was selected, with 36 used as the 158 

training set and the other 4 comprising the recognition set. For the purpose of demonstrating that 159 

the program in this study can be effectively applied in practice, the case study portion of the current 160 

research used 18 images from the image samples of Hsichou Bridge in Taiwan and assessed by 161 

the recognition program. 162 

 163 

4. Development of Image Recognition and Processing Model  164 

The proposed image recognition and processing model was developed on the basis of the concepts 165 

of self-organizing feature map optimization (SOMO), fuzzy logic control, and hyper-rectangular 166 

composite neural networks (HRCNNs). The SOMO was developed by Su et al. in 2004 [13] and 167 

has been applied to several areas such as construction sequencing for building renovation and 168 

secant pile walls [14, 15]. The model development in this study starts with the creation of HRCNN 169 

integrated with fuzzy logic. The HRCNN is derived fundamentally from artificial neural networks 170 

(ANN) using the rule extraction concept to achieve machine learning and pattern classification. 171 

Adopting the supervised decision-direct learning (SDDL) algorithm, the HRCNN classifier can 172 

attain a 100% classification rate [16]. Assuming that the output is expressed as Out(x), the output 173 

function is written as: 174 
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where Out(x) belongs to Rp →{0, 1};   is a small positive real number; x = (x1, . . . ,xp)T stands 179 

for an input pattern; Mji and mij ∈ R are the adjustable synaptic weights of the jth neuron of the 180 

hidden layer; p is the dimension of the input variable. Once x is in one of the J hyper-rectangular 181 

areas, Out(x) = 1; otherwise, Out(x) = 0. The values of the corresponding synaptic weights in the 182 

J hidden nodes of a trained HRCNN are interpreted as IF-THEN rules: 183 
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With fuzzy logic added, the mechanism for HRCNN is subject to change where mj(x) is employed 185 

to replace Eq. (4) so as to achieve measurement of similarity between the inputs and the hyper-186 

rectangular area. Hence, Eq. (4) is changed to: 187 
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The output is re-written as: 192 
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where wj is the weight of the jth neuron of the hidden layer; sj is the sensitivity; and  is an 194 

adjustable value. The fuzzy based HRCNN (FHRCNN is capable of yielding linearly weighted 195 

rules when compared to Eqs. (2) and (9). That is because mj(x) is more flexible and can be either 196 

Gaussian or a Step function. Therefore, Eq. (5) is subject to modification by: 197 
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where HRj ∈  [mj1, Mj1] × ⋯ ×  [mjp, Mjp]; the output values are obtained based on the 199 

computation of a center average defuzzifier. FHRCNN requires repeated adjustment for each 200 

parameter set to achieve optimal classification. First, let each parameter set in FHCRNN 201 

correspond to a weight factor located in [l1,h1] × ⋯ ×  [ln,hn], where each vector represents a 202 

potential answer to the optimal parameter set. After randomly initializing the vectors and selecting 203 

the values for the initial weight vector, wj(0), the winner neuron j* can be found at time k based on 204 

the minimum distance Euclidean criterion; that is: 205 
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where 𝑀 × 𝑁 represents the network size, and f (w) is the objective function of the optimization 208 

problem. In acquiring weight adjustment for j* and its neighbors, the SOMO algorithm applies: 209 
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Both the  1 and  2 are learning rates and the ranges for them are 0 <  1 ≤ 0.3 and 0 <  2 ≤ 213 

0.2. n = (n1, … , nn)T is the noise vector of the new weight vector. The final step is to perform a 214 

certain number or pre-determined number of iterations in an attempt to yield the winner j* 215 

containing the optimal parameter set for FHRCNN.  216 

 217 

With the proposed machine learning model based on SOMO and FHRCNN now described, the 218 

next section discusses the image processing of bridge cracks.  219 

 220 

5. Imaging Processing 221 

The image-processing steps performed in this study are as follows. First, apply image grayscaling 222 

to process the original color image. Second, use the high-pass filter to remove the low-frequency 223 

noise in the images to highlight the characteristics of a crack. Third, separate the subject and 224 

background through the binary process and eliminate unnecessary noise with labeling. Finally, 225 

employ MATLAB to develop a Local Directional Pattern (LDP) algorithm to capture crack 226 
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features and mark the crack part in the original image with red to verify the recognition accuracy. 227 

 228 

5.1 Image Identification Preprocessing 229 

The sampling system (e.g. taking lens types, shooting angle) and the spot environment (e.g. light 230 

source, uneven illumination) will greatly influence the data obtained from the original image, and 231 

thus can contribute to generating image noise. If the image process is conducted without denoising 232 

and simplifying, the risk of recognition difficulty or error is increased. Hence, before the 233 

binarization of the input image, preprocessing of the original image is necessary. The 234 

preprocessing techniques applied in this study include multi-image averaging, spatial domain 235 

filtering, frequency domain filtering, and other methods [17]. 236 

 237 

In this study, the natural light shelter and camera flash were applied before sampling to eliminate 238 

the uneven illumination problem, so the pre-processing of the original image is relatively simple. 239 

After collecting a large number of images, pre-processing on the computer can be performed to 240 

strengthen the information conveyed by the images and to convert them into a more suitable format 241 

and type for electronic machine recognition. The exact steps are described as below.  242 

 243 

5.2 Grayscale Process 244 

Objects in an image can be easily identified by the human eye, but for electronic machines, the 245 

simpler the color and composition of the image are, the quicker the identification of objects will 246 

be. The RGB (Red, Green and Blue) three-color parameters compose a color image, with 256 247 

values (0-255) for each parameter to represent different shades. Performing recognition on the 248 

original color image will bring redundant computational efforts and reduce operation efficiency. 249 
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The purpose of image grayscaling is to convert the color image of 24-bit RGB tricolor ranging 250 

from 0 to 255 into a black-and-white image of 8-shade gray value [18]. Hence, the time resource 251 

and memory usage space of the machine in operation can be dramatically reduced, which also 252 

avoids the redundancy of expression. 253 

 254 

Additionally, the original pixel size of the images obtained in this study is 3920x2204, which is 255 

too large to be applied during the recognition function and is unfavorable to the identification 256 

procedures. Thus the pixel value must be adjusted to approximately one million to be more 257 

efficiently assessed by the recognition software. The image grayscale formula is:        258 

Ｙ＝0.333Ｒ+0.333Ｇ+0.333Ｂ                                       (14) 259 

Where,Ｙ is brightness,Ｒ is red value,Ｇ is green value andＢ is blue value. 260 

Although the digital images in this research are of concrete surfaces with simple colors, brown 261 

dust and green liverworts attached to the structure surface are still represented in the form of 24-262 

bit RGB in color images. Therefore grayscaling remains necessary in this study to store the images 263 

in eight shades. 264 

 265 

5.3 Filter Processing 266 

A common digital signal processing tool with two significant functions can be called a filter. One 267 

function of filtering is to select a specific signal frequency to determine what content will or won’t 268 

make it through to output. Another function is to suppress the interference of noise. The filtering 269 

in this study was primarily applied to suppress the noise in the images, which helps to reduce the 270 

sharpness of the grayscale image, smooth edges, eliminate noise, and highlight the crack features 271 
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[19]. 272 

 273 

5.4 Binarization 274 

Binarization is an image segmentation technique. Easy storage, processing, and identification are 275 

three advantages of the binary image, which vastly contribute to capturing the specific information 276 

of the image in the image recognition processing. Through binary processing, the decreased signal 277 

complexity and obvious black-and-white color difference of the image will reduce the error rate 278 

in subsequent location, and accelerate the speed of image processing [20]. 279 

 280 

Binarization generates a dichromatic image, i.e., binary processing partitions the grayscale of an 281 

image into two values, which is also called the grayscale threshold. After setting a grayscale 282 

threshold (N) in the image, all pixel points in the image are examined. If the grayscale value of the 283 

pixel is less than the threshold, let it be a dark point (N=0), otherwise, it is a bright point (N=255). 284 

A binary image b(i,j) will be obtained after setting all pixel points, as shown in Eq. 15.  285 

     
otherwise

Nyxfif
jib
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0

1
),(                                  (15) 286 

In the binary process, properly setting the threshold is extremely critical. Improper setting will 287 

affect the image results. Two methods are often used to obtain the threshold: manual setting and 288 

deriving one from the average image grayscale values. Manual setting may cause distortion of the 289 

key part, and need to be reset when processing different image. And the result average threshold 290 

method in this study is also limited. 291 

 292 

This study applies its own alternative method to choose the threshold. Namely, a statistical analysis 293 
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is performed upon the pixel values to find the grayscale peak value (N), which is set as the value 294 

for the binary threshold. Statistics for the pixel values are shown in Figure 1. Repeated tests reveal 295 

that if the threshold value of binarization is set in strict accordance with the N values as the peak 296 

value in Figure 1, the dark points will be insufficient to clearly display the fracture of the main 297 

crack, as too many values just below the threshold are not activated, creating a noncontiguous 298 

array of points largely indistinguishable from noise, rather than a distinct crack line. Thus, it was 299 

necessary to gradually reduce N values manually in 1 pixel increments. An effective decreased 300 

value was identified at 10 pixels, and thus the threshold value was set to be N-10. A binary image 301 

is acquired after binarization. However, in addition to highlighting the crack in the concrete surface, 302 

noise is expressed in the image as well. Thus, the LABEL is employed to remove noise 303 

 304 

Figure 1. Statistical histogram of grayscale pixel values  305 

 306 

 307 

5.5 Crack Features Capture 308 

As a result of binary processing, the pixel points of both cracks and non-cracks all have the 309 
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potential to be assessed as a dark point whose grayscale threshold is 0. To reduce recognition errors, 310 

the directivity of the meandering and uneven main crack needs to be used to capture its features. 311 

Jabid et al. (2010) put forward the LDP (Local Directional Pattern) algorithm to calculate the 312 

gradient values of image edges in different directions and find out the characteristic values of the 313 

pixels in various directions. This algorithm is often applied to identify specific edges in an image, 314 

which be used for example to automatically distinguish the walking postures between men and 315 

women [21], to perform detailed facial expression recognition [22] and perform local face 316 

recognition [23]. Even in circumstances with noise or non-monolithic light sources, the gradient 317 

values obtained from LDP remain invariant. 318 

 319 

The 8-bit binary code of LDP can calculate gradient values of image edges and is encoded to 320 

describe the insensitive curve, sideline and corner. The algorithm principle can be interpreted as 321 

comparing the gradient values in different directions. In order to obtain gradient values, a Kirsch 322 

mask is used to calculate the gradient values of eight surrounding directions (M0-M7) after 323 

randomly selecting a pixel point as a center. Then, the eight corresponding gradient values m0-m7 324 

represent the importance in the relative directions. The image often has a strong reaction in certain 325 

directions when analyzed according to this method. After obtaining the eight gradient values, the 326 

k main directions need to be determined in order to generate the LDP code. Let the kth large value 327 

|Mj| be 1, and the other (8-K) values be 0. The Mk is the kth large value after Kirsch masking. The 328 

calculation is shown in Figure 2. 329 

 330 
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331 

 332 

Figure 2. Diagram of LDP algorithm  333 

 334 

Since binary processing is already applied to the image sample at an earlier stage, the LDP 335 

calculation just needs to aim at the dark point whose threshold is 0 in the figure. In this study, the 336 

mask calculation was conducted with respect to the eight directions (east, northeast, north, 337 

southwest, northwest, west, south and southeast) stretching out from the center to encode the eight 338 

gradient values obtained. The coding method consists of sorting the eight directions according to 339 

their absolute value, then setting the value of the first three directions as 1 and the last 5 as 0. As a 340 

result, the main crack line with bending directionality can be steadily strengthened, while the noise 341 

without directions is removed. 342 

 343 

5.6 Direction Detection of Objective figure 344 

Images processed according to the above procedures are then ready to be recognized by machine 345 
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vision. This paper employs the imaging direction detection method proposed by Stock and 346 

Swonger to obtain the block directional image of the cracks, i.e. segmenting the crack into several 347 

square blocks. In each block, the main direction in the crack block is calculated using local crack 348 

line information (i.e. the grayscale values obtained from the image processing steps). The 349 

calculation method needs to employ a 9 x 9 mask, as shown in Figure 3. Let Si to be the sum of 350 

pixel label i’s grayscale values in the mask, where i = 0, 1,… , 7. Sp refers to the minimum of all 351 

the values of Si, while Sq means the maximum among the values of Si, where, p, q = 0, 1,… , 7. C 352 

represents the grayscale value of the mask center. The d is the final determined direction. Then: 353 
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 356 

Figure 3. The 9×9 mask applied by Stock and Swonger [24]  357 
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An advantage of the method is that eight directions can be detected, while a weakness is that the 359 
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size of the mask is fixed, which may lead miscalculation from a small amount of noise determined 360 

by four grayscale values in each direction. For the purpose of increasing the accuracy rate of the 361 

recognition technique, 36 images were randomly selected from the set of 216 for training and the 362 

other 4 comprising the recognition set. The red line marked along the crack of original image is 363 

regarded as the training target and used to control accuracy. Then the red-marked cracks were set 364 

with the desired outputs (crack is 1, non-crack is 0), and FHRCNN was employed to perform the 365 

classification. After conducting LDP calculations on each image, the 9×9 mask was used. The 366 

input data is the representative surrounding points whose LDP label is more than 0. Thus, the 367 

dimension size of the input data is 81 (as shown in Eq. 16). 368 

 369 

This study randomly selected 18 images to be the training data set, and each image has 370 

approximately 1 million points. 5000 stochastic points are chosen to be representative points. 371 

Hence the FHRCNN recognition rates are obtained, where the training accuracy rate is 100% and 372 

the test accuracy rate is 81%. Two values are generated in the results: true positive and false 373 

positive, which refer to the recognition accuracy rate of crack points and non-crack points 374 

respectively. Both of the values will affect the judgment of the crack’s state. During the training 375 

process, strong light, less sharp cracks, excessively thin crack lines, and noise will all influence 376 

the accuracy rate. Therefore, considering that not all images meet the research requirements, clean 377 

images without too much noise are chosen for training.  378 

 379 

6. Case Implementation 380 

In order to verify that the recognition program can be used for practical bridge inspection, the case 381 

study executed in the present research is the severely damaged Hsichou Bridge (shown in Figure 382 
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4.) selected from the Taiwan Bridge Management System. Manual shooting was conducted in the 383 

field and then qualified images were selected to perform the recognition test. An example of an 384 

image analyzed for this case study is shown in Figure 5. 385 

 386 

Figure 4. Hsichou Bridge  387 

 388 

Figure 5. Image of cracks on the Hsichou Bridge  389 
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50 pictures of the cracks on the Hsichou Bridge were taken for this study. 36 pictures were selected 390 

according the previously described filtering rules used to verify the accuracy rate. The process is 391 

presented below. After the grayscale and high-pass filtering processes, the image shown as figure 392 

6 is converted as shown in figure 7. 393 

 394 

The peak value corresponding to the grayscale value of the Figure 7 was calculated with the pixel 395 

statistic tool. A grayscale peak value of 133 was obtained, as shown in Figure 8. Then 122 (133-396 

10=122) was set as the binarization threshold to conduct binary processing and obtain the image 397 

shown as Figure 9. However, except for the crack, numerous black miscellaneous points need to 398 

be removed using Labeling. This step is followed by applying the LDP algorithm to highlight the 399 

directional characteristics of the crack. In this way, the image shown as Figure 10 can be obtained.  400 

 401 

Figure 6. The image of the cracks of Hsichou Bridge 402 
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 403 

Figure 7. The image after the grayscale and high-pass filtering processes 404 

 405 

 406 

Figure 8. Grayscale histogram for Figure 5.9 407 
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 408 

Figure 9. The image after the binarization     409 

 410 

Figure 10. The image after the LDP algorithm 411 

 412 

The next step is to mark the red line along with the crack in the original image as shown in Figure 413 

11. Note that the red line must cover the main crack line to ensure the recognition results. 414 
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 415 

Figure 11. The original image with red line 416 

 417 

 418 

Figure 12. The crack recognition result 419 

The recognition results: True positive: 0.893; False positive: 0.909 420 

 421 
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In the image shown in Figure 12, the recognition rate of the points representing the crack is 89%, 422 

while that of the points referring to the non-crack is approximately 91%. After performing the 423 

statistical treatment on all samples of the Hsichou Bridge, the success rate of the recognition 424 

program researched and developed by this study is 89% or more, which is 8% higher than the 425 

accuracy of the test sample group (81%). Thus this recognition program can effectively and 426 

reliably identify concrete bridge cracks. Other bridge crack detection technologies have image 427 

recognition accuracy rates averaging between 74% to 96%, depending on the different image types, 428 

training set types, and the feature extraction methods [4-8] used. Thus the results of the current 429 

study demonstrate performance comparable to other state-the-art methods tested in previous 430 

studies.  431 

 432 

7. Conclusions 433 

Though visual inspection of bridges in Taiwan is relatively economical, this laborious and time-434 

consuming method is easily influenced by the subjective behavior of individual inspectors. The 435 

automatic image recognition technique developed by this paper is aimed at effectively and 436 

efficiently identifying the cracks in concrete bridges using machine vision, rather than traditional 437 

human judgment, substituting subjective efforts with objective testing results. 438 

 439 

This study selected appropriate bridges from the Taiwan Bridge Management System (BMS) and 440 

selected samples of appropriate images taken by a hand-held digital camera. To control the 441 

intensity of the illumination parameters, this study used artificial light as the only light source in 442 

the shooting process by shielding the cracks from natural light. Further image processing was 443 

performed in this study to ensure that the ultimately transformed color images could be quickly 444 
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analyzed by the machine for crack recognition. which is described below. To do so, the color image 445 

is first converted to the 8-bit grayscale image through grayscaling. Then a high-pass filter is applied 446 

to strengthen the crack edge in the image. Next the grayscale image is converted into simpler black-447 

and-white image through binarization. The fourth step removes the noise with labeling. Fifthly, 448 

crack characteristics are extracted through the Local Directional Pattern (LDP) algorithm. Finally, 449 

training to obtain a satisfactory recognition rate was performed using the FHRCNN classification 450 

method, which would result in one of two values, true positive and false positive, which represent 451 

the accuracy rates in recognizing crack and non-crack points respectively. Quantifying the crack 452 

dimensions can be also achieved if the photo scale is set to be a constant shooting distance. 453 

 454 

The accuracy rate reached up to 81% after training the recognition program in this research. In the 455 

case study, the accuracy rate in recognizing the Hsichou Bridge cracks reached 89%. In another 456 

words, the results of this research demonstrate that the computer can successfully recognize the 457 

cracks through converting the image data into numerical values. The high identification ability of 458 

the recognition program in this study ensures it would have great credibility when applied in 459 

practice. The standardized computation of the recognition results is also able to overcome the 460 

inconsistency in applying criteria that arises from subjectivity of human visual judgment. When 461 

severe natural disasters would otherwise especially necessitate bridge inspections by a great deal 462 

of proficient inspectors, compared with other traditional artificial inspection methods, the image 463 

recognition program combined with the image acquisition criteria featured in this study is more 464 

economical and efficient. Since the initial onsite inspection would only require the use of a digital 465 

camera and light shelter, the time and cost in training inspectors to use such equipment can be 466 

immensely reduced. 467 
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 468 

Nevertheless, the recognition technique in the original images only directs to adjust the field 469 

conditions to highlight the cracks. The surfaces of many bridges, especially those affected by 470 

natural disasters or construction, the dirt, stains, and construction character markings can 471 

contribute to the misrecognition of cracks. As for the artificial light, though the unnecessary 472 

reflected light is absorbed by the black paper in this study, the hard light can wipe out some tiny 473 

cracks, resulting in increased recognition difficulty. Thus future research could apply artificial 474 

lighting that is more adjustable in intensity to avoid crack disappearance. A follow-up study could 475 

focus on improving the image processing to overcome the extra effects beyond the noise. Though 476 

the scope of this paper’s research is limited to concrete bridges, after adjusting the relative 477 

parameters in the same image processing, this recognition technique could also be applied to other 478 

concrete buildings (e.g. general houses, walls, roads, etc.). In addition, this technique currently can 479 

only judge whether the crack exists or not. If the data of various crack shapes and characteristics 480 

can be collected to set up a crack database, the recognition efficiency would be greatly enhanced. 481 

Furthermore, as the initial acquisition of the images for this paper mainly relies on manual work, 482 

the steep ruggedness of the terrain and fast-flowing rivers at the inspection sites all bear upon the 483 

safety of the inspectors. If a fully-automated camera system (e.g. a remote machine for shooting 484 

the images) can be developed to work with the image recognition technique presented in this paper, 485 

some bridges that are difficult for inspectors to reach can be successfully inspected. To obtain 486 

crack directionality, this study employs the Stock and Swonger calculation method. A limitation 487 

of this method, however, is that a small amount of noise may generate misjudgment. In addition, 488 

the influence of the single reference point is quite large, considerably increasing the possibility of 489 

misrecognition. Thus, future research could explore finding a method to reduce calculation error 490 
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based on the Stock and Swonger calculation method, such as using smoothing processing to 491 

smooth the curve and angle. Future research could also further investigate the effects of different 492 

image gray-scale distributions on the prediction results. 493 

 494 
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