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ABSTRACT 

Reduction of vehicle emissions is a major component of sustainable transportation 

development. The promotion of green transport modes is a worthwhile and sustainable 

approach to change transport mode shares and to contribute to healthier travel choices. In this 

paper, we provide an alternate weibit-based model for the combined modal split and traffic 

assignment (CMSTA) problem that explicitly considers both similarities and heterogeneous 

perception variances under congestion. Instead of using the widely-adopted Gumbel 

distribution, both mode and route choice decisions are derived from random utility theory using 

the Weibull distributed random errors. At the mode choice level, a nested weibit (NW) model 

is developed to relax the identical perception variance of the logit model. At the route choice 

level, the recently developed path-size weibit (PSW) is adopted to handle both route 

overlapping and route-specific perception variance. Further, an equivalent mathematical 

programming (MP) formulation is developed for this NW-PSW model as a CMSTA problem 

under congested networks. Some properties of the proposed models are also rigorously proved. 

Using this alternate weibit-based NW-PSW model, different go-green strategies are 

quantitatively evaluated to examine (a) the behavioral modeling of travelers’ mode shift 

between the private motorized mode and go-green modes and (b) travelers’ route choice with 

consideration of both non-identical perception variance and route overlapping. The results 

reveal that mode shares and route choices from the NW-PSW model can better reflect the 

changes in model parameters and in network characteristics than the traditional logit and 

extended logit models. 
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1 INTRODUCTION 

Transportation is a major cause of vehicular emissions. Transportation consumes million liters 

of fossil fuel daily, resulting in not only severe congestion but also air pollution, greenhouse gas 

(GHG), and consequently global warming. These adverse impacts have prompted the national 

government in many countries to promote “go-green” transport modes such as non-motorized 

modes (e.g., bicycle) and public transit (e.g., metro, tram, bus, etc.) to keep the environmental 

costs low and to help travelers make healthier travel choices, while accommodating the increasing 

travel demands. 

To quantitatively evaluate the effectiveness of go-green transport policies, we need a sound 

behavioral model of travelers’ mode shift between the private motorized mode and go-green modes 

as well as travelers’ route choice with consideration of both non-identical perception variance and 

route overlapping. A widely used approach is the combined travel demand model (e.g., Boyce, 

2007; Briceño et al., 2008; Szeto et al., 2012; Kitthamkesorn et al., 2016), which provides a 

rigorous quantitative evaluation of different go-green promotion policies and a tractable 

computational tool in the network equilibrium framework. More specifically, the behavioral mode 

shift and route change can be effectively addressed by using the combined modal split and traffic 

assignment (CMSTA) model, which is a special case of the combined travel demand model that 

considers mode choice and route choice simultaneously. Based on different assumptions and 

applications, various CMSTA models have been developed in the transportation literature to model 

the mode choice and route choice made by travelers. A host of researchers (e.g., Florian, 1977; 

Florian and Nguyen, 1978; Abdulaal and LeBlanc, 1979; Oppenheim, 1995; Cantarella, 1997; Wu 

and Lam, 2003; García and Marín, 2005) has provided different modeling approaches to 

formulate the CMSTA problem. These formulations include mathematical programming (MP) 

(Florian and Nguyen, 1978; Abdulaal and LeBlanc, 1979; Oppenheim, 1995), variational 

inequality (VI) (Florian, 1977; Wu and Lam, 2003; García and Marín, 2005), and fixed 

point (FP) (Cantarella, 1997) for jointly determining the mode and route travel options. The 

early models (e.g., Florian, 1977; Florian and Nguyen, 1978; Abdulaal and LeBlanc, 1979) 

adopted a stochastic mode choice (i.e., random utility model) and combined it with a 

deterministic route choice (i.e., user equilibrium (UE) model). However, there seems to be 
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an inconsistency between the two travel choices (i.e., using a deterministic UE 

to characterize route choice decisions while adopting a stochastic discrete 

choice model to describe mode choice decisions). To overcome this behavioral 

inconsistency, Cantarella (1997) and García and Marín (2005) provided the option to 

combine the stochastic mode choice model with either the UE model or the 

stochastic user equilibrium (SUE) model, while Oppenheim (1995) and Wu and Lam 

(2003) adopted the multinomial logit (MNL) model for modeling both mode choice and route 

choice decisions in the network equilibrium framework (i.e., integrating random utility model 

within the network equilibrium approach to model the congestion effect). The main difference 

among these models is the modeling approach. Oppenheim (1995) provided a MP formulation, 

Wu and Lam (2003) and García and Marín (2005) used a VI formulation, and Cantarella (1997) 

adopted a FP formulation. 

Although the behavioral inconsistency problem has been resolved, the MNL model 

has two known drawbacks that stems from its independently and identically distributed (IID) 

assumptions with the Gumbel random error distribution: (1) its inability to handle similarities 

among alternatives and (2) its inability to handle non-identical perception variances among 

alternatives. At the mode choice level, the MNL model cannot handle the mode similarity (e.g., 

physical attributes and operating policies) (Ben-Akiva and Lerman, 1985) and the difference in 

mode perceived utility or disutility. At the route choice level, the MNL model cannot consider the 

route overlapping and route-specific perception variance (Sheffi, 1985). Recently, Kitthamkesorn 

et al. (2016) adopted the nested logit (NL) for mode choice and the cross nested logit (CNL) model 

for route choice model to handle the mode similarity and route overlapping, respectively.  Both 

NL and CNL models used a two-level tree structure to handle the independence assumption (i.e., 

similarity among the available modes that share the same upper nest in the NL model and route 

overlapping in the CNL model). However, both NL and CNL models used the Gumbel distribution 

as the random perception error term, which requires the identical variance assumption in order to 

obtain an analytical probability expression. Hence, the CMSTA model developed by 

Kitthamkesorn et al. (2016) still cannot consider the non-identical perception variance in both 

mode choice and route choice levels. One possibility is to adopt the multinomial probit (MNP) 



4 

model to overcome both shortcomings inherited by the IID Gumbel distribution (e.g., Meng and 

Liu, 2012). However, the MNP model does not have a closed-form probability expression, which 

poses computational difficulty since solving the MNP model requires intensive computation, e.g., 

Monte Carlo simulation (Sheffi and Powell, 1982), Clark’s approximation method (Maher, 1992), 

or numerical method (Rosa and Maher, 2002). 

In this paper, we develop an alternate weibit-based CMSTA model. Instead of the widely used 

Gumbel random error distribution, the proposed CMSTA model is based on the Weibull random 

error distribution. At the mode choice level, a nested weibit (NW) model is developed from the 

copula framework (Nelsen, 2006). Its nested structure handles the mode similarity while the 

Weibull distributed random error considers the mode-specific perception variance. At the route 

choice level, the recently developed path-size weibit (PSW) model is adopted to handle both route 

overlapping and route-specific perception variance. An equivalent mathematical programming 

(MP) formulation for the combined NW-PSW model is provided with some solution properties. It 

should be noted that MP formulation requires more assumptions (e.g., separability, differentiability, 

and symmetry of link cost functions, additivity of route cost structure, separable demand functions, 

etc.) compared to VI and FP. According to Cantarella et al. (2013, 2015, 2016), FP is the most 

flexible formulation among the three formulations as it can cope with a wider range of operational 

issues, including separable and non-separable (or asymmetric) link cost functions, additive and 

non-additive route cost structures, separable and non-separable demand functions, deterministic 

and stochastic choice models, single-user and multi-user classes, and uni-modal and multi-modal 

assignment problems. However, convergent solution algorithms available to FP formulation are 

very limited. Most algorithms rely on the method of successive averages (MSA) based on link 

flows or link costs (Cantarella et al., 2015, 2016), which are known to suffer from slow 

convergence when highly accurate solutions are required. This is partly due to the non-availability 

of an objective function for performing a line search step, which is known to be an important 

component of solution algorithms to many mathematical formulations (Chen et al., 2013). On the 

contrary, the development of a MP formulation for the weibit-based CSMTA model provides the 

following benefits:  

(1) The optimality conditions directly provide the equivalency between the MP formulation 

and the weibit-based mode choice and route choice probabilities. This is similar to the Beckmann 

transformation used as the objective function for the user equilibrium MP formulation (Beckmann 
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et al., 1956) and its relationship to the Kuhn-Tucker conditions. These conditions are readily 

interpretable and easily understandable. For details, readers are directed to Boyce (2016) for the 

interpretation of the Kuhn-Tucker optimality conditions.  

(2) Given that the MP is a convex program, many convergent algorithms are readily available 

for solving the weibit-based CMSTA model. A widely use algorithm for solving the combined 

travel demand models (e.g., including the combined distribution and assignment problem, the 

combined modal split and traffic assignment (CMSTA) problem, and the elastic demand traffic 

equilibrium problem) is the Evans’ algorithm (Evans, 1976), also known as the partial linearization 

algorithm (Patriksson, 1994). Computational results conducted by LeBlanc and Farhangian (1981) 

revealed the partial linearization algorithm performed better than the complete linearization of the 

Frank-Wolfe algorithm suggested by Florian et al. (1975) and Florian and Nguyen (1978). Recently, 

Ryu et al. (2017) adapted the gradient projection (GP) algorithm for solving the CMSTA problem 

and demonstrated the superiority of GP algorithm over Evans’ algorithm.  

(3) Since the MP is a convex program, the objective function can be used not only to determine 

a suitable search direction and a suitable step size in a typical iterative solution algorithm, but also 

used as a stopping criterion to monitor the convergence of the algorithm. 

In addition, many researchers have adopted the MP approach to model different applications, 

including advanced discrete choice models in a network equilibrium framework (e.g., cross-nested 

logit SUE model with fixed and elastic demand (Bekhor and Prashker, 1999; Kitthamkesorn et al., 

2016); paired combinatorial logit SUE model with fixed and elastic demand (Bekhor and Prashker, 

1999; Ryu et al., 2014); generalized nested logit SUE model (Bekhor and Prashker, 2001); C-logit 

SUE model with fixed and elastic demand (Zhou et al., 2010; Xu and Chen, 2013); path-size logit 

SUE model (Chen et al., 2012); weibit-based SUE model with fixed and elastic demand 

(Kitthamkesorn and Chen, 2013, 2014; Kitthamkesorn et al., 2015), spatially correlated logit 

model in the combined distribution and assignment problem (Yao et al., 2014)), and several 

emerging technological applications such modeling the range anxiety of electric vehicle users 

using a path-constrained traffic assignment model (Wang et al., 2016), public charging stations 

with a combined distribution and assignment model for capturing the travel demand distribution 

of plug-in hybrid electric vehicles (He et al., 2013), ridesharing as a new mode choice option in a 

network equilibrium framework (Bahat and Bekhor, 2016), just to name a few. Suffice to say, the 

MP formulation, despite the need to make many mathematically convenient assumptions compared 
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to VI and FP formulations, it has its own appeal as reflected by numerous applications in 

integrating advanced discrete choice models and modeling emerging technologies within a 

network equilibrium framework. 

The remainder of this paper is organized as follows. A list of notation is provided in section 2. 

Section 3 describes the weibit-based models for both mode choice and route choice. Specifically, 

a new nested weibit (NW) model is developed for mode choice, and a path-size weibit (PSW) 

model is adopted for route choice. Section 4 provides the MP formulation and solution properties 

of the NW-PSW model, and solution procedure for solving the NW-PSW model. Section 5 

provides several numerical experiments to illustrate the features of the weibit-based CMSTA 

model and its application to evaluate green transportation policies. Finally, some concluding 

remarks are provided in Section 6. 

 

2 LIST OF NOTATIONS 

This section provides a list of notations used in this study unless specified otherwise. The 

notations are classified into three group as follows. 

Indices 

A: a set of links  

IJ :  a set of origin-destination (O-D) pairs 

ijU :  a set of upper nests between O-D pair ij IJ  

ijuM : a set of transportation mode alternatives under the upper nest iju U  between O-D 

pair ij IJ  

ijumR  : a set of routes in mode m ijuM   under the upper nest iju U   between O-D pair 

ij IJ  

Variable 

ijm : the Gumbel distributed random error of mode m ijuM  between O-D pair ij IJ  

ijm : the Weibull distributed random error of mode m ijuM  between O-D pair ij IJ  

ij

umr : the Weibull distributed random error of route ijumr R  in mode m ijuM  under the 

upper nest iju U  between O-D pair ij IJ  
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ijmV : the deterministic (observed) utility of mode m ijuM  between O-D pair ij IJ  

ij

umrg  : the travel cost on route ijumr R   in mode m ijuM   under the upper nest iju U  

between O-D pair ij IJ  

ijq : the travel demand between O-D pair ij IJ  

ij

umq : the travel demand of mode m ijuM  in nest iju U  between O-D pair ij IJ  

ij

umrf  : the traffic flow on route ijumr R   in mode m ijuM   under the upper nest iju U  

between O-D pair ij IJ  

a : the travel cost on link a A  

Parameters 

iju : the specific parameter of nest iju U  between O-D pair ij IJ  

ij

um  : the Weibull location parameter of mode m ijuM   under the upper nest iju U  

between O-D pair ij IJ  

ij

um : the Weibull shape parameter of mode m ijuM  under the upper nest iju U  between 

O-D pair ij IJ  

ij

umr : the path-size factor on route ijumr R  in mode m ijuM  under the upper nest iju U  

between O-D pair ij IJ  

 

3 WEIBIT-BASED MODELS 

In this section, we provide some background on the nested logit (NL) model and develop the 

nested weibit (NW) model for mode choice. We also provide some background on the recently 

developed path-size weibit model for route choice.  

 

2.1 Nested logit model 

The NL model was developed to partially relax the independence assumption of the 

multinomial logit (MNL) model (Ben-Akiva and Lerman, 1985). It uses a two-level tree structure 

to account for the similarities among the alternatives. Using modes as the alternatives, Fig. 1 shows 
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the mode alternatives ijum M  sharing the same upper nest iju U  between origin-destination (O-

D) pair ij IJ   are correlated (Marzano and Papola, 2008). The random utility maximization 

(RUM) model of the NL model can be presented as an additive form: 

ijm ijm ijmU V = + , , ,iju ijm M u U ij IJ    , (1) 

where ijmV  is the deterministic utility, and ijm  is the Gumbel distributed random error with the 

marginal cumulative distribution function (CDF) 

( )exp ijm

ijm
F e





−
= − , (2) 

and the joint CDF 

exp

iju
ijm

iju

ij ijuu U m M

H e




−

 

  
  = −
     

  , (3) 

 0,1iju    is the upper-nested-specific parameter, which can be considered as a degree of 

correlation between alternatives (Ben-Akiva and Lerman, 1985).  A smaller iju  indicates a higher 

correlation between modes under nest u. When iju  equal to 1, the NL model collapses to the MNL 

model.  

 

 

Fig. 1. Tree representations of the MNL and NL models  

 

The NL probability can be derived from (Ben-Akiva and Lerman, 1985) 

( )

( )

Pr , , , ,

Pr , , , ,

ij

m ijm ijm ijn ijn iju ij

ij

ijm ijn ijm n iju ij

P V V n m m M u U ij IJ

V V n m m M u U ij IJ

 

 

= +  +      

= − +       
 (4) 
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( ).., ,.. ,ij ij

m m ijm ijmP H d 
+

−

= 
 

(5)

 

where 
ij

mH   is the partial derivative of the joint CDF with respect to (w.r.t.) ijm  . Note that the 

negative sign is added when the joint survival is used. Then, the NL probability can be expressed 

as 

1

1 1
exp exp

1
exp

iju

iju

ijt

ij ijt

ijm ijn

n Miju ijuij

m

ijs

t U s M ijt

V V

P

V





 



−



 

    
       
     =

  
   
   



 

, , ,iju ijm M u U ij IJ    . (6) 

 

 

2.2 Nested weibit model 

Although the NL model can relax the independent issue, it still encounters the identical 

perception variance issue, where each mode alternative has the same and fixed perception variance 

of 
2 6  (Marzano and Papola, 2008). To overcome this drawback, we develop a nested weibit 

(NW) model from a copula viewpoint (Nelsen, 2006) as follows. Recall that the joint Gumbel 

distribution for the NL model can be expressed in Eq. (3), and its marginal CDF is presented in Eq. 

(2). Let ijmu  be the marginal CDF. Thus, the random error can be presented as      

( )ln lnijm ijmu = − − . (7) 

Using the inverse method (see Nelsen, 2006), we have the copula by substituting Eq. (7) in Eq. (3) 

(e.g., Bhat, 2009), i.e., 

( )
1

exp ln

iju

iju

ij iju

ijm

u U m M

C u





 

  
 = − − 

    

  . (8) 

Now consider the Weibull distributed random error of mode m between O-D pair ij whose CDF is  

( )1 exp
ijm ijmF = − − . (9) 

Then, the marginal survival function of the weibit model can be expressed as 

( )exp
ijmijm ijmu F = = − . (10) 
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Substituting Eq. (10) into the copula in Eq. (8), we have a joint Weibull survival function 

( )
1

exp

iju

iju

ij iju

ijm

u U m M

H




 

  
 = −  

    

  . (11) 

The NW RUM model can be presented as a multiplicative form: 

ijm ijm ijmU V = ,  , ,iju ijm M u U ij IJ    . (12) 

The NW probability can be derived from 

( )

( )

Pr , , , ,

Pr , , , , .

ij

mr ijm ijm ijn ijn iju ij

ijm ijm ijn ijn iju ij

P V V n m m M u U ij IJ

V V n m m M u U ij IJ

 

 

=       

=       
 (13) 

Using Eq. (5), we have 

( ) ( ) ( )

1

1 1 1
1

0

exp .

iju

ijv

iju iju ijv

iju ij ijv

ij

ij

m ijm ijl ijn ijm

l M v U n M

u U

P d




     

−

+
−

  



       = −           

  
 

(14)

 

Substituting Eq. (13) into Eq. (14) gives 

( ) ( ) ( )

1

1 1 1
1

0

exp .

iju

ijv

iju iju ijv

iju ij ijv

ij

ij

m ijm ijl ijm ijm ijn ijm

l M v U n M

u U

P V V V V d




   

−

+
− − −

  



       = −           

  
 

(15)

 

Then, we have the NW probability expression: 

( ) ( )

( )

1
1 1

1

iju

iju iju

iju

ijt

ijt

ij ijt

ijm ijn

n Mij

m

ijs

t U s M

V V

P

V



 





−

− −



−

 

 
 
  =

 
 
  



 

, , ,iju ijm M u U ij IJ    . (16) 

Following the Weibull distribution variance (see Kitthamkesorn and Chen, 2013 for more details), 

the NW model has a mode-specific perception variance as a function of ijmV  as follows: 

( ) ( )
2 2

ij

m ijmV = ,  , ,iju ijm M u U ij IJ    . (17) 

Equation (17) is the result of assuming the shape parameter and location parameter of the Weibull 

distribution as 1 and 0, which leads to the exponential distribution with its mean equals to the 

standard deviation. Hence, a larger deterministic term value would lead to a higher perception 
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variance. However, one can incorporate the shape and location parameters in the NW model similar 

to that in Kitthamkesorn and Chen (2013) for modelling flexibility.  

Consider the three-mode example in Fig. 1. We assume that ijmV  for auto, transit, and bike 

are 4, 2.5, and 1, respectively. Without loss of generality, we compare the MNL, NL, and NW 

models under the go-green and go-gray scheme (i.e., middle tree structure in Fig. 1) by setting the 

model parameters as 1iju =  for the auto mode, and varying iju from 0.25, 0.5, and 1 for the transit 

and bike modes that share the upper nest. Table 1 presents the choice probability for all modes of 

each model. Some observations for the models are summarized as follows: 

• The mode shares of the three modes (auto, transit, and bike) for the three models (MNL, NL 

and NW) satisfy conservation (i.e., the sum of the three mode choice probabilities for all values 

of iju equals to 1.0). 

• The MNL model gives the same mode choice probability for all values of iju , while the NL 

model and NW model give different results. As iju  for the transit and bike modes increases, 

both NL and NW models give a higher probability to the transit and bike modes.  

• When 1iju = , the NL model gives identical results as those in the MNL model (i.e., the NL 

model collapses to the MNL model). However, this is not the case for the NW model since the 

two models use different random error distributions (Gumbel for MNL and NL and Weibull 

for NW). 

• On the other hand, the NW model collapses to the multinomial weibit (MNW) model (Castillo 

et al., 2008) when 1iju = , i.e., 

( )

( )

1

1

ij

ijmij

m

ijs

s M

V
P

V

−

−



=


, ,ijm M ij IJ   . (18) 

• The logit models seem to give a higher probability on the go-green mode choice compared to 

that of the NW model. This is because the MNL and NL models assume the same and fixed 

perception variance for all modes.  

 

Table 1: Mode choice probability for the go-green and go-gray scheme 
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iju 0.25 0.5 0.75 1 

Model Auto Transit Bike Auto Transit Bike Auto Transit Bike Auto Transit Bike 

MNL 0.786 0.175 0.039 0.786 0.175 0.039 0.786 0.175 0.039 0.786 0.175 0.039 

NL 0.817 0.181 0.001 0.814 0.177 0.009 0.803 0.174 0.023 0.786 0.175 0.039 

NW 0.614 0.376 0.010 0.598 0.347 0.055 0.569 0.334 0.097 0.533 0.333 0.133 

 

Next, we examine the impact of adding more utility to transit and bike using  iju = 0.75 

(i.e., column 3 in Table 1). Three scenarios are created by adding an incentive of 0.25, 0.5, and 

1.0 to the utility of transit and bike as shown in Table 2. Recall the base utility ijmV  is 2.5 for 

transit and 1 for bike. For scenario 1, the new utility with an incentive of 0.25 would be 2.75 

(2.5+0.25) for transit and 1.25 (1+0.25) for bike. Similarly, the new utilities are 3 and 1.5 for 

scenario 2 with an incentive of 0.5, and 3.5 and 2 for scenario 3 with an incentive of 1, 

respectively. The results show that both transit and bike modes receive a higher probability as the 

incentive increases. The MNL and NL models seem to be more sensitive to the incentive than the 

NW model. This is because both logit models have the fixed perception variance of 
2 6  while 

the NW model has the perception variance as a function of the deterministic utility (see Eq. (17)).  

Note that there exists a similar probability increasing pattern in the transit and bike modes 

for both MNL and NL models. This is because the lower nest of the NL model is similar to that 

of the MNL model. It is not sensitive to the additive utility due to the fixed and same perception 

variance (i.e., only concern with the utility difference in computing the probability) as shown in 

Fig. 2. The NL probability pattern for the auto mode does not have such a problem since the 

logsum propagates from the lower nest is sensitive to the additive utility. On the other hand, the 

NW model gives different mode choice probability patterns for each additional unit of incentive. 

The mode choice in the lower nest is the MNW model. The mode-specific perception variance 

can be calculated from Eq. (17), where a higher utility is associated with a larger perception 

variance. When propagating the MNW probability to the upper nest, we can represent it as an 

inverse of the summation of mode utility in the lower nest. For example, we can show from this 

go-green and go-gray scheme as 
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( )

( ) ( ) ( )

( )

( ) ( ),

, ,

1 1

111 1
1

,

transit bike

transit bike transit bike

auto auto

auto

auto transit bike
auto transit bike

V V
P

V V
V V V



 

− −

−−
− − −

= =
  +

+ + 
 

, (19) 

where 

( ) ( )
,

, ,

1
1 1

,

transit bike

transit bike transit biketransit bike transit bikeV V V


 

−
− − 

= + 
 

. (20) 

 

To further explore the difference between the NL and NW models, we consider the direct 

elasticity and cross elasticity. Let ij

mqx  be an attribute q in the deterministic utility ijmV , where 

0

ij ij ij

ijm q mq

q

V x = + . The direct elasticity describes the effect of a change in the attribute ij

mqx  of 

mode m on the probability of choosing mode m, and the cross elasticity describes the effect of a 

change in ij

nqx  of mode nm on the probability of choosing mode m. Obviously, the direct and 

cross elasticities of the NW model are different from those of the NL model as presented in Table 

3. There are two main differences between the elasticities of the two models. First, only the 

attribute ij

nqx  and the probability 
ij

mP  play a key role in the elasticity in the NL model.  The 

elasticity of the NW model, on the other hand, includes not only the attribute  and the 

probability , but also the deterministic utility . This is because the NL model is based on 

an exponential function while the NW model is based on a power function. Second, the sign of 

the elasticity is different between the NL and NW models. This indicates that the deterministic 

utility  of the NL model could be different from that of the NW model. For example, the NL 

model uses the negative value of the travel time to consider the disutility. The NW model, in 

contrast, uses the positive value of the travel time directly to compute the mode choice 

probability. Note that, from the cross elasticity, the NW could provide similar characteristics as 

the NL model for the mode choices that share the same upper nest. This is because the NW model 

could be insensitive to the multiplicative increasing of the utility (Xu et al., 2016). We can adopt 

the Weibull parameters like the MNW model and PSW model to enhance the model flexibility in 

handling mode-specific perception variance. 

ij

nqx

ij

mP ijmV

ijmV
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Table 2: Impact of additional mode incentive under the go-green and go-gray scheme 

Scenario 1 2 3 

Incentive 0 +0.25 0 +0.5 0 +1 

Model Auto Transit Bike Auto Transit Bike Auto Transit Bike 

MNL 0.741 0.212 0.047 0.690 0.254 0.057 0.574 0.348 0.078 

 (-5.74%) (21.03%) (21.03%) (-12.21%) (44.74%) (44.74%) (-26.92%) (98.65%) (98.65%) 

NL 0.760 0.211 0.029 0.712 0.254 0.034 0.600 0.352 0.048 

 (-5.3%) (21.6%) (21.6%) (-11.33%) (46.18%) (46.18%) (-25.29%) (103.07%) (103.07%) 

NW 0.537 0.343 0.120 0.509 0.351 0.139 0.461 0.366 0.173 

 (-5.49%) (2.89%) (22.01%) (-10.44%) (5.45%) (41.99%) (-18.98%) (9.8%) (76.66%) 
*The number in () presents the percentage change in mode choice probability compared to those in Table 1. 
 

 

Fig. 2. Comparison between NL and NW models 
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Table 3: Direct elasticity and cross elasticity of the NL and NW models 

Model Direct elasticity Cross elasticity 

NL 
( )( )|1 1

ij ij

q mq ij ij ij ij

u m u m uij

u

x
P P


 


− + −  

n shares the same upper nest: 

( )( )n|1

ij ij

q nq ij ij ij ij

u n u uij

u

x
P P


 


− + −  

n does not share the same upper nest: 
ij ij ij

q nq nx P−  

NW 
( )( )

1

|1 1

ij ij

q mq ijm ij ij ij ij

u m u m uij

u

x V
P P


 



−

+ − −  
n shares the same upper nest: 

( )( )
1

n|1

ij ij

q nq ijn ij ij ij ij

u n u uij

u

x V
P P


 



−

− −  

n does not share the same upper nest: 
1ij ij ij

q nq ijn nx V P −  

Remark: n|

ij

uP  is the lower nest probability as shown in Fig. 2. 

In addition, the NW model has the covariance as a function of ijmV .  

 

Proposition 1. The covariance between modes in the nested weibit model is a function of the 

deterministic utility ijmV . 

Proof. The covariance can be calculated through 

cov , Eijm ijn ijm ijn ijm ijnU U U U E U E U       = −        , (21) 

where E[] is the expected value. We begin with the first term of the right hand side (RHS). From 

Eq. (12), we have 

E ijm ijn ijm ijm ijn ijn ijm ijn ijm ijnU U E V V V V E        = =      . (22) 

Now, consider the second term of the RHS in Eq. (21). From the marginal of ijm  in Eq. (9), 

ijm ijm ijm ijm ijmE U E V V E      = =       and is equal to ijmV . As such, the nested weibit covariance is  

cov ,ijm ijn ijm ijn ijm ijn ijm ijnU U V V E V V    = −    . (23) 

Note that when ijmU  and ijnU  are not under the same upper nest, ijm ijnE      = ijm ijnE E         = 

1 and the covariance is equal to zero. In contrast, if ijmU  and ijnU  are under the same upper nest, 

ijm ijnE      is not equal to zero, and hence the covariance is a function of ijmV . This completes the 

proof.  
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This is in contrast to the nested logit (NL) model. The NL model covariance is a function of 

the random error term alone. From Eq. (1), we have 

( )( )

( )( )

cov , Eijm ijn ijm ijn ijm ijn

ijm ijm ijn ijn ijm ijm ijn ijn

ijm ijn ijm ijn ijn ijm ijm ijn ijm ijm ijn ijn

ijm ijn ijm ij

U U U U E U E U

E V V E V E V

E V V V V V E V E

E E E

   

     

   

       = −       

     = + + − + +    

     = + + + − + +     

   = −    n
  

. (24) 

From the above equation, the NL model covariance is a function of the expected values of the 

random error term only. Hence, the NL model covariance is fixed and independent to Vijm.  

 

Note that the CDF of ijm ijn   can be determined by Manski and McFadden (1981) as follows: 

( )
( )

1

1

.. 1

.. 1
,

..
..

ijn ijmn ijm

ij ijm

ij n ijpm

ij ijm

ij n ijpm ijm

ijm
t x n

H t t
H t t dx

t

 

 




−
= 


=

 , (25) 

where ijmn ijm ijn  = . From Eq. (11), we have 

( )
( ) ( ) ( )1

1

1 1 1
1.. 1..

exp

iju

ijv

ij ijm
iju iju ijv

iju ij ijv

ij

ij ijm

ijm ijl ijn

l M v U n Mijm
u U

H t t
t t t

t




 
  

−

−

  



        = −            

   . (26) 

Substituting ijmn ijm ijn  =  into Eq. (25) and Eq. (26) gives 

( )

( )

1

1
1 1 1

1

..

0

1

exp

iju ijv

iju iju ijv

ij n ijpm

iju ij ijv

ij
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ij
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ijm
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u U
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l M

u U
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H dx
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t t

 

  

 


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−


  







    
         

= − −              
              
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 
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 −  

     
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 (27) 

The second term of the RHS needs to be computed numerically. With this, one can approximate 

( )
1 .. 1 ..

ij n ijpm ij n ijpmH t t   and its corresponding PDF (i.e., ( )
1 .. 1 ..

ij n ijpm ij n ijpmh t t  . Then, we can determine 

ijm ijn ijmnE E     =     to find the covariance in Eq. (23). Note that the correlation between the 
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mode alternatives (i.e., 
cov ,ijm ijn

ij ij

m n

U U
corr

 

  = ) is not affected by the change in Vijm. From Eq. (17) 

and Eq. (23), the correlation between the mode alternatives is equal to  

co , 1ijm ijn ijm ijnrr U U E     = −    . (28) 

As such, the correlation depends on ijm ijnE     , which is based on the joint distribution. In other 

words, the correlation is governed by iju . 

Similar to the previous example presented in Table 2, we examine the impact of the NW 

covariance feature using iju = 0.75 (i.e., column 3 in Table 1). Three scenarios are created by 

adding an incentive of 1, 1.5, and 2 to the utility of transit mode only as shown in Table 4. As 

expected, the change in the transit probability is higher in the NL model. This is because the NL 

model has a fixed covariance (see e.g., Marzano and Papola, 2008). In contrast, the NW 

covariance is a function of the utility. The covariance is increased as the utility increases. 

Incorporating this feature with the perception variance, which is also a function of the utility, the 

change in the transit probability is thus smaller for the NW model. 

 

Table 4: An investigation of covariance impact under the go-green and go-gray scheme 

Scenario 1 2 3 

Incentive 0 +1 0 0 +1.5 0 0 +2 0 

Model Auto Transit Bike Auto Transit Bike Auto Transit Bike 

NL 0.773 0.216 0.011 0.726 0.261 0.013 0.617 0.365 0.018 

  [1.279]*  [1.279]  [1.279] 

NW 0.570 0.357 0.074 0.544 0.365 0.091 0.498 0.378 0.124 

  [2.408]  [3.016]  [3.704] 

* [covariance] between transit and bike modes using a numerical technique. 

 

2.3 Path-size weibit model 

To relax the identical perception variance issue in the MNL model, Castillo et al. (2008) 

developed the multinomial weibit (MNW) model from the Weibull distribution. Then, 

Kitthamkesorn and Chen (2013) introduced a path-size factor to the MNW utility function to 

develop the path-size weibit (PSW) model. This model can be expressed as the RUM model as  
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( )
ij
umij ij

umr umij ij

umr umrij

umr

g
U








−
= ,  ,m ,u ,ijum iju ijr R M U ij IJ     , (29) 

where 
ij

umr  is the Weibull distributed random error on route r in mode m under nest u between O-

D pair ij, 
ij

umrg  is the travel cost on route r in mode m under nest u between O-D pair ij, 
ij

um  and 

ij

um  are the Weibull parameters related to the route-specific perception variance, and ( 0,1ij

umr   

is the path-size factor which can be presented as (Ben-Akiva and Bierlaire, 1999) 

1

umr

ijum

ij uma
umr ij ij

a umr umak

k R

l

L






= 


,  ,m ,u ,ijum iju ijr R M U ij IJ     , 
(30) 

where umal  is the length of link a under nest u in mode m, 
ij

umrL  is the length of route r under nest u 

in mode m connecting O-D pair ij , umr  is the set of all links in route r under nest u in mode m, 

ij

umar  is equal to 1 for link a on route r under nest u in mode m between O-D pair ij and 0 otherwise. 

The lengths in the common part and the route ratio (i.e., 
ij

uma umrl L  ) approximate the route 

correlation, and 
ijum

ij

umakk R


  measures the contribution of link a in the route correlation (Frejinger 

and Bierlaire, 2007). This path-size factor accounts for different route sizes determined by the 

length of links within a route and the relative lengths of routes that share a link (Ben-Akiva and 

Bierlaire, 1999). With the PSW RUM model in Eq. (29), the PSW probability can be presented as  

( )

( )

ij
um

ij
um

ijum

ij ij ij

umr umr umij

umr
ij ij ij

umk k um

k R

g
P

g





 

 

−

−



−
=

−
,  ,m ,u ,ijum iju ijr R M U ij IJ     . 

(31) 

 

 
 

4 COMBINED MODAL SPLIT AND TRAFFIC ASSIGNMENT PROBLEM 

In this section, we provide the assumptions, the mathematical programming (MP) formulation 

for the combined modal split and traffic assignment (CMSTA) problem using the nested weibit 

(NW) mode choice model and path-size weibit (PSW) route choice model, and some properties of 

the MP formulation. Let ijq   be the travel demand between O-D pair ij, and 
ij

umq   be the travel 

demand of mode m in nest u between O-D pair ij. After applying the NW and PSW probabilities 

as a function of the route cost as a function of a  travel cost on link a and ijum  exogenous modal 
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attractiveness on mode m  in nest u between O-D pair ij, we have 
ij

umrf  traffic flow on route r in 

mode m and nest u between O-D pair ij. With a route/link relationship, we have va traffic flow on 

link a. To begin with, some assumptions are made.  

 

4.1 Assumptions 

Assumption 1. The travel cost a   which could be a function of the travel time is a strictly 

increasing function w.r.t. its own flow. 

Since we cannot easily decompose
ij

um  into the link level, we make another assumption:  

Assumption 2. 0ij

um = .  

Note that the variational inequality (VI) formulation can be adopted to incorporate 
ij

um  (e.g., Zhou 

et al., 2009). Since the weibit model is the multiplicative RUM model, the deterministic part is 

simply a set of multiplicative explanatory variables (e.g., Cooper and Nakanishi, 1988). Then, the 

route travel cost assumption is: 

Assumption 3. The route travel cost function consists of the multiplicative link travel costs, i.e., 

umr

ij

umr a

a

g 


=  ,  , , ,ijum iju ijr R m M u U ij IJ     . 
(32) 

This assumption maintains the weibit relative cost criterion where the travelers are assumed to 

make a decision based on the relative difference of the utility (Fosgerau and Bierlaire, 2009). It 

makes the route travel cost decomposable to a link level and workable with the Beckmann’s 

transformation (i.e., multiplicative Beckmann objective function). One possible non-linear travel 

cost functional forms could be the exponential function of travel time. With the exponential travel 

cost function, travelers could be assumed as a constant risk averse when selecting the route 

(Mirchandani and Soroush, 1987).   

 

Following the path-size logit (PSL) SUE formulation (Chen et al., 2012), the path-size factors are 

assumed to be flow independent: 

Assumption 4. al  and 
ij

umrL  are flow independent. 

Note that we can also adopt the VI formulation (Zhou et al., 2012) to incorporate the flow 

dependent path-size factors. 
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4.2 Mathematical Programming Formulation 

Based on the above assumptions, the mathematical program for the CMSTA problem can be 

formulated as follows: 

1 2 3 4 5 6min Z Z Z Z Z Z Z= + + + + +  (33) 

( ) ( )
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s.t. 
ijum

ij ij

umr um

r R

f q


= , , ,iju ijm M u U ij IJ    , 
(34) 

ij iju

ij

um ij

u U m M

q q
 

=  , ij IJ  ,

 
(35) 

0ij

umerf  , , , ,ijum iju ijr R m M u U ij IJ     ;  

0ij

umq  , ,iju ijm M u U ij IJ    , 
(36) 

where 
ij

umrf  is the traffic flow on route r in mode m and nest u between O-D pair ij; 
ij

umq  is the 

demand of mode m in nest u between O-D pair ij; ijq  is the demand between O-D pair ij; and 

ijum
 
is an exogenous modal attractiveness on mode m  in nest u between O-D pair ij. Eq. (33) is 

the objective function of the combined NW-PSW model, which consists of six terms. Each term 

has its own meaning and its contribution to the Karush-Kuhn-Tucker conditions in deriving the 

NW and PSW probability expressions for mode choice and route choice, respectively. These six 

terms are: Z1 is the multiplicative Beckmann’s transformation (Kitthamkesorn and Chen, 2013) 

corresponding to the multiplicative route travel cost; Z2 is the well-known entropy term (Fisk, 1980) 

reflecting the stochastic effect of random perception; Z3 is the penalty term using the path-size 

factor (Ben-Akiva and Bierlaire, 1999) to capture the similarities among the routes; Z4 and Z5 are 

respectively related to the conditional and marginal probabilities of the NW modal split function; 

and Z6 is the attractiveness term incorporated to model the exogenous modal utility. The parameters 
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in the objective function also play a role in the derivation of the closed-form probability 

expressions that are consistent with the nested weibit model for mode choice and the path-size 

weibit model for route choice (see the proofs for Propositions 2 and 3).  Eq. (34) and Eq. (35) are 

the conservation constraints. Eq. (36) are the non-negativity constraints on the two sets of decision 

variables (i.e., modal splits and route flows). 

 

Note that the combined NW-PSW model developed in this paper can be considered as an 

extension of the PSW stochastic user equilibrium (SUE) with elastic demand (ED) or PSW-SUE-

ED for short and the combined MNL mode choice and PSW-SUE route choice (or combined MNL-

PSW) model by Kitthamkesorn et al. (2015). The main differences between the combined NW-

PSW model and the PSW-SUE-ED/combined MNL-PSW models include: (a) the decision 

variables (modal splits and route flows) need to account for the nested structure of mode choice 

(i.e., 
ij

umq   and 
ij

umrf   instead of qij and ij

rf  for the PSW-SUE-ED model or 
ij

mq   and ij

mrf   for the 

combined MNL-PSW model), and (b) the conditional and marginal probabilities of the NW modal 

split function represented by two entropy terms in Z4 and Z5. When 1iju =   (i.e., no nesting 

structure, just a single-level tree structure), the combined NW-PSW model becomesthe combined 

MNW-PSW model; when 1ij

r =   (i.e., no route overlapping), the combined NW-PSW model 

reduces to the combined NW-MNW model; and when both 1iju =   and 1ij

r =  , the combined 

NW-PSW model collapses to the combined MNW-MNW model. 

 

4.3 Solution Properties 

In this section, some properties of the MP formulation are provided. 

Proposition 2. The MP formulation in Eqs. (33) through (36) provides the NW mode choice and 

the PSW route choice. 

Proof. The Lagrangian (L) of the equivalent MP problem w.r.t. the constraints can be formulated 

as: 

ij iju ijum ij ij iju

ij ij ij ij

um um umr ij ij um

ij IJ u U m M r R ij IJ u U u U m M

L Z q f q q 
       

   
= + − + −   

   
   

        , (37) 

where 
ij

um  and ij  are the dual variables associated with the conservation constraints. 



23 

Given that L has to be minimized w.r.t. route flows, the following conditions have to hold: 

0 ln ln lnij ij ij ij ij ij ij

umr um a ra umr umr um um

a A

L f f     


  =  + − = . (38) 

From Assumption 3, we have 

( ) ( )exp
ij
umij ij ij ij ij

umr um um umr umrf g


  
−

= . (39) 

The summation of 
ij

umrf  gives 

( ) ( )exp
ij
um

ijum ijum

ij ij ij ij ij ij

um umr um um umr umr

r R r R

q f g


  
−

 

= =  . (40) 

Dividing Eq. (39) by Eq. (40) gives the PSW route choice, i.e., 

( )

( )

ij
um

ij
um

ijum

ij ijij
umr umrij umr

umr ij
ij ij

um
umk umk

k R

gf
P

q g









−

−



= =


. 

(41) 

Then, we consider the mode choice: 

( )
1

0 ln 1 ln ln 0
iju

ij ij ij ij

um iju um iju um ijum um ijij
m Mum

L q q q   
 

  
  =  − + − +  + − =    

   
 . (42) 

From Eq. (40), 
ij

um  can be defined as 

( )
1 1

ln ln
ij
um

ijum

ij ij ij ij

um um umr umrij ij
r Rum um

q g


 
 

−



= −  , (43) 

where the second term in the right hand side is the logarithmic expected travel cost (ETC) 

(Kitthamkesorn et al., 2015). Let 
ij

umw  be the logarithmic ETC. Eq. (42) can be rearranged as 

( ) ( )( )

1

1

exp exp

iju

iju

iju

iju

ij ij ij

um um ij ijum um

m M

q q w







−



 
=  − 

 
 
 , (44) 

( ) ( )( )
1

exp exp

iju

iju

iju iju

ij ij

um ij ijum um

m M m M

q w




 

 
=  − 
  

  , and (45) 

( ) ( )

1

exp exp

iju

iju

ij iju ij iji

ij ij

ij um ij ijum um

u U m M u U m M

q q w






   

 
  

= =  −   
   

    . (46) 



24 

From Eq. (44) through Eq. (46), we have  

( )( ) ( )( )

( )

11 1

1

exp exp

exp

iju

iju iju

iju

ijt

ijt

ij iji

ij ij

ijum um ijum um
ij

m Mij um
um

ij

ij

ijts ts

t U s M

w w
q

P
q

w



 





−



 

 
 −  − 

  = =
 

  
 −   

   



 

. 
(47) 

Since ( )exp ij

ijum umw −  is the utility, let ( )( )
1

exp ij

ijm ijum umV w
−

=  − . Then, the above equation is 

the NW mode choice. This completes the proof.  

 

Proposition 3. The solution of NW-PSW model is unique. 

Proof. It is sufficient to prove that the objective function in Eq. (33) is strictly convex in the vicinity 

of route flows and modal splits and that the feasible region is convex.  

 

The Hessian matrix of 1 2 3Z Z Z+ +  w.r.t. the route flow variables can be defined as 

( )2

1 2 3

1 1
0;

0 ;

ija
umra ij ij

a a um umrij ij

umr umk

d
r kZ Z Z

dv f
f f

otherwise




 


+  = + + 

= 
  



. (48) 

This implies the positive definite matrix. The Hessian matrix of the 4 5 6Z Z Z+ +  w.r.t. the modal 

demand variables can be defined as 

( ) ( )2

4 5 6

1
1 0; ,

0 ;

iju

ij ij

iju um iju umij
m Mumij ij

um tn

q q u t m nZ Z Z

q q
otherwise

 
 

 
− + −  = = + +  

=  
  




, (49) 

This also implies the positive definite matrix. Therefore, the NW-PSW model has a unique solution 

for both route flows and modal splits. This completes the proof.  

Further, from the nested weibit covariance is a function of the deterministic utility, the mode 

covariance is also a function of the traffic condition and network topology.  

 

Proposition 4. The covariance between modes in the NW-PSW model is a function of the traffic 

condition and network topology. 



25 

Proof. From Eq. (47), ( )( )
1

exp ij

ijm ijum umV w
−

=  − , 
ij

umw  is the logarithmic ETC (see Eq. (43)). Then, 

the mode choice utility can be expressed as  

( )

( )

1

1
1

1
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ijum
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
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=    
   
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



 (50) 

From Eq. (22), we have the covariance between a mode pair under the same upper nest u as 

( ) ( )

( )

1 1
1 1

cov ,

1 .

ij ij
ij ijum un
um un

ijum ijun

ij ij ij ij

ijm ijn ijum umr umr ijun unr unr

r R r R

ijm ijn

U U g g

E

 
 

 

 

− −

− −

 

   
      

  =          
         

   

  − 

 
 (51) 

It can be seen that the NW mode choice covariance resulted from the MP formulation of the NW-

PSW model is a function of the traffic conditions in terms of the route travel cost 
ij

umrg  and the 

network topology in terms of the path-size factor 
ij

umr . This complete the proof.  

 

Note that from Proposition 4, when the routes between an O-D pair are longer, the mode utility 

is smaller. Further, when the route overlapping 
ij

umr  is larger, it also lowers the mode utility. This 

feature suggests that the nested weibit model has the capability to adjust the mode share by 

lowering the utility for modes with longer routes and/or larger overlapped segments. When 

applying to the go-green mode promotion strategy as an example, the go-green modes should have 

a shorter route length compared to the other modes. In addition, the go-green modes should have 

a smaller overlapped segment for promoting green transportation.  

 

4.4 Solution Procedure 

This study adopts the path-based partial linearization algorithm combined with a self-

regulated averaging (SRA) line search strategy to solve the proposed NW-PSW model. The path-

based partial linearization method belongs to the descent direction algorithm for solving 

continuous optimization problems (Patriksson, 1994). In general, the partial linearization method 
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has the search direction obtained by solving a partial linearized subproblem and an approximate 

stepsize obtained by the classical generalized Armijo rule (Bertsekas, 1976). Note that the 

stepsize approximation could be computationally expensive for a complex objective function. As 

such,  this  s tudy adopts the SRA scheme recently proposed by Liu et al. (2009) to determine a 

stepsize without the need to evaluate the complex objective and/or its derivatives. This SRA 

scheme determine the stepsize based on the residual error and the stepsize in the current iteration 

to evaluate the stepsize in the next iteration. It is shown to satisfy the convergence condition 

(Robbins and Monro, 1951; Blum, 1954; Liu et al., 2009). A brief detail for applying the pa t h -

based partial linearization algorithm combined with a SRA line search strategy  to solve the 

combined NW-PSW model is as follows. The search direction can be done by updating the link 

costs and route costs, computing the NW mode choice probabilities and PSW route choice 

probabilities, and assigning the auxiliary mode-specific demands and auxiliary route flows 

according to the NW probabilities for mode choice and the PSW probabilities for route choice, 

respectively. Then, the SRA scheme is used to determine the stepsize for updating the modal splits 

and route flows. These two steps are solved iteratively until some convergence criterion is 

satisfied. For small networks used in this study, we enumerate the routes and focus on the route 

equilibration procedure to produce the equilibrium solution that is consistent with the mode 

choice and route choice probabilities. However, a column generation procedure could be 

incorporated to generate routes as needed in the partial linearization algorithm. In other words, 

the partial linearization algorithm can work with both route enumeration and column generation. 

For the partial linearization algorithm with route enumeration, see Chen et al. (2014) for solving 

the paired combinatorial logit (PCL) SUE model, and Kitthamkesorn and Chen (2013, 2015) for 

solving the weibit-based SUE model with fixed demand and elastic demand, respectively. For the 

partial linearization algorithm with column generation, see Bell et al. (1997), Chen et al. (2009, 

2010), and Ryu et al. (2014) for solving the path flow estimator, and Yang et al. (2013) for solving 

the combined travel-destination-mode-route choice model. 

 

5 NUMERICAL EXPERIMENTS 

This section provides two numerical examples to illustrate features of the NW-PSW model. 

The proposed model results are also compared to those provided by the MNL-MNL model and 
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NL-CNL model (Kitthamkesorn et al., 2016). Without loss of generality, the model parameters are 

assumed as 3.7ij

um = , 0.5iju =
 
 for the correlated modes, 1iju =  for the independent mode, and 

1ijum =  unless specified otherwise. Note that 3.7ij

um =  is used to provide the route coefficient 

of variation of 0.3 (Kitthamkesorn and Chen, 2013; 2014). For the two logit models (MNL-MNL 

and NL-CNL), the route dispersion parameter is set equal to 0.1, and 0ijum = .  

 

4.1 Example 1: Two-route network  

A two-route network with different trip lengths (i.e., short network and long network) shown 

in Table 5 is used in this example. Both networks consist of three modes, including automobiles, 

transit, and bicycles for each route. The free flow travel time (FFTT) of the upper route is 5 units 

longer than the lower route for all modes. Note that the upper route is two times longer than the 

lower route in the short network, while the upper route is only about 20% longer than the lower 

route in the long network. The O-D demand is 200 units. The nested structure is the go-green and 

go-gray scheme where transit and bike share the same upper nest (see Fig. 1 for the tree structure 

representation). The purpose of using a simple two-route network is three-fold: (a) to demonstrate 

the correctness of the NW-PSW model as a CMSTA problem, (b) to investigate the effect of 

heterogeneous perception variance on mode choice and route choice, and (c) to compare the 

proposed NW-PSW model with the classical MNL-MNL model, which assumes the perception 

error is independently and identically Gumbel distributed (i.e., not accounting for correlation 

among alternatives and assuming identical perception variance for all alternatives), and the NL-

CNL model proposed by Kitthamkesorn et al. (2016), which adopts the Gumbel distribution as the 

perception error while using a two-level tree structure to only account for the correlation among 

alternatives (i.e., nested logit (NL) model for mode choice and cross nested logit (CNL) model for 

route choice). Using a simple two-route network with three modes has the benefits of clearly 

articulating the effects highlighted above, particularly the differences between the logit-based and 

weibit-based models.  
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Table 5. Characteristics of the two-route network  

Network 

  

Short network Long network 

Route Upper Lower Upper Lower 

Auto 10 10ij

umrf+  5 10ij

umrf+  30 10ij

umrf+  25 10ij

umrf+  

Transit 15 20ij

umrf+  10 20ij

umrf+  35 20ij

umrf+  30 20ij

umrf+  

Bike 20 20ij

umrf+  15 20ij

umrf+  40 20ij

umrf+  45 20ij

umrf+  

 

Table 6 provides the results of three models (i.e., MNL-MNL, NL-CNL, and NW-PSW) for 

both short and long networks. First, we check the correctness of the results by checking 

conservation for both mode choice and route choice. As expected, the modal splits for both short 

and long networks satisfy the probability conservation (e.g., for the short network: 

61.94+36.52+1.54=100.00 for the MNL-MNL model, 62.53+37.38+0.09=100.00 for the NL-

CNL model, and 47.43+33.25+19.32=100.00 for the NW-PSW model).  

Next, we test the impact of heterogeneous perception variance from the short and long 

networks. The results show that both MNL-MNL and NL-CNL models cannot handle the 

heterogeneous perception variance. These two models give the same route choice probability for 

both short and long networks. This is because both MNL-MNL and NL-CNL models have the 

identically distributed assumption (i.e., all perception variances are the same and fixed) despite 

that the NL-CNL model uses a two-level tree structure to handle the independence assumption 

for both mode choice and route choice. On the other hand, the NW-PSW model gives different 

route choice results for the short and long networks. This is due to the perception variance of the 

Weibull distribution is a function of route cost. Hence, the lower route in the short network 

receives a larger share than that of the long network.  

 

 

 

i j

DestinationOrigin

i j

DestinationOrigin
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Table 6. Route share and mode share of three models for both short and long networks 

 Route share Mode share 

 Short network Long network 
Short 

network 

Long 

network 
Model 

Upper 

Route 

Lower 

Route 

Upper 

Route 

Lower 

Route 

Auto             

MNL-

MNL 42.32% 57.68% 42.32% 57.68% 61.94% 61.94% 

NL-CNL 42.35% 57.65% 42.35% 57.65% 62.53% 62.53% 

NW-PSW 34.67% 65.33% 40.61% 59.39% 47.43% 44.57% 

Transit             

MNL-

MNL 39.56% 60.44% 39.56% 60.44% 36.52% 36.52% 

NL-CNL 39.60% 60.40% 39.60% 60.40% 37.38% 37.38% 

NW-PSW 28.23% 71.77% 38.71% 61.29% 33.25% 34.01% 

Bike             

MNL-

MNL 37.84% 62.16% 37.84% 62.16% 1.54% 1.54% 

NL-CNL 37.75% 62.25% 37.75% 62.25% 0.09% 0.09% 

NW-PSW 29.94% 70.06% 40.34% 59.66% 19.32% 21.42% 

 

When considering the mode share, both MNL-MNL model and NL-CNL model give the same 

results for both short and long networks. This is because the exponential proportion of the expected 

perceived travel time (i.e., the log sum) is the same for both networks. In contrast, the NW-PSW 

model has different mode shares for each network. Its logarithmic expected perceived travel time 

of all modes becomes more similar for the longer network (i.e., both alternatives becomes more 

similar) in Table 7 and Fig. 3. As such, the go-green modes receive a higher share in the long 

network. 

Table 7. Expected perceived travel time of three models for both short and long networks 

Model Short network Long network 

Auto     

MNL-MNL 6.64 26.71 

NL-CNL 6.64 26.71 

NW-PSW* 2.30 3.27 

Transit     

MNL-MNL 7.17 27.22 

NL-CNL 7.17 27.22 
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NW-PSW* 2.43 3.34 

Bike     

MNL-MNL 10.34 35.26 

NL-CNL 10.34 35.26 

NW-PSW* 2.70 3.58 
*The NW-PSW model uses the logarithmic expected travel time 
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Fig. 3. Multi-dimensional equilibrium demand and choice probability patterns 
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Then, we investigate the impact of the mode similarity in the short network. The parameter iju  

for the go-green modes is varied from 0.01 to 1. We can observe that the NW-PSW model is more 

sensitive to the change in iju  as shown in Fig. 4. This is because the covariance and perception 

variance of the NW-PSW model is a function of the deterministic utility. The change in iju  

impacts the choice correlation, covariance, and perception variance. By using a numerical method 

to compute the correlation, the covariance and correlation between transit and bike can be presented 

in Fig. 5 (see Eq. (21) and Eq. (27)). 

 

Both NL-CNL and NW-PSW models have the correlation approaches to one as 0iju →  and the 

correlation equals to zero when 1iju = . The NL-CNL model seems to have a stronger correlation 

than the NW-PSW model. However, the NW-PSW model presents a larger covariance between 

transit and bike modes. This results in a more dispersed mode share. At a lower iju  or a higher 

correlation, the covariance is high, and the expected perceived travel cost of each mode is smaller 

according to the dispersed assignment results. At a higher iju   or a smaller correlation, the 

covariance is low, but the expected perceived travel cost is high according to maintain the 

attractiveness of each mode at equilibrium. Hence, the mode perception variance is high. In other 

words, for the NW model, the covariance dominates the mode share at a lower iju  while the mode 

perception variance dominate the result at a higher iju .  

 

To visualize the change in the perception variance, we use the perception variance ratio of transit 

over bicycle. The perception variance ratio resulted from the NL-CNL model equals to one since 

the NL model has the predetermined perception variance of 
2 6  for both modes under the same 

nest (e.g., Ben-Akiva and Lerman, 1985). In contrast, the perception variance ratio resulted from 

the NW-PSW model changes according to the value of iju . This is because the NW-PSW model 

has the perception variance as a function of the route travel time and logarithmic expected 

perception variance (see Eq. (17)). The change in iju  would change the choice pattern, route travel 

time, logarithmic expected perception variance, and hence the perception variance. As iju  
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increases, the perception variances of transit and bike become more similar. With these, the choice 

patterns between the NL-CNL and NW-PSW models could be different. In sum, the change in iju  

impacts correlation, covariance, and perception variance in the choice patterns of the NW-PSW 

model. 

 

 
 

a) NL-CNL model b) NW-PSW model 

Fig. 4. Mode share by varying iju  of the go-green modes in the short network  

 

Fig. 5. Correlation, covariance, and variance ratio by varying iju  of the go-green modes in the 
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short network 

  

4.2 Example 2: Nguyen-Dupius network  

Similar to the simple two-route network used in example 1, example 2 adopts the modified 

Nguyen-Dupuis network shown in Fig. 6 to obtain important insights of using different nested 

structure configurations (see Fig. 1 for the tree structure representations) and different models (i.e., 

logit-based NL-CNL model and weibit-based NW-PSW model) to model the go-green and go-gray 

scheme and the motorized and non-motorized scheme. Compared to the two-route network, the 

Nguyen-Dupuis network has four O-D pairs with routes consisting of multiple links (i.e., link 

equals to route as in the two-route network) and multiple modes. The four O-D pairs are (1,2), 

(1,3), (4,2), and (4,3) with the O-D demands of 500, 500, 600, and 300 travelers per hour, 

respectively.  The link travel time function is the Bureau of Public Road (BPR) type function. The 

link travel time for the auto is  

( )
40 1 0.15a a a at t v c = +

 
, (52) 

and the link travel time for the transit is  

( )
20 1 0.5a a a at t v c = +

 
, (53) 

where at  is the link travel time function on link a, 
0

at  is the free flow travel time on link a, and ac  

is the capacity on link a. For the bike mode, the travel time is fixed at 30 minutes for each route. 

Detailed network characteristics can be found in Table 8. The value of ijum   for the go-green 

modes (i.e., transit and bike) is equal to 1. Since the logit model is an additive RUM model and 

the weibit model is a multiplicative RUM model, we set the travel cost for comparison reason as 

follows: 

0.25a ah t=  and 
0.075 at

a e = ,  a A  , (54) 

where ah  is the link travel cost for the logit model.   
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Fig. 6. Modified Nguyen-Dupius network  

 

Table 8: Characteristics of the modified Nguyen-Dupius network 

Auto 
Distance 

(km) 

FFTT  

(minute) 

Capacity  

(vph) 
 Auto 

Distance 

(km) 

FFTT 

(minute) 

Capacity 

(vph) 

Link 1 2.5 2.5 500  Link 15 2.0 2.0 400 

Link 2 2.5 2.5 300  Link 16 2.5 2.5 500 

Link 3 2.0 2.0 400  Link 17 2.5 2.5 300 

Link 4 4.0 4.0 500  Link 18 7.0 7.0 400 

Link 5 3.0 3.0 400  Link 19 3.0 3.0 400 

Link 6 2.5 2.5 300      

Link 7 3.0 3.0 600  Transit 
Distance 

(km) 

FFTT 

(minute) 

Capacity 

(pph) 

Link 8 2.5 2.5 200  section 1 2.5 2.5 300 

Link 9 2.5 2.5 200  section 2 2.5 2.5 300 

Link 10 2.5 2.5 250  section 3 10 10 600 

Link 11 2.5 2.5 400  section 4 2.5 2.5 300 

Link 12 2.5 2.5 400  section 5 2.5 2.5 300 

Link 13 3.75 3.75 400  Bike 
Distance 

(km) 

FFTT 

(minute) 
Capacity 

Link 14 2.5 2.5 400  Bike lane 10 30 -- 

 

 
1 12

6 7 84

9 10 11 2

11 3

1

2

6

3

9

7

4 5

8

1210

11 13

15

14 1617

18

19Transit 

section 1

Transit 

section 2

Transit 

section 3

Bike lane

5

Transit 

section 4

Transit 

section 5

Interchange 

station



36 

The mode share results for the two nested structure configurations are presented in Fig. 7. 

From the results, it is apparent that the nested structure configurations do have an impact on the 

mode shares. The independent mode (i.e., the auto mode in the go-green and go-gray scheme and 

the bike mode in the motorized and non-motorized scheme) receives a higher share. This result is 

consistent with Kitthamkesorn et al. (2016). Note that the NW-PSW model give a higher go-green 

mode share since it considers both mode-specific perception variance and route-specific perception 

variance.  

 

    

Fig. 7. Mode share for the modified Nguyen-Dupius network  

 

Then, we vary the demand level and the exogenous modal utility ijum . The demand level is 

varied from 0.5 to 4 times of the base O-D demands, and ijum  of the go-green modes (i.e., transit 

and bike) is varied from 0 to 5. As the demand level increases, the difference between the mode 

share estimated under each scheme (i.e., mode share from the go-green go-gray scheme minus 

mode share from the motorized and non-motorized scheme) is decreased. This is because the 

congestion effect dominates the results. On the other hand, when ijum  increases, the mode share 

difference also increases. The NW-PSW model seems to provide a larger mode share difference 

than the NL-CNL model. This is because the NW-PSW exogenous utility is a multiplicative type 

as the weibit model, which is a member of the multiplicative RUM model. This is unlike the NL-

CNL model which has ijum  as an additive form. As such, the mode share resulted from the NW-

PSW model will be more sensitive to the change in ijum . 
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a) NL-CNL transit mode choice 

probability difference 

b) NL-CNL bike mode choice probability 

difference 

  
c) NW-PSW transit mode choice 

probability difference 

d) NW-PSW bike mode choice 

probability difference 

Fig. 8. Mode share difference when varying ijum  and demand level 

 

6 CONCLUDING REMARKS 

This paper presented an alternate weibit-based combined modal split and traffic assignment 

(CSMTA) model based on random utility theory derived from the Weibull distribution. The main 

contributions are twofold: (1) the development of a nested weibit model, and (2) the development 

of a weibit-based CSMTA model as a mathematical programming (MP) formulation. The nested 

weibit (NW) model was developed by adapting the nested structure of the well-established nested 

logit (NL) model with the Weibull distributed random error for modeling mode choice, while the 

recently developed path-size weibit (PSW) model was adopted for modeling route choice. The 

development of a MP formulation for the combined NW-PSW model was provided to 

simultaneously consider both similarities and heterogeneous perception variance in the joint mode-
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route travel choice decisions under congestion. The benefits of a MP formulation are: (1) 

Optimality conditions are readily interpretable and easily understandable (i.e., the Kuhn-Tucker 

conditions provide the equivalency between the MP formulation and the weibit-based mode choice 

and route choice probabilities), and (2) convergent algorithms (e.g., partial linearization algorithm) 

are readily available for solving the weibit-based CMSTA model. Numerical examples were 

performed to illustrate features of the proposed combined NW-PSW model. Through the examples, 

the mode share resulting from the combined NW-PSW model is more sensitive to changes in model 

parameters and network characteristics than those produced by the two logit-based models (MNL-

MNL and NL-CNL). This is because the proposed model has the mode-specific and route-specific 

perception variance. The perception variance is a function of the (dis)utility. Moreover, its 

exogenous utility is a multiplicative type as the weibit model, which is a member of the 

multiplicative RUM model. 

For future research, parameter calibration (e.g., Oppenheim, 1995; de Grange et al., 2010) 

should be performed for the combined NW-PSW problem. An investigation on how to shift 

between the go-green and go-gray nested structure and the motorized and non-motorized nested 

structure is also interesting since we could encourage a mode choice more effective with one nested 

structure than the other (e.g., Kitthamkesorn et al., 2016). Applications of the combined NW-PSW 

model should be tested in real networks to demonstrate proof of concept. In addition, several 

assumptions have been made for simplifying the MP formulation so that the contribution of this 

paper is clear and focused. As suggested by Cantarella et al. (2016), fixed point formulation could 

be considered as a general framework to relax the assumptions for modeling more complex issues 

(e.g., asymmetric interactions, non-additive route cost structures, multi-user classes, etc.) and 

specific operational details in public transport modes (e.g., bus, tram, and mass rapid transit). 
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