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Abstract 

The l1 regularization technique has been developed for structural health monitoring 

and damage detection through employing the sparsity condition of structural damage. 

The regularization parameter, which controls the trade-off between data fidelity and 

solution size of the regularization problem, exerts a crucial effect on the solution. 

However, the l1 regularization problem has no closed-form solution, and the 

regularization parameter is usually selected by experience. This study proposes two 

strategies of selecting the regularization parameter for the l1-regularized damage 

detection problem. The first method utilizes the residual and solution norms of the 

optimization problem and ensures that they are both small. The other method is based 

on the discrepancy principle, which requires that the variance of the discrepancy 

between the calculated and measured responses is close to the variance of the 

measurement noise. The two methods are applied to a cantilever beam and a 
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three-story frame. A range of the regularization parameter, rather than one single value, 

can be determined. When the regularization parameter in this range is selected, the 

damage can be accurately identified even for multiple damage scenarios. This range 

also indicates the sensitivity degree of the damage identification problem to the 

regularization parameter. 
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1. Introduction 

Vibration-based damage detection has received considerable attention in the past 

decades [1–3]. Finite element (FE) model updating can locate and quantify damage by 

utilizing structural vibration properties, such as natural frequencies and mode shapes 

[4–7].  

 

The identification of structural damage based on measured modal parameters is 

essentially an inverse problem in mathematics and is typically ill-posed because of the 

large condition number of the sensitivity matrix [8]. Therefore, measurement noise 

would lead to inaccurate damage identification. In this regard, the regularization 

technique is employed by including a regularization term in the objective function, 

such that a physically meaningful and stable solution can be obtained [8]. Moreover, 

sensitivity-based model updating is underdetermined in the presence of infinite 

solutions because of the less number of identifiable modal parameters than that of 

structural elements. In this situation, the regularization technique is also required to 

obtain a unique solution.  
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Tikhonov regularization, also known as l2 regularization, is a most commonly used 

scheme to stabilize the inverse problem and has been widely used in structural 

damage detection [9, 10]. l2 regularization has a closed-form solution and is thus 

efficient and convenient for implementation. However, this method tends to produce 

over-smooth solutions because the quadratic regularizer cannot recover the sharp 

features of the solution. Consequently, damage identification results are usually 

distributed to many structural elements, most of which are falsely identified as 

damage [11–13]. Similar results have also been reported in signal and visual 

reconstruction [14]. 

 

Civil structures generally contain a large number of elements or components whereas 

damage usually occurs at several sections or members only. Therefore, the damage 

index is zero for most elements, except for damaged ones. The damage index can be 

regarded as a sparse vector. According to sparse recovery theory, the l1 regularization 

technique can effectively solve inverse problems, which possess sparsity in time or 

spatial domain [15]. This theory was initially employed in seismology and verified to 

perform better in preserving isolated characteristics than l2 norm regularization [16]. 

Sparse recovery theory has gained substantial attention in the recent years for 

compressive sensing (CS) and has been widely applied in signal processing, wireless 

sensing, and image reconstruction [17, 18]. This theory has also been applied to 

structural health monitoring (SHM) [19–22]. In particular, Zhou et al. [23] proposed a 

damage identification method by combining substructure-based sensitivity analysis 

and l1 sparse regularization. Zhou et al. [11] developed a new damage detection 

method based on sparse recovery theory by using frequency data only. l1 

regularization was employed in FE model updating to improve the damage 

identifiability. The technique was later extended by including frequency and mode 

shapes [13]. Zhang et al. [24] presented a time-domain damage detection algorithm 

using the extended Kalman filter technique; l1 regularization was imposed in the 

optimization process to suppress the interference of measurement noise and improve 
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the identification accuracy.  

 

In regularization methods, the regularization parameter plays a critical role by trading 

off the size of the regularized solution and how well it fits the given data [25]. A 

well-balanced regularization parameter can effectively deal with the ill-posedness of 

the inverse problem and yield a meaningful and stable solution. A number of methods 

have been developed to determine the optimal regularization parameter for inverse 

problems in mathematics; these methods include discrepancy principle (DP) [26-28], 

ordinary and generalized cross validations (GCV) [29], universal rules [30], and min–

max rules [31]. The l2 regularization has the closed-form solution; as such, tractable 

methods can be used to choose the regularization parameters [32], such as the widely 

used L-curve criterion [33]. However, the selection criterion of the regularization 

parameter for the l1 regularization problem is very limited because the problem has no 

closed-form solution.  

 

In SHM, an appropriate regularization parameter for the l1-regularized problem is 

problem-dependent and typically selected by experience. Mascarenas et al. [34] set the 

regularization parameter as unit heuristically. Yang and Nagarajaiah [35] reported the 

insensitivity of the solution to the regularization parameter and set it as 0.01 in 

CS-based modal identification. Another study [36] calculated the regularization 

parameter using 𝛽𝛽 = 1/√𝑁𝑁 (where N is the number of the time history sampling 

points corresponding to the dimension of the unknown vector). Zhang and Xu [12] 

chose the regularization parameter by using the re-weighted l1 regularization 

technique. Yao et al. [37] showed that the plot of the residual term versus the 

regularization term on the linear scale resembled an “L” shape; afterward, they selected 

the regularization parameter corresponding to the corner of the L curve.  

 

In this study, two strategies are developed for selecting the regularization parameter for 

the l1-regularized problem. Inspired by the L-curve criterion used in the l2 
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regularization, the first strategy utilizes the residual and solution norms of the 

optimization problem to determine an appropriate range of the regularization 

parameter for the problem. The second strategy is based on the DP used in the l2 

counterpart. The two techniques yield consistent results. Their effectiveness is 

demonstrated through applications to a laboratory tested cantilever beam and a steel 

frame.  

 

2. Sensitivity-based Damage Detection using l1 Regularization 

In structural damage identification, the global stiffness matrix of an undamaged 

structure can be expressed as follows [2, 11] 

[𝐾𝐾] = �𝛼𝛼𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�𝐾𝐾𝑖𝑖� (1) 

where �𝐾𝐾𝑖𝑖� is the ith element stiffness matrix, 𝛼𝛼𝑖𝑖 is the element stiffness parameter, 

and n is the number of elements. Under the assumption that only the element stiffness 

is reduced when damage occurs, the structural stiffness matrix in the damaged state 

takes the following form 

[𝐾𝐾] = �(1 + 𝑝𝑝𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

�𝐾𝐾𝑖𝑖� (2) 

where 𝑝𝑝𝑖𝑖 is the stiffness reduction factor (SRF) and defined as [11, 38] 

𝑝𝑝𝑖𝑖 =
𝛼𝛼�𝑖𝑖 − 𝛼𝛼𝑖𝑖
𝛼𝛼𝑖𝑖

 (3) 

where 𝛼𝛼�𝑖𝑖 is the element stiffness parameter in the damaged state. SRF indicates both 

the damage location and damage severity.  

 

The relationship between the changes in the modal parameters {∆𝑅𝑅} and damage 

parameters {𝑝𝑝} can be expressed as  

[S]{𝑝𝑝} = {∆𝑅𝑅} = {𝑅𝑅𝐸𝐸} − {𝑅𝑅0} (4) 
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where {𝑅𝑅𝐸𝐸}  and {𝑅𝑅0}  are the measured and analytical modal parameters, 

respectively; and [S] is the sensitivity matrix of the modal data with respect to the 

damage parameter and can be calculated using the FE model of the structure.  

 

As mentioned previously, the inverse problem in Eq. (4) is typically ill-posed and 

underdetermined. {𝑝𝑝} is a sparse vector of which only several items are non-zero 

because only a small number of elements are damaged compared with the total 

elements in the entire structure. Therefore, the l1 regularization technique is employed 

to regularize the inverse problem mentioned above. The damage identification 

accuracy can be improved by utilizing the sparsity of structural damage as prior 

information. Damage parameter {𝑝𝑝} can thus be obtained by solving the following 

optimization problem  

�̂�𝑝 = arg min
𝑝𝑝�

( ‖{𝑅𝑅(𝑝𝑝)} − {𝑅𝑅𝐸𝐸}‖22 + 𝛽𝛽‖{𝑝𝑝}‖1) (5) 

where {𝑅𝑅(𝑝𝑝)} = [S]{𝑝𝑝} + {𝑅𝑅0}  and 𝛽𝛽 > 0  is the regularization parameter. 

 ‖{𝑅𝑅(𝑝𝑝)} − {𝑅𝑅𝐸𝐸}‖22 is the data-fitting term or residual norm that indicates the fitness 

of the solution to the data; and ‖{𝑝𝑝}‖1 is the l1-regularization term or solution norm 

that quantifies the sparsity of the solution.  

 

In this study, natural frequency and mode shape are utilized in model updating and 

damage detection. Thus, Eq. (5) can be rewritten as [11, 13]  

�̂�𝑝 = arg min
𝑝𝑝�
�

1
𝑚𝑚
��

λ𝑖𝑖𝐴𝐴({𝑝𝑝}) − λ𝑖𝑖𝐸𝐸

λ𝑖𝑖𝐸𝐸
�
2𝑚𝑚

𝑖𝑖=1

+
1

𝑚𝑚 × 𝑛𝑛𝑝𝑝
���𝜙𝜙𝑗𝑗𝑖𝑖𝐴𝐴({𝑝𝑝}) − 𝜙𝜙𝑗𝑗𝑖𝑖𝐸𝐸�

2
𝑛𝑛𝑝𝑝

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

+
𝛽𝛽
𝑛𝑛
‖{𝑝𝑝}‖1� 

(6) 

where {λ𝑖𝑖} is the ith eigenvalue, �𝜙𝜙𝑗𝑗𝑖𝑖� is the ith mode shape at jth point, m is the 

number of available eigenvalues, np  is the number of measurement points, and 

superscripts “A” and “E” represent the analytical and experimental terms, respectively. 

The eigenvalue changes of each mode are normalized with respect to the 
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measurement values. The eigenvalue residual, eigenvector residual, and regularization 

terms are divided by the length of the vectors (i.e., m, 𝑚𝑚 × 𝑛𝑛𝑝𝑝 and n, respectively) to 

make these terms comparable.  

 

3. Selection Strategies for the Regularization Parameter 

Selection of the regularization parameter is a crucial issue for all regularization 

problems. Many strategies for selection of the regularization parameter have been 

proposed for l2 regularization problems; however, few strategies have been 

established for l1 regularization problems.  

 

3.1 Parameter selection using residual and solution norms 

The regularization parameter controls the trade-off between data fidelity and solution 

sparsity. The 2-norm of the residue  ‖𝑅𝑅({𝑝𝑝}) − {𝑅𝑅𝐸𝐸}‖22 evaluates the data fidelity, 

and the 1-norm ‖{𝑝𝑝}‖1 measures the sparsity of the solution. Therefore, the residual 

and solution norms are closely associated with the regularization parameter.  

 

A small regularization parameter will place higher penalty on the residual term and 

causes the term very small, leading to an overfitting solution. By contrast, for a large 

regularization parameter, the regularization term 𝛽𝛽‖{𝑝𝑝}‖1 becomes dominant in the 

objective function and is more penalized by the optimization algorithm. Consequently, 

the residual norm increases, and the result losses data fidelity. When the regularization 

parameter 𝛽𝛽 exceeds the threshold 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚, a zero solution is obtained [39]. Therefore, 

an appropriate regularization parameter 𝛽𝛽 should be between the two extremes to 

achieve balance between the two norms and obtain a stable and reasonable solution. 

 

In this study, the plots of the residual and solution norms versus the regularization 

parameter are utilized to determine the appropriate regularization parameter. For a 
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given damage detection problem, the corresponding objective function is first solved 

over a range of 𝛽𝛽. The associated residual and solution norms are calculated and 

plotted versus the regularization parameter. The solution norm decreases, whereas the 

residual norm increases with increasing regularization parameter. The parameter 

keeping both norm values small is thus considered as an appropriate regularization 

parameter.  

 

3.2 Parameter selection based on DP 

The DP has gained wide applications in machine learning and statistics areas for l2 

regularizations. Lukas [40] applied the DP for choosing the regularization parameter 

in a discrete and probabilistic setting and investigated the asymptotic properties of the 

estimated regularization parameter. Hämarik and Raus [41] developed the DP for 

parameter selection of Tikhonov regularization with given error bound of data. Dong 

et al. [42] utilized the DP to choose the regularization parameter for current 

distribution reconstruction and compared its performance with the L-curve, the GCV, 

and the quasi-optimality (QO) criteria. It showed that the L-curve criterion performs 

much worse than DP, GCV, and QO. However, GCV demands enormous 

computational effort and is not as stable as other parameter selectors. For QO, it is not 

applicable to iterative and nonlinear regularization problems. When the statistics of 

the noise can be estimated, the DP is a prime choice since the rationale behind is clear 

and only the residuals are required to be computed.  

 

The method is developed here for the present l1-regularized damage detection problem. 

Considering a standard l1-regularized problem 

𝑥𝑥� = arg min
𝑚𝑚�

(‖[Φ]{𝑥𝑥} − {𝑦𝑦𝐸𝐸}‖22 + 𝛽𝛽‖{𝑥𝑥}‖1) (7) 

where {𝑦𝑦𝐸𝐸} = {𝑦𝑦} + {𝜀𝜀} ∈ 𝑅𝑅𝑀𝑀  is the measurement perturbed by noise {𝜀𝜀} , and 

[Φ] ∈ 𝑅𝑅𝑀𝑀×𝑁𝑁 (𝑀𝑀 < 𝑁𝑁)  is a linear operator. The unknown desired solution is denoted 

by {𝑥𝑥�} ∈ 𝑅𝑅𝑁𝑁, which satisfies [Φ]{𝑥𝑥�} = {𝑦𝑦}. Hence,  
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‖[Φ]{𝑥𝑥�} − {𝑦𝑦𝐸𝐸}‖ = ‖[Φ]{𝑥𝑥�} − {𝑦𝑦} − {𝜀𝜀}‖ = ‖{𝜀𝜀}‖ (8) 

The DP aims to find a regularization parameter 𝛽𝛽 ≥ 0, such that the corresponding 

solution �𝑥𝑥𝛽𝛽� satisfies the following equation  

�[Φ]�𝑥𝑥𝛽𝛽� − {𝑦𝑦𝐸𝐸}� = ‖{𝜀𝜀}‖ (9) 

Forcing �𝑦𝑦𝛽𝛽��= [Φ]�𝑥𝑥𝛽𝛽��  exactly the same as {𝑦𝑦𝐸𝐸}  is insensible because {𝑦𝑦𝐸𝐸} 

contains error. The reproduced �𝑦𝑦𝛽𝛽� should approximate {𝑦𝑦𝐸𝐸} within the expected 

value of the error {𝜀𝜀} [26-28].  

 
For the vibration-based damage detection problem, the perturbation {𝜀𝜀} is primarily 

attributed to the measurement noise of the modal data. According to the DP, the 

residual of the modal parameter calculated from a proper regularization parameter 

should match some statistical characteristics of the noise. The DP could be relaxed as 

follows considering the existence of uncertainties 

��𝑅𝑅𝛽𝛽({𝑝𝑝}) − {𝑅𝑅𝐸𝐸}� − ‖{𝜀𝜀}‖� ≤ 𝑇𝑇𝑇𝑇𝑇𝑇 (10) 

where 𝑅𝑅𝛽𝛽({𝑝𝑝}) is the analytical modal parameter calculated from the identified 

damage state for a particular 𝛽𝛽, and {𝑅𝑅𝐸𝐸} is the measured modal parameter.  

 

In this study, the DP will be revised to be suitable to the l1 regularization problem for 

damage detection. In practice, the experimentally measured modal data are 

contaminated by measurement noise; this scenario is generally assumed as a 

stochastic process [43-45], as shown in the following equation  

𝑅𝑅𝐸𝐸 = (1 + 𝛿𝛿𝛿𝛿)𝑅𝑅 (11) 

where 𝑅𝑅  is the true modal parameter without noise, 𝛿𝛿  is a random variable 

following the normal distribution with zero mean and unit variance, and 𝛿𝛿 denotes 

the noise level. The relative discrepancy between the calculated modal data and the 

measured ones is expressed by the following equation 

𝐷𝐷 =
{𝑅𝑅𝐸𝐸} − �𝑅𝑅𝛽𝛽(𝑝𝑝)� 

�𝑅𝑅𝛽𝛽(𝑝𝑝)� 
=  𝛿𝛿𝛿𝛿 (12) 
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Therefore, the selection criterion of the regularization parameter ensures that the 

modal parameter in the identified damage state corresponding to 𝛽𝛽 satisfies the 

following 

𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷) = 𝐸𝐸 ��
{𝑅𝑅𝐸𝐸} − �𝑅𝑅𝛽𝛽(𝑝𝑝)� 

�𝑅𝑅𝛽𝛽(𝑝𝑝)� 
�
2

2

� = 𝐸𝐸[ ‖𝛿𝛿𝛿𝛿‖22] = 𝛿𝛿2 (13) 

The measurement noise should be estimated in advance by using prior information or 

through measurements to apply the DP. The implementation process will be explained 

in detail and demonstrated using the following experimental examples. 

 

3.3 Summary of the two regularization parameter selection methods 

For a given damage detection problem, the corresponding objective function is first 

solved for different 𝛽𝛽 values ranging from 0 to 𝑖𝑖 ∙ ∆𝛽𝛽, with an increment of ∆𝛽𝛽. The 

residual norm  ‖𝑅𝑅({𝑝𝑝}) − {𝑅𝑅𝐸𝐸}‖22  and solution norm ‖{𝑝𝑝}‖1  are then calculated. 

Since the regularization parameter may differ by orders for different damage 

configurations, the calculation range and step size ∆𝛽𝛽 should be set accordingly.  

 

For the first method presented in Section 3.1, the residual and solution norms versus the 

regularization parameter are plotted to determine the appropriate regularization 

parameter, which cause both norm values are small at the same time. If the noise 

information is available, the DP-based strategy can be utilized for parameter selection. 

The L-curve of the solution norm versus the residual norm is first used to identify a 

preliminary range of the regularization parameter. The DP is then applied within this 

possible range to select the appropriate regularization parameter. The two proposed 

selection strategies can be used individually to determine the appropriate 

regularization parameter. If they are combined, the overlapped regularization 

parameter can be more accurate. The flowchart of the regularization parameter 

selection process is shown in Fig. 1.  
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Fig. 1. Flowchart of the parameter selection process 

 

�̂�𝑝 = arg min
𝑝𝑝�

( ‖{𝑅𝑅(𝑝𝑝)}− {𝑅𝑅𝐸𝐸}‖22 + 𝛽𝛽‖{𝑝𝑝}‖1) 
Start 

��𝑅𝑅𝛽𝛽𝑖𝑖({𝑝𝑝})− {𝑅𝑅𝐸𝐸}�  ,  �{𝑝𝑝}𝛽𝛽𝑖𝑖�1 � 

𝛽𝛽𝑖𝑖 = 𝑖𝑖 ∙ ∆𝛽𝛽   (𝑖𝑖 = 0,1,  ⋯ ,𝑛𝑛) 

𝐷𝐷(𝛽𝛽𝑖𝑖) =
{𝑅𝑅𝐸𝐸} − �𝑅𝑅𝛽𝛽𝑖𝑖({𝑝𝑝})� 

�𝑅𝑅𝛽𝛽𝑖𝑖({𝑝𝑝})� 
 

 �𝑅𝑅𝛽𝛽𝑖𝑖({𝑝𝑝})− {𝑅𝑅𝐸𝐸}�
2
2 ~ 𝛽𝛽𝑖𝑖      &     �{𝑝𝑝}𝛽𝛽𝑖𝑖�1~ 𝛽𝛽𝑖𝑖   

𝛽𝛽𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝 ∈ [𝑗𝑗1 ∙ ∆𝛽𝛽 ,  𝑘𝑘1 ∙ ∆𝛽𝛽] 

Residual norm &  
Solution norm 

DP 

𝛽𝛽𝑅𝑅𝑁𝑁&𝑆𝑆𝑁𝑁 ∈ [𝑗𝑗 ∙ ∆𝛽𝛽 , 𝑘𝑘 ∙ ∆𝛽𝛽] 

𝛽𝛽𝐷𝐷𝐷𝐷 ∈ [𝑗𝑗2 ∙ ∆𝛽𝛽 ,𝑘𝑘2 ∙ ∆𝛽𝛽] 

�̂�𝛽 ∈ 𝛽𝛽𝑅𝑅𝑁𝑁&𝑆𝑆𝑁𝑁 ∩ 𝛽𝛽𝐷𝐷𝐷𝐷 

𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷) = 𝛿𝛿2 

𝑉𝑉𝑉𝑉𝑉𝑉�𝐷𝐷(𝛽𝛽𝑖𝑖)� 

 �𝑅𝑅𝛽𝛽𝑖𝑖({𝑝𝑝})− {𝑅𝑅𝐸𝐸}�
2
2 ~  �{𝑝𝑝}𝛽𝛽𝑖𝑖�1 
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4. A Cantilever Beam 

4.1 Model descriptions 

A cantilever beam (Fig. 2) is first utilized to demonstrate the effectiveness of the 

proposed strategies for selecting the regularization parameter. The total length of the 

beam is 1000 mm, and the size of the cross section is 49.60 mm ×5.0 mm. The mass 

density and Young’s modulus are estimated as 7.67×103 kg/m3 and 2.0×1011 N/m2, 

respectively.  

 

 
Fig. 2. Overview of the beam structure 

 

4.2 Description of the experiment 

A series of modal testing was conducted on the intact beam. During the laboratory test, 

10 accelerometers were mounted on the beam to measure the acceleration responses 

to the impact force from an instrumented hammer. The measurement points were 

chosen every 100 mm (Fig. 3). The first six frequencies within the range of 0–300 Hz 

and the associated mode shapes were extracted using rational fraction polynomial 

method [46]. The results are listed in Table 1. 
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Fig. 3. Locations of accelerometers and simulated damage 

 

Three saw cuts were sequentially introduced into the beam model (Fig. 3). The cuts 

have the same length b = 10 mm but varied depth for simulating different damage 

severities. Cut 1 at the clamped end was introduced with a depth of d = 10 mm 

(damage scenario 1, or DS1), representing 40% damage in the element. The depth of 

cut 1 was then increased to d = 15 mm (DS2). Cuts 2 and 3 were successively 

introduced with depth d = 15 (DS3) and 20 mm (DS4), respectively. The modal testing 

procedures were repeated for each damage scenario. The frequencies and mode shapes 

of the damaged states were extracted accordingly and listed in Table 1, in which MAC 

stands for modal assurance criterion indicating the similarity between two sets of 

mode shapes [47]. The natural frequencies experience more significant changes 

compared with the mode shapes. The maximum averaged change in frequencies is 

8.04% with the accumulation of damage, whereas the mode shapes almost remain 

unchanged, especially for the first four modes.  

 

d 

d 

b 

Cut 1 Cut 2 Cut 3 
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Table 1. Measured modal data of the beam in the undamaged and damaged states 

Mode no. 
Undamaged Damage scenario 1 (DS1) Damage scenario 2 (DS2) Damage scenario 3 (DS3) Damage scenario 4 (DS4) 
Freq. (Hz) Freq. (Hz) MAC Freq. (Hz) MAC Freq. (Hz) MAC Freq. (Hz) MAC 

1   3.53   3.49 (−1.24) 99.99   3.38 (−4.41) 99.97   3.33 (−5.91) 99.98   3.36 (−4.91) 99.99 
2  21.77  21.39 (−1.72) 99.95  20.85 (−4.26) 99.84  20.29 (−6.81) 99.86   19.76 (−9.22) 99.95 
3  60.78  59.46 (−2.16) 99.88  58.93 (−3.04) 99.83  58.38 (−3.95) 99.57  54.37 (−10.55) 99.60 
4 119.46 118.31 (−0.96) 99.88 116.01 (−2.88) 99.51 113.35 (−5.12) 99.23 106.31 (−11.01) 99.06 
5 194.78 191.98 (−1.44) 99.78 188.74 (−3.10) 99.17 188.46 (−3.25) 98.87  187.17 (−3.91) 99.14 
6 292.82 281.56 (−3.84) 98.07 286.76 (−2.07) 94.95 275.08 (−6.06) 98.26  267.45 (−8.66) 97.26 

Average (%)       (−1.90) 99.59       (−3.29) 98.88       (−5.18) 99.30       (−8.04) 99.17 

Note: Values in parentheses are the frequency change ratios (%) between the damaged and undamaged states 
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4.3 Finite element modeling of the beam 

The beam is modeled using 100 Euler–Bernoulli beam elements (10 mm long). The 

length of one element is identical to the length of each cut; as such, the damage 

severity of each cut is equal to the reduction in the moment of inertia of the cross 

section and is quantified by SRF. The actual damage locations and severities of the 

four damage scenarios are listed in Table 2. Using this FE model, the first 6 modal 

frequencies and mode shapes are calculated and compared with the measured ones in 

Table 3. The averaged frequency difference is 0.54% and MAC value is 99.81, 

indicating that the model predictions agree well with the experimental data. 

 

Table 2. Damage locations and severities for four damage scenarios 

Scenario Element no. Damage severity (SRF) 
DS1 1 −40% 
DS2 1 −60% 

DS3 1 −60% 
50 −60% 

DS4 
1 −60% 
50 −60% 
75 −80% 

 

Table 3. Numerical modal data of the beam in the intact state 

Mode 
no. 

Experiment 
Freq. (Hz) 

FE analysis 
Initial Model Updated Model 

Freq. 
(Hz) Diff. (%) MAC 

(%) 
Freq. 
(Hz) Diff. (%) MAC 

(%) 

1   3.53   3.53 0.00 99.99 3.53 0.02 99.99 
2  21.77  21.92 0.69 99.93 21.75 −0.12 99.94 
3  60.78  61.22 0.72 99.71 60.67 −0.17 99.80 
4 119.46 118.40 −0.89 99.76 119.21 −0.21 99.78 
5 194.78 195.34 0.29 99.66 195.01 0.12 99.89 
6 292.82 294.77 0.67 99.81 293.75 0.03 99.93 
Average of absolute values 0.54 99.81  0.11 99.89 
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Among the total 100 elements of the beam model, only 1 to 3 damaged elements have 

non-zero SRF values. Therefore, the SRF vector is very sparse. Only the first six 

frequencies and mode shapes are utilized for damage detection, and 66 measurement 

data are obtained. Identification is an underdetermined problem because 100 unknown 

SRF values have to be identified. With consideration of the modeling uncertainties of 

the initial FE model, the FE model is first updated using the modal data measured 

from the undamaged state. The updated FE model matches the measurement better as 

the averaged frequency difference decreases from 0.54% to 0.11% and MAC 

increases slightly (Table 3). This updated model will be used for damage detection. 

 

4.4 Selection of the regularization parameter  

 

1) Damage scenario DS1 

 

For DS1, the objective function, i.e., Eq. (6), is solved for different 𝛽𝛽 values ranging 

from 0 to 1.0, with an increment of ∆𝛽𝛽 = 0.005. The residual and solution norms 

versus 𝛽𝛽 are plotted in Fig. 4. With increasing 𝛽𝛽, the solution norm drops quickly 

first, then decreases slowly, and suddenly drops to zero when 𝛽𝛽 reaches the maximal 

regularization parameter 𝛽𝛽max = 0.485 . The residual norm rises rapidly at the 

beginning and increases gradually from 𝛽𝛽 = 0.025. The corresponding residual and 

solution norms change slowly with increasing 𝛽𝛽  ( 𝛽𝛽 = 0.06~0.485 ). The 

regularization parameter in this range achieves a fair balance in keeping both norms 

small. Therefore, 𝛽𝛽 = 0.06~0.485 is determined as the appropriate range of the 

regularization parameter.  
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𝛽𝛽 

Fig. 4. Residual and solution norms for different values of 𝛽𝛽 in DS1 

 

The DP is also applied to select the regularization parameter. First, a possible range of 

the proper regularization parameter is determined based on the plot of the solution 

norm versus the residual norm on the linear scale. The variance of the discrepancy 

between the calculated and measured modal data is calculated over this possible 

range.  

 

Natural frequencies can be measured more accurately than other vibration properties. 

Previous studies [43, 48-50] suggested that natural frequencies may contain 1% noise 

in practical vibration tests. In the present study, natural frequencies are assumed to 

contain 1% noise, that is, the standard deviation of noise 𝛿𝛿 = 0.01 . For each 

regularization parameter 𝛽𝛽, the corresponding discrepancy of natural frequencies can 

be calculated as follows  

𝐷𝐷(𝛽𝛽) =
{𝑓𝑓𝐸𝐸} − �𝑓𝑓𝛽𝛽(𝑝𝑝)� 

�𝑓𝑓𝛽𝛽(𝑝𝑝)� 
 (14) 

where {𝑓𝑓𝐸𝐸} is the measured natural frequency, and �𝑓𝑓𝛽𝛽(𝑝𝑝)� is the calculated natural 

frequencies of the damaged structure corresponding to 𝛽𝛽. According to Eq. (14), the 

regularization parameter is selected such that the variance of the discrepancy 

𝑉𝑉𝑉𝑉𝑉𝑉�𝐷𝐷(𝛽𝛽)� is closest to the estimated 𝛿𝛿2 = 1×10-4.  
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The solution norm versus the residual norm for DS1 is plotted on the linear scale in Fig. 

5 (a). The enlarged diagram with 𝛽𝛽 within the range of 0.025–0.485 is shown in Fig. 

5 (b). Although this curve has some resemblance to “L”, it bunches up at some points. 

Therefore, it is difficult to identify the optimal regularization parameter by locating the 

“corner”, as the L-curve criterion used in the l2-regularized problems. Instead, a 

possible range of 𝛽𝛽, which is around the corner of the L-shaped curve, can be 

determined. For DS1, the possible range of the regularization parameter is 

approximately 0.025–0.485.  

 
(a) 𝛽𝛽 between 0 and 1 

 

(b) 𝛽𝛽 between 0.025 and 0.485 

Fig. 5. Solution norm versus residual norm for a range of 𝛽𝛽 between 0 and 1 (DS1) 
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Fig. 6 shows the 𝑉𝑉𝑉𝑉𝑉𝑉�𝐷𝐷(𝛽𝛽)� for different values of 𝛽𝛽 within the range of 0.025–

0.485. The variances in the possible range of 𝛽𝛽 are all higher than the estimated 

value and vary slightly. Therefore, 𝛽𝛽 = 0.025~0.485 is determined as the appropriate 

range of the regularization parameter because the variances in this range are all close 

to 1×10-4. The feasible ranges of the regularization parameter determined by the two 

proposed strategies are almost the same.  

 

 
     𝛽𝛽 

Fig. 6. 𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷(𝛽𝛽)) for different values of 𝛽𝛽 between 0.025 and 0.485 (DS1)  

 

The damage identification results of SRFs are displayed in Fig. 7 for different values 

of 𝛽𝛽. For 𝛽𝛽 = 0.01, although the true damage at element 1 can be detected, the 

identified SRFs are distributed among a number of elements. When the regularization 

parameter is within 0.025–0.485, the damage identification results are accurate. At 

𝛽𝛽 = 0.025, although several elements are falsely identified as damaged, the identified 

SRFs are very small and can be neglected. For the other three regularization 

parameters, the identified damage severities are all close to the true value (SRF1=–

0.4), and no false identification occurs. At 𝛽𝛽 > 0.485, the solution becomes zero, and 

no damage can be detected.  
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(a) 𝛽𝛽 = 0.01 (b) 𝛽𝛽 = 0.025 

  

(c) 𝛽𝛽 = 0.06 (d) 𝛽𝛽 = 0.25 

 

 

(e) 𝛽𝛽 = 0.485  

Fig. 7. Damage identification results for DS1 
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2) Damage scenario DS2 

 

For DS2, the objective function is similarly solved for different 𝛽𝛽 values ranging 

from 0 to 1.0 with an increment ∆𝛽𝛽 = 0.005. The curves of the residual and solution 

norms versus 𝛽𝛽 are shown in Fig. 8. At 𝛽𝛽 ≥ 0.085, the residual and solution norms 

are almost unchanged with increasing 𝛽𝛽. Therefore, the appropriate range of the 

regularization parameter is determined as 𝛽𝛽 = 0.085~0.95, which keeps the two 

norms small at the same time.  

 

 
𝛽𝛽 

Fig. 8. Residual norm and solution norm for different values of 𝛽𝛽 in DS2 

 

The curve of the solution norm versus the residual norm on the linear scale is shown in 

Fig. 9. The suitable range of the regularization parameter for DS2 is first estimated as 

0.055–0.95. 𝑉𝑉𝑉𝑉𝑉𝑉�𝐷𝐷(𝛽𝛽)� for different values of 𝛽𝛽 in the previously mentioned range 

are displayed in Fig. 10. The variances vary slightly with increasing 𝛽𝛽 and are all 

lower than the estimated value. Therefore, 𝛽𝛽 = 0.055~0.95 is determined as the 

appropriate range of the regularization parameter with the calculated variances close to 

1×10-4. This range is slightly wider than that determined using the previous strategy. 

The damage identification results for different values of 𝛽𝛽 within the range of 0.055 

to 0.95 are shown in Fig. 11. In all cases, the damage location and severity are 
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identified accurately. When 𝛽𝛽 is out of the range, the damage identification results 

are incorrect and not shown here for brevity.  

 

 
 

 
Fig. 9. Solution norm versus residual  

norm for a range of 𝛽𝛽 between 0 and 1 
Fig. 10. 𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷(𝛽𝛽)) for different values 

of 𝛽𝛽 between 0.055 and 0.95 (DS2) 
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(c) 𝛽𝛽 = 0.49 (d) 𝛽𝛽 = 0.95 

Fig. 11. Damage identification results for DS2 

 

3) Damage scenario DS3 

 

For DS3, the objective function is solved for different values of 𝛽𝛽 ranging from 0 to 

1.4 with the increment ∆𝛽𝛽 = 0.005. The curves of the residual and solution norms 

versus 𝛽𝛽 are displayed in Fig. 12. The residual and solution norms are almost 

unchanged when 𝛽𝛽  is within 0.035–0.095. At 𝛽𝛽 > 0.095 , the residual norm 

increases suddenly, whereas the solution norm decreases. With increasing 𝛽𝛽, the 

residual and solution norms are nearly constant until the maximal regularization 

parameter is reached. As introduced previously, it is usually the case that the sparsity 

of the solution increases with increasing regularization parameter, leading to loss of 

data fidelity. Therefore, the appropriate range of the regularization parameter is 

determined as 𝛽𝛽 = 0.035~0.095 , because of minimal improvement gained by 

increasing the regularization parameter. This range is smaller than those of the 

previous two damage scenarios, indicating that the inverse problem corresponding to 

DS3 is more sensitive to the regularization parameter.  
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𝛽𝛽 

Fig. 12. Residual norm and solution norm for different values of 𝛽𝛽 in DS3 

 

The L-curve of the solution norm versus the residual norm for DS3 is shown in Fig. 13. 

The suitable range of the regularization parameter is estimated as 0.035~1.30. 

𝑉𝑉𝑉𝑉𝑉𝑉�𝐷𝐷(𝛽𝛽)� for different 𝛽𝛽 values within the range are displayed in Fig. 14. The 

distribution of the variances exhibits a step-like pattern. The variances for 𝛽𝛽 ∈

(0.035~0.095) are very close to the estimated value (i.e., 1×10-4), whereas a big and 

abrupt increase occurs at 𝛽𝛽 = 0.10. Therefore, 0.035~0.095 is determined as the 

suitable range of the regularization parameter, consistent with the result obtained 

using the previously discussed method.  

 

The damage identification results are displayed in Fig. 15. For 𝛽𝛽 = 0.035 and 𝛽𝛽 =

0.095, both damaged elements can be located and quantified correctly. At 𝛽𝛽 = 0.10, 

the damaged elements can be detected, but the severity of the damage at the mid-span 

is incorrect. For 𝛽𝛽 = 0.80, the damage at the mid-span of the beam cannot be 

identified.  
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Fig. 13. Solution norm versus residual  
norm for a range of 𝛽𝛽 between 0 and 1.4 

Fig. 14. 𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷(𝛽𝛽)) for different 
values of 𝛽𝛽 between 0.035 and 1.30 

(DS3) 
 

  

(a) β = 0.035 (b) 𝛽𝛽 = 0.095 

  

(c) 𝛽𝛽 = 0.10 (d) 𝛽𝛽 = 0.80 

Fig. 15. Damage identification results for DS3 
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4) Damage scenario DS4 

 

For DS4, the objective function is solved for different 𝛽𝛽 values ranging from 0 to 2.2 

with the increment ∆𝛽𝛽 = 0.005. The plots of residual and solution norms versus 𝛽𝛽 

are shown in Fig. 16. The appropriate range of the regularization parameter is 

determined as 𝛽𝛽 = 0.095~0.145, which keeps both the residual and solution norms 

small at the same time.  

 

 
𝛽𝛽 

Fig. 16. Residual and solution norms for different values of 𝛽𝛽 in DS4 

 

The resulting curve of the solution norm versus the residual norm on the linear scale is 

shown in Fig. 17. The suitable range of the regularization parameter for DS4 is 

estimated as 0.095–0.30. 𝑉𝑉𝑉𝑉𝑉𝑉�𝐷𝐷(𝛽𝛽)� for different values of 𝛽𝛽 in the possible range 

are displayed in Fig. 18. The corresponding variances are all close to the estimated 

value at 𝛽𝛽 < 0.15. Thus, the appropriate range of the regularization parameter is 𝛽𝛽 =

0.095~0.145, consistent with the result of previous strategy.  
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Fig. 17. Solution norm versus residual  
norm for a range of 𝛽𝛽 between 0 and 2.2 

Fig. 18. 𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷(𝛽𝛽)) for different values 
of 𝛽𝛽 between 0.095 and 0.30 (DS4) 

 

The damage identification results for different values of 𝛽𝛽 are shown in Fig. 19. At 

𝛽𝛽 = 0.03 , the identification result is not sparse, and a considerable number of 

undamaged elements are falsely identified as damaged. For 𝛽𝛽 = 0.095 and 𝛽𝛽 =

0.145, the damaged elements (nos. 1, 50, and 75) are located and quantified accurately. 

At 𝛽𝛽 = 0.18, the damage in the mid-span (no. 50) cannot be detected.  
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(c) 𝛽𝛽 = 0.145 (d) 𝛽𝛽 = 0.18 

Fig. 19. Damage identification results for DS4 

 

The experimental results show that the proposed selection strategies can provide a 

feasible range of the appropriate regularization parameter. The appropriate ranges 

determined by the two strategies are consistent with each other. Accurate damage 

identification results can be obtained using the regularization parameter selected from 

this range. Compared with single damage, multiple damage scenarios are more 

difficult to identify accurately. The feasible ranges of the regularization parameter for 

DS3 and DS4 with multiple damage are smaller than those of the two single damage 

scenarios. Therefore, the damage identification accuracy for multiple damage 

scenarios is more sensitive to the regularization parameter. 

 

5. A Three-story Frame 

5.1 Model descriptions 

Hou et al. [13] tested a three-story steel frame (Fig. 20). Each story of the frame is 0.5 
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vertical acceleration of the beam and the horizontal acceleration of the column were 

measured.  

 

 

Fig. 20. Locations of accelerometers and simulated damage (Unit: mm) 
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Two cuts were introduced to the frame model. Cuts 1 and 2 were located at column 

end and the beam/column joint, corresponding to elements 1 and 176, respectively. 

The enlarged Cut 1 is shown in Fig. 21. The saw cuts have the same length b = 20 mm 

and depth of d = 22.5 mm, leading to the reduction of the moment of inertia of the cut 

sections by 60%, that is, SRF(1) = SRF(176) = –60%. The first eight frequencies and 

mode shapes of the frame structure before and after damage are listed in Table 4. 

 

 

Fig. 21. Configuration of cut 1 

 

Table 4. Measured modal data of the frame in undamaged and damaged states 

Mode no. 
Undamaged Damaged 
Freq. (Hz) Freq. (Hz) MAC 

1   4.23   4.08 (-3.53) 95.78 
2  14.03  13.45 (-4.11) 97.49 
3  25.45  25.13 (-1.23) 99.01 
4  44.81  44.69 (-0.27) 97.59 
5  58.12  57.28 (-1.44) 91.46 
6  68.36  66.11 (-3.29) 88.14 
7  72.27  71.42 (-1.18) 85.80 
8  91.73  88.51 (-3.52) 76.38 

Average (%)       (-2.32) 91.46 
 

b d 
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5.2 Selection of the regularization parameter 

In this case, the objective function is solved for different values of 𝛽𝛽 ranging from 0 

to 1.5 with the increment ∆𝛽𝛽 = 0.01. The curves of the residual and solution norms 

versus 𝛽𝛽 are shown in Fig. 22. 𝛽𝛽 = 0.12~0.35 is determined as the appropriate 

range of the regularization parameter, where the corresponding residual and solution 

norms are both small.  

 

 
𝛽𝛽 

Fig. 22. Residual norm and solution norm for different values of 𝛽𝛽 of the frame 

structure 

 

The possible range of the optimal regularization parameter is estimated as 0.12~1.33 

based on the L-curve of the residual norm versus the solution norm as displayed in Fig. 

23. 𝑉𝑉𝑉𝑉𝑉𝑉�𝐷𝐷(𝛽𝛽)� for different values of 𝛽𝛽 within this range are shown in Fig. 24. The 

variances over the possible range of 𝛽𝛽 are all higher than the estimated value. With 

increasing 𝛽𝛽, the variance almost remains unchanged at the beginning and increases 

abruptly at 𝛽𝛽 ≥ 0.36. Therefore, 𝛽𝛽 = 0.12~0.35 is chosen as the feasible range of 

the regularization parameter with the corresponding variances close to the estimated 

value. The appropriate ranges of the regularization parameter determined by the two 

proposed strategies are consistent.  

 

The damage identification results for different values of 𝛽𝛽 are shown in Fig. 25. 
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Accurate damage identification results can be obtained using the regularization 

parameter within 0.12–0.35. The damaged elements can be correctly detected, and no 

false identification occurs. At 𝛽𝛽 = 0.60, which is out of the feasible range, only 

damage at the column end (element 1) is identified, and the other damage at element 

176 is not detected.  

 

  

 
Fig. 23. Solution norm versus residual  

norm for a range of 𝛽𝛽 between 0 and 1.5 
Fig. 24. 𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷(𝛽𝛽)) for different values 

of 𝛽𝛽 between 0.12 and 1.33 (DS4) 
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(b) 𝛽𝛽 = 0.20 

 

(c) 𝛽𝛽 = 0.35 

 

(d) 𝛽𝛽 = 0.60 

Fig. 25. Damage identification results for the frame structure 

 

6. Conclusions and Discussions 

Exploiting the sparse condition of structural damage, the l1 regularization technique is 

employed in model updating to improve the damage identification accuracy. This 

study proposes two strategies for selecting the regularization parameter. Following the 

similar idea of the L-curve criterion for l2 regularization, the first selection method 

20 40 60 80 100 120 140 160 180 200 220
-0.8

-0.6

-0.4

-0.2

0

Element No.

SR
F

20 40 60 80 100 120 140 160 180 200 220
-0.8

-0.6

-0.4

-0.2

0

Element No.

SR
F

20 40 60 80 100 120 140 160 180 200 220
-0.8

-0.6

-0.4

-0.2

0

Element No.

SR
F



34 
 

utilizes the residual and solution norms to determine the appropriate range of the 

regularization parameter. The other selection criterion is developed based on the DP 

such that the variance of the discrepancy between the calculated and measured modal 

data is close to the variance of the measurement noise.  

 

Two experimental examples demonstrate that an appropriate range of the 

regularization parameter can be determined using the two proposed techniques and the 

results are consistent. Accurate damage identification results can be obtained when the 

regularization parameter is selected within the specified range even for multiple 

damage scenarios. When the regularization parameter is out of the range, true damage 

may not be detected, or undamaged elements may be falsely identified as damaged. 

The suitable range depends on the structure and damage scenario. A wider range 

indicates that the damage detection problem is insensitive to the regularization 

parameter. 
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