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Abstract: The focus of this paper is ErosLab, a useful tool for the development, analysis and
application of constitutive models developed to solve the modelling problems inherent in soil tests.
The ErosLab is programmed in the way of admixture programming with C#, MATLAB and
FORTRAN, offering a powerful environment for various kinds of modelling soil tests. The proposed
tool has six important features: (1) a mechanical calculator; (2) the ability to cover various kinds of
soil tests; (3) a number of soil models with a user extension interface; (4) multiple methods of
loading control; (5) comprehensive and efficient debugging; and (6) visualisation with graphical
displays. Furthermore, the entire graphical user interface and usage instructions for the tool are
briefly illustrated in simple and practical terms. Finally, three case studies are presented in which
ErosLab was used, to highlight its performance in modelling tests for different soils.
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1 Introduction

Constitutive models play an important role in the design and construction of geotechnical
engineering. To date, hundreds of different soil constitutive models, varying in view from micro to
macro, have been proposed [1-10]. A range of results may be obtained depending on the selection of
model, leading to different engineering decisions, which consequently alters the economy and risk
level of problems. However, most engineers have failed to fully understand constitutive models and
have invariably chosen a model based on their own preferences and experiences, hoping that a “one-
size-fits-all” approach can solve all engineering problems. Some widely used models can sometimes
result in significantly unreasonable predictions when applying to conventional engineering [11], as
seen when the Mohr-Coulomb model was adopted to analyse an excavation [12] and when the
modified cam-clay was employed to predict the long-term settlement of embankment [13-16]. A lack
of proper understanding of the constitutive model has become one of the main risk factors in terms of
accidents [17-21]. Therefore, it is essential that the merits and drawbacks of the selected model are
completely understood before its application. In general, the quickest way to do this is to simulate
laboratory tests. However, most engineers struggle with writing a computer program that can
implement the soil model to achieve such a simulation. To address this, a tool that could model soil

tests by providing a variety of constitutive models would be highly useful.

Previously, a range of practical tools in the field of geotechnical engineering have been
developed. These offer an object-oriented design to simulate engineering issues using a variety of
constitutive models, such as some commercial codes (ABAQUS[22], FLAC[23], PLAXIS[24] and
COMSOL][25]), or open sources codes [26-29]. Of these, only PLAXIS has partial functions in the
modelling of soil tests. However, the kinds of tests provided, and the loading control, are somewhat
limited. This bolsters the case for the development of a tool that can offer a powerful environment
for simulating various kinds of laboratory tests. Engineers could use this to understand a soil model

without the need to reproduce its mode of operation, which is another area of difficulty.

In this paper, a modelling tool (ErosLab) for soil laboratory tests is developed and introduced.

First, the different kinds of tests that can be used with the tool are briefly introduced. Second, its

2
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general framework is presented, including its mixed language programming and six main features.
Third, its graphical user interface and usage instructions are illustrated. Finally, descriptions are
given of the carrying out of three cases of parameter identification (first for modelling of sand
behaviours, second for modelling of clay behaviours and the third for modelling of time effects of
soil). The developed software can be freely downloaded from the following URL:

http://www.geoinvention.com/en/news.asp?big=14.

Since the development of constitutive models is usually based on laboratory tests, developing
this tool should be first helpful for the research purpose of constitutive modelling. Even though field-
scale problems cannot be directly simulated, the debugging scheme in this tool includes complex
loading combinations reflecting various in-situ conditions. Furthermore, the tool should also be

helpful for the teaching purpose and basic training of constitutive modelling for students.

2 Basic definitions
2.1 Stress analysis

The stress state of a single element can be described using six independent stress components.
In constitutive model programming, the stress tensor is usually expressed as
o, :[0' c, 0. O, C O',Z:|T (1)
The o, (or p) is defined as the average normal stress or mean effective stress:

o, = %(o-m +o, +o-zz) 2)

atx - o-m Xy sz O-m O O
- _ 2)
o, = T, o, -0, T, +10 o, O S5,
T o.-0 0 0 o

symbel{wheni=j, 8, =1, wheni# j, 5, =0
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The deviatoric stress tensor can be expressed as:

O-xx - O-m Txy sz S)GC Sxy SXZ Sll s12 S13
S; =0, — O-mé‘ij = T, o, -0, T, =[S, Sy S TSy Sy Sy (3)
T, T o. -0 S, S, S S31 S Sy

The first, second and third invariants of the stress tensor are:

I, =0+ c,+0.,

I, = Ter P + A MEANE =0,0,+0,0.+0.0, —T. —1, T, 4)
Tyx O-W sz UZZ z-)CZ O-)cx
O T, T,

L=, o0,7.|=0,0,0, +2t, 7.7, -0,7, -0, 1. —0.T,
T.,.7,0.

While the three invariants of the deviatoric stress tensor are:

Jy=s,+s,+s.=0
1

1 2 2 2 2 2 2
J, = 58S = E(Sxx +s, +ss + 270 + 27, +27},Z) (5)
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where-tThe deviatoric stress ¢ can be calculated using the second invariant of the deviatoric stress

tensor J,.

3J, (6)

In a triaxial test, the deviatoric stress g can be simplified to g=|o,-7;|, or g=0,-0; to distinguish

the compression or the extension conditions.

The lode angle & can be calculated using the invariants of the deviatoric stress tensor as follows:

ENERA
3

3

0s30 = (7
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This works for a conventional triaxial compression test with o»=03, b=0 and £=0°; for a conventional

triaxial extension test with o,=07, b=1 and ¢=60°; and when o,=(0,+0,)/2, b=0.5 and 6=30°. Note

that b is the parameter of intermediate principal stress, and is defined as »=(c,-0,)/(0, - 03)).

The principal stress oy, o> and o3 can be obtained as follows,

2.2 Strain analysis

1

o, =—+2
3
Il

O'2 :?‘i‘
Il

0'3 :?"r

‘/ﬁcosﬁ
3

2 (cosH—x/gsin 6) or

(cos¢9+ J3sin 9)

o, :p+§qcos€
o, :p+§qcos(€—2?”j (8)

o, = +g cos 49+2—ﬂ
3 =P 3‘1 3

Under the small deformation condition, the-strain-state-at-a-peint-can-be-deseribed-by-the-strain
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where—s-is-the-engineering shearstrain- the strain tensor can be divided into deviatoric and spherical

tensors as follows:

E.—€ l}/ l}/
X m 2 xy 2 Xz
1 1
gy = Eyyx {;‘) _gm Eyyz +
17 17 £, €&
_2 zx 2 zy z m_

=e, +¢,0, )

where y is the engineering shear strain, e; is deviatoric strain tensor, and the mean strain ¢, is

defined as &, =(z,+¢,+2.)/3.
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The general shear strain ¢, is defined as:

g, = %e,jeﬂ. and 8d=§(81—83) for a triaxial test (&, = &, ) (10)

For a triaxial test { g, = g, ), the general shear strain g, can be reduced to:
The volumetric strain ¢, is (under the small deformation assumption):

P _AVV_(1+51)(1+52)(1+53) lxg +e+6& (11)

v

3 ErosLab tool

3.1 Mixed-language programming

Fig. 1 shows the schematic overview of the mixed-language programming for ErosLab. The
tool is programmed using the admixture method, with Microsoft Visual C?, MATLAB and
FORTRAN. The graphical user interface is programmed in C*, the post-processing (for plotting the
figure, exporting the results, generating the report and reading the help documentation) is realised
using MATLAB, and the constitutive models are programmed in FORTRAN. All MATLAB files are
built as dynamic library files (*.dll) under the .NET Framework 4.0. The version of MATLAB used

is MATLAB 2016b.
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3.2 General structure of ErosLab

The general structure of ErosLab is shown in Fig. 2 and the six main features are summarised in
this section.
3.2.1 Provision of a mechanical calculator

The tool provides a practical mechanical calculator. For a given stress tensor oj;, the invariants
of the stress tensor (/;, I, and I3), the invariants of the deviatoric stress tensor (J;, J, and J3), the
principal stress (o1, 0 and o3), the mean stress p, the deviatoric stress tensor s;;, the deviatoric stress
g, the lode angle 6, and the directions of principal stresses (/, m and #) can be obtained. Furthermore,
the transformation of coordinates can also be achieved. For a given strain tensor, the invariants of the
strain tensor (/',, I, and [%), the invariants of the deviatoric strain tensor (J', J> and J), the
principal strain (&, & and &), the mean strain &, the deviatoric stress tensor ej;, and the deviatoric
strain &, can be similarly obtained. The stress and strain analysis can be conducted rapidly via the

mechanical calculator provided by ErosLab, which is useful for study and research purposes.

3.2.2  Provision of various types of soil tests

A range of common laboratory tests are provided in this tool, including the oedometer test, the
triaxial test, the simple shear test, the biaxial test, true triaxial test, and the cylindrical hollow
torsional shear test. Compared to PLAXIS, the proposed tool offers a greater variety of types of

laboratory tests. The laboratory tests available in ErosLab are briefly introduced below.

In the tool, the oedometer test is simulated as a one-dimensional compression test, where the
lateral deformation is constrained to zero and only vertical deformation is allowed. The lateral stress
necessarily keeps changing during the loading process because of the restriction of lateral
deformation. Therefore, the test can be conveniently controlled by pure strain loading or strain-and-
stress mixed loading. Note that the proposed ErosLab has difficulty in conducting the conventional
24h oedometer test because of lacking implementation of soil-water coupling analysis, which will be

available in further development for finite element analysis tool.
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For the conventional consolidated drained triaxial compression test, the soil sample is first
consolidated to a given confining pressure; then, the axial load is increased up to the failure of the
sample while keeping the confining pressure constant. The slope of this loading path in the p'-g plane
is 3. For the conventional consolidated undrained triaxial compression test, the increment of total
confining stress is kept constant; thus, the slope of the loading path on the p-g plane remains 3.Under
the conventional confining pressure, both the soil particle and the water are considered
incompressible, creating the possibility of fulfilling the undrained condition by keeping the
volumetric strain constant. In this way, whether compression or extension occurs depends on the
increasing or decreasing of the axial strain respectively. In this program, all undrained simulations
(except for the creep simulation using the ANICREEP model) are performed by keeping the

volumetric strain constant.

In the simple shear test, the shear strain (y) is defined as the ratio of the horizontal displacement
to the sample height. Under the loading of vertical shear strain, the shear stress, vertical stress and
vertical displacement can be obtained using a simple shear test. Two options exist for conducting this
simple shear test: (1) keeping a constant vertical load, which is the drained simple shear test, and (2)

keeping the volume of the sample constant, which can be regarded as the undrained simple shear test.

The aim of the biaxial test is to study the stress-strain-strength behaviours of soil in a plane-
strain condition. For this test, the displacement in the perpendicular to the plane is constrained to
zero and the lateral of the sample is constrained by applying a horizontal confining pressure (o).

Then, the sample is loaded by applying a vertical load (either by displacement &, or stress o).

The purpose of the true triaxial apparatus is to study the stress-strain-strength behaviours of soil
in a 3D condition. Since all 3D stresses can be controlled respectively, the true triaxial test can make
many complicated stress paths a reality. A common stress path is to carry out a series of drained
shear tests with different constant intermediate principal stress factors b (b=(03-03)/ (01-03)), or lode

angle (6), while keeping the mean stress constant. p" and b, as input values are known; that is, the
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sample is loaded to failure by increasing the major principal stress along with the intermediate and

minor principal stress calculated according to Eq.(12).

, +o,+0; 3(1-b6)p"+(2b-1)0o] 2b -1
e P ( )p2 5, )oi "“5:(2 b)da{
o o = 30 (1 b‘ . = l_b (12)
p=2"% )l il Lt dot =0+ 4o
0, ~0; 2-b 2-b

The hollow cylinder torsional shear test is an effective means of studying the influence of
principal stress rotation on the stress-strain relationship and the anisotropy of soil. When the
principal stress does not rotate, the apparatus can also be used to conduct the true triaxial test in
different stress paths. In the program, the sample is first isotropically compressed to a confining

pressure, then kept constant; loading is applied by changing the values of ¢, @ and b, as shown in

Eq.(13).
g L oi(a)
o, = +iq o. =%+%cos(2a) ’ 6\/b2—b+1 2\/b2—b+1
1
3Vh* —b+1 o o o =p+ 2b-1 g
_ r - Y2 r 2
62:p+Lq+ o +o o —o = 3\]b b+1 (13)
Wp—b+1 |0, =——————cos(2a) o, 1-2p 1
2 2 o,=p'+ - q- = gcos(2a)
o bl o 6Vb —b+1 2P —b+1
TP r,=——sin(2ax
Wo—b+l T =" sin(2a) .- gsin(2a)
2Vb? —b+1

3.2.3  Provision of a variety of soil models and supporting of the extension

In ErosLab, a total of six soil constitutive models (Perfect EP, NLMC, MCC, SIMSAND,
ASCM and ANICREEP) are provided, which covers most commonly adopted mechanical soil
models. Other advanced soil models will be available in the next version of ErosLab. There follows

short descriptions of the presented soil models.

The perfect elastoplastic model (Perfect EP) is a series of perfect elastoplastic models involving
different yield criteria (the Von-Mises, Tresca, Mohr-Coulomb, SMP and g(6#) of Sheng). The
Nonlinear Mohr-Coulomb model (NLMC) was developed against the framework of Mohr-Coulomb,

by implementing nonlinear elasticity, nonlinear plastic hardening, and a simplified 3D strength
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criterion (Jin et al., 2016a)[30]. The model is similar to the shearing element of the Hardening Soil
model (HS). The Modified Cam-Clay model (MCC) was developed by researchers at the University
of Cambridge, based on the mechanical behaviour of remoulded clay (Roscoe & Burland[31]) and is
widely used for geotechnical analysis. The critical-state-based SIMple SAND model (SIMSAND)
was developed on the basis of the NLMC by implementing the critical state concept and the capping
mechanism (Jin et al., 2016a, 2016b) [30, 32]. The Anisotropic Structured Clay Model (ASCM) was
developed with the MCC as its foundation and takes into account the behaviour of intact clays
because of its natural structure (Yang et al.[33]). The model can be used to predict the mechanical
behaviour of soft structured clay, stiff clay and artificially reinforced clay. The ANIsotropic CREEP
model (ANICREEP), for natural soft clays, was also based on the MCC, as well as the overstress
theory and the different time-dependent behaviours of such clays (Yin et al. [5, 34, 35]). The

ANICREEP can be applied to a range of natural soft clays, stiff clays and artificial soils.

To improve the extensibility of the proposed tool, the user-defined material (UMAT) is
supported, which allows the user to implement other soil models in ErosLab Fig. 3 shows an
interface module of UMAT written in the FORTRAN language. A *.dll file can be compiled by
adopting the Intel FORTRAN 32 bit as the compiler tool. Thereafter, the *.dll file should be renamed
“Umat.dll” and placed into the same directory as the main program of ErosLab. Then, the user-
defined material can be found in the tool. Note that the name of the subroutine must be “Umat”
(altering this will lead to errors). IDtask is the task number. IDtask=1 is the initialisation of the state
variables; IDtask=2 calculates the elastic matrix; and [Dtask=3 updates the stress and state variables.
The cm is a vector with the material parameters; deps is the strain increment; sig is the stress; hsv is
the state variables; and CC is the elastic matrix tensor. Other parameters and state variables can be
defined by the user. “!DEC$ ATTRIBUTES DLLEXPORT, DECORATE, ALIAS: ‘Umat’ :: Umat”

1s the statement of the subroutine name.

3.2.4 Provision of multiple ways of loading control
Two conventional loading methods are provided: (a) monotonic loading and (b) cyclic loading.

For the former, the loading of stress control and strain control for all laboratory tests is available. To

10
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efficiently conduct the simulation, one-stage and multi-stage loading can be alternatively chosen by
the user; for example, the arbitrary stress or strain path can be simulated for the triaxial test. For
cyclic loading, the cyclic stress control and strain control are allowed. Note that the function takes
effect only when the selected constitutive model is able to reproduce the cyclic behaviours of soil.
Diversified loading control provides greater possibilities for users to deeply and comprehensively

understand the constitutive model.

3.2.5 Provision of a comprehensive and efficient debugging

It is important to debug a newly developed constitutive model before applying it to solve
engineering problems. ErosLab offers a comprehensive and efficient debugging for four kinds of
laboratory tests (the oedometer tests, the triaxial test, the simple shear test and the true triaxial test).
When debugging is invoked, potential issues with a soil model can be discovered by using it to
successively simulate the four types of test along different stress paths. This function can give a new
model greater robustness in the numerical calculation. Note that the debugging is in an elementary
stage with complex loading combinations which reflects somehow the in-situ conditions. Therefore,
even though no simulation of in-situ problems can be directly conducted, the current debugging
scheme for a newly developed model should be effective for the practical purpose. and-thus+Further

possible problems can be investigated by implementing the model in the numerical software.

3.2.6 Provision of visualisation with graphical displays

The graphic user interface (GUI) of the developed software is composed of seven interface
objects: Main Form, Test-type Form, Constitutive Model Form, Drainage Condition Form, Loading
Condition Form, Data Management Form and Command Form. The Main Form interacts with the
user and connects to the other forms, the functionalities of which can be recognised from their names.
The Test-type Form defines the type of laboratory tests provided and the initial stress state. The
Constitutive Model Form allows the user to select the constitutive model and set the parameters. The
Drainage Condition Form provides a selection of drainage conditions for the chosen laboratory test.

The Loading Condition Form offers a variety of loading controls for different tests. The Data

11
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Management Form enables the importing of experiments, exporting of the simulated data and
generating reports. The Command Form is used to give the commands to run, stop and exit the

program.

4 Graphical user interface and usage instructions
4.1 Graphical user interface

Fig. 4 shows ErosLab’s main interface, which is divided into six zones: Test type, Constitutive
model, Drainage condition, Loading condition, Data management and Command. For the Test type
and Constitutive model, a graphic illustration showing the user’s choice is provided. The forms for

stress and strain and the debug are presented separately.

Fig. 5 shows the GUI window for selecting the test and setting the initial stress. All the tests
provided are important for highlighting the behaviours of a constitutive model. After selection, the
initial stress corresponding to the general stress state should be given. Note that the initial suction

only works for the constitutive model of unsaturated soils; this will be addressed in the next version.

To allow the user greater choice, a variety of constitutive models accounting for different
mechanical behaviours are collected and implemented into the ErosLab tool. Fig. 6 (a) shows the
GUI window for selecting the soil model. Note that some constitutive models are temporarily not
available in current platform, which are marked as grey items. More useful constitutive models will
be included in the next version of ErosLab. After selecting the soil model, the corresponding
parameters should be given, as shown in Fig. 6 (b), which takes the SIMSAND as an example. Fig. 7,
meanwhile, shows the GUI window of parameter input for UMAT. In current version, any
constitutive model can be used only if the name of subroutine is signed as UMAT. A total of 26 30
parameters are defined for the UMAT, which is enough for most existing constitutive models and
even for newly developed examples. It should be pointed out that the determination of model
parameters is an important work, which arises the challenge with increasing the number of

parameters, especially for advanced soil models. To author’s knowledge, the newly developed
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optimization-based parameter identification [30, 36-41] would be useful and can be incorporated into

the proposed tool in next version.

To show the user how to select an appropriate constitutive model for his test, a user’s manual
explaining the capabilities and applicability of each constitutive model is provided, illustrated with
tutorial examples, which can be downloaded from the website:

http://www.geoinvention.com/en/newsshow.asp?id=244&big=14.

Fig. 8 displays the GUI window of monotonic loading for the triaxial test. For said test, a
consolidation stage prior to the shearing can be selected by giving a confining stress. Otherwise, the
values of said stress are kept the same as those of the initial stress. The displayed o, is the axial
confining stress, and o; is the radial confining stress. o,=0, refers to the isotropic consolidation and
o#0, refers to the anisotropic consolidation. The loading time only works for the models that
account for the time-dependent behaviours of soil (ANICREEP in this version). Two loading
methods of shearing are provided. Apart from the conventional triaxial tests, the creep and relaxation
triaxial tests can be easily and adequately simulated by the ErosLab tool, which is superior to other
tools for modelling soil tests. Moreover, the simulation of any stress or strain path can be achieved
by multi-stage loading, the GUI window for which is shown in Fig. 9. In total, six stages are allowed,
and more may be added in the future. The functionality of multi-stage loading control is powerful, a
quality that cannot be found in other similar tools. Because of the length of this paper, the GUI

windows of other tests are not presented here, but can be found in the ErosLab tool.

In addition to the abovementioned GUI windows, those for stress and strain analysis and for
debugging remain to be illustrated. Fig. 10 exhibits the GUI window for the stress and strain analysis;
most stress- or strain-related variables can be obtained via this window. Fig. 11 displays the GUI
window for debugging, which specifies the setups of loading for different tests. For the triaxial test in
debugging, three tests with loading, unloading and reloading under different confining pressures will
be simulated and presented. Similarly, the oedometer and simple shear tests are the same situations

compared to the triaxial test. For the true triaxial test, a yield surface in 7 plane for the selected
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constitutive model can be obtained from the simulations with different values of b from 0 to 1 in a

step size of 0.1.

4.2 Usage instructions

The basic procedure for using the ErosLab tool to simulate a laboratory test can be divided into
Six steps:

Step 1: Select the test type and set the initial stress.

Step 2: Select the soil model and assign the model parameters.

Step 3: Select the drainage condition.

Step 4: Set the loading condition.

Step 5: Run the tool.

Step 6: Export the simulated results.

Step 7: Generate the report.

5 Case studies

In this section, the results of three case studies are described that were conducted to showcase
the performance of ErosLab. To cover most kinds of soils, the first case is the use of SIMSAND to
simulate the sand behaviour (e.g., dilatancy, contractiveness, static and cyclic liquefactions); the
second case is the use of ASCM to model the behaviour of natural clays (e.g., structure, anisotropy
and cyclic densification); the last case is the use of ANICREEP to model the time-dependent

behaviour of soft clays.

5.1 Case 1: Modelling of sand behaviours by SIMSAND

The tests selected for this case were triaxial tests performed on Hostun sand by Liu et al. [42]
and Li et al. [43]. All the tests were isotropically consolidated to the corresponding consolidation
pressure before shearing. Fig. 12 shows the adopted parameters of SIMSAND for simulating the
behaviour of Hostun sand, where the line represents the simulations and the red circle points

represent the experimental results. All parameters refer to the results of Jin et al. [30, 44].
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First, three drained triaxial tests with different confining pressures and initial void ratios on
Hostun sand were simulated using the SIMSAND model via the proposed tool. Then, four undrained
triaxial tests with different confining pressures and initial void ratios on said sand were also
simulated in a similar way. Fig. 13 (a) shows the comparisons between the simulations and
experiments for the drained tests, while Fig. 13 (b) does the same for the undrained tests. It can be
seen that the proposed tool offers many ways of displaying simulated results (g, -¢q, p'-q, time- &,, e-
&, e-p', and time-p’, q), which provides a comprehensive method of understanding a constitutive
model. Moreover, all the comparisons, with good agreement, demonstrate that the sand behaviours
(such as contraction, dilation, the critical state and interlocking effect) can be adequately reproduced

via SIMSAND in ErosLab.

To show ErosLab’s ability on the loading control, the cyclic test was simulated using
SIMSAND for sand. The same parameters, corresponding to Hostun sand, were used. In this case, a
two-way cyclic test with a value of cyclic stress 20 kPa was selected and simulated. Because
experiments were not available, only the simulated results are presented. Fig. 14 (a) and (b) show the
simulations of drained and undrained cyclic triaxial tests using SIMSAND, respectively, while Fig.
14 (c) shows the simulations of the undrained cyclic simple shear test using the same model. It may
be observed that the modelling of cyclic tests can be adequately achieved using the ErosLab tool.
Furthermore, the results also indicate that the SIMSAND model has an outstanding ability to
reproduce the cyclic behaviours of sand (for example, its densification in drained conditions and

mobilisation in undrained conditions).

5.2 Case 2: Modelling of clay behaviours using ASCM

In this case, four undrained triaxial tests performed on Shanghai clay were simulated via the
ErosLab tool using the ASCM model. According to Huang et al. [45], undisturbed samples of
Shanghai clay were taken at depths of 10 m, with in-situ horizontal consolidation stress o= 41
kPa and vertical consolidation stress o',.= 68.6 kPa. The initial mean effective stress p'. was
determined as 50.3 kPa. The parameters of ASCM employed for Shanghai clay are shown in Fig. 15,

these were collected from results garnered by Yang et al. [33] and Ye et al. [46].
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First, two isotropically-consolidated undrained compression tests (CIUC) were simulated. The
simulations were compared to the experiments, as shown in Fig. 16 (a). Similarly, another two
anisotropically consolidated undrained compression tests (CAUC) were then simulated. The
comparisons between the simulations and experiments are shown in Fig. 16 (b). Furthermore, the
cyclic behaviours can also be captured by using ASCM via ErosLab. Fig. 17 (a) and (b) display the

simulations of drained and undrained cyclic tests by ASCM, respectively.

The results denote that the providled ASCM model can reproduce the anisotropy and
destructuration behaviours for normal and over-consolidated natural clays undergoing monotonic and
cyclic loadings.

5.3 Case 3: Modelling of time effects of clay behaviours by ANICREEP

A series of undrained triaxial tests in both compression and extension conditions at three
different strain rates (0.2 %/h, 2 %/h and 20 %/h) on Ky-consolidated Wenzhou clay were selected
and simulated using the ANICREEP model in the ErosLab tool. The Wenzhou clay deposit is a
marine clay characterised as slightly organic and highly plastic. Intensive laboratory tests were
conducted out along various stress paths, focusing on the rate-dependent mechanical properties of
Wenzhou clay (Yin et al. [35]). The parameters of ANICREEP for Wenzhou clay were obtained
from the study by Yin et al. [47]. Fig. 18 shows the employed parameters of ANICREEP that

correspond to Wenzhou clay in ErosLab.

Three sets of undrained triaxial tests in compression and extension under vertical effective
stress (o'yg= 150 kPa) at strain-rates of 0.2 %/h, 2 %/h and 20 %/h were simulated. Fig. 19 (a) and (b)
show the comparisons between the simulated and measured results of three different strain-rates,
respectively. Good agreement between the experimental results and simulations was generally
achieved using the ANICREEP model. The results demonstrate that the behaviours of strain rate
dependency, combined with anisotropy and the destructuration of natural soft clays, can be

adequately captured by the ANICREEP model.
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6 Conclusions

In this paper, the development of ErosLab, a modelling tool for soil tests, was described.
ErosLab also offers support for both research and teaching as regards the practice of constitutive
models in the fields of geomechanics and geotechnics. Simple and clear interfaces render the tool
easily used by engineers; for example, the friendly graphical interface can help users view and
analyse results. Various constitutive models can be used with an open interface for the user-defined
model. The performance of different models can be compared and their results discussed. Three
selected case studies to simulate the behaviours of sand and clays were carried out, the results

proving that ErosLab is a useful tool in engineering practice.

Furthermore, this study can be used for the teaching purpose to present the basic constitutive
modelling of soil behaviours for postgraduate students who major on civil engineering, water
conservancy, transportation, railway and engineering geology. It also can be used for the purpose of

the relevant professional scientific research.

In future work, the tool can be extended by using other advanced constitutive models for more
types of tests. With the growing ubiquity of the Internet, a discussion window will be added for easy

online communication and exchange, which will foster the growth of an ErosLab community.
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Figure captions

Fig. 1 Schematic overview of the mixed-language programming for ErosLab
Fig. 2 General structure of ErosLab

Fig. 3 Interface module of UMAT written in FORTRAN language

Fig. 4 Main GUI window of ErosLab

Fig. 5 GUI window for the list test types and initial stress state

Fig. 6 (a) GUI window for the list of constitutive models; (b) GUI window for parameter input of
SIMSAND

Eie 7 GULwindow 5 .  SIMSANE
Fig. 7 GUI window for parameter input of UMAT

Fig. 8 GUI window of monotonic loading for triaxial test
Fig. 9 GUI window for multi-stage loading

Fig. 10 GUI window for stress and strain analysis

Fig. 11 GUI window for debugging

Fig. 12 Parameters of SIMSAND for Hostun sand

Fig. 13 Comparisons between simulations and experiments for Hostun sand: (a) drained triaxial test;
(b) undrained triaxial tests

Fig. 14 Simulations of cyclic test using SIMSAND: (a) drained cyclic triaxial test; (b) undrained
cyclic triaxial test; (¢) undrained cyclic simple shear test

Fig. 15 Parameters of ASCM for Shanghai clay

Fig. 16 Comparisons between simulations and experiments for Shanghai clay using ASCM: (a)
CIUC test; (b) CAUC test

Fig. 17 Simulations of cyclic tests using ASCM: (a) drained cyclic triaxial test; (b) undrained cyclic
triaxial test

Eie 22 Simulati  undrained-evelictriaxial . seM
Fig. 18 Parameters of ANICREEP for Wenzhou clay

Fig. 19 Comparisons between simulated and experimental results of triaxial tests at a vertical stress
of 150 kPa: (a) undrained compression CRS; (b) undrained extension CRS tests
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Figure 3

Subroutine Umat (IDtask,cm,deps,sig,hsv,CC,dTime)
IDEC5 ATTRIBUTES DLLEXPORT, DECORATE, ALIAS:"Umat™ :: Umat

Implicit Double Precision (A-H, 0O-Z)

Double Precision cm(-50) ,hsv(50) ,deps(£) ,deps0(c) ,epsp(c)
Double Precision Sig(¢),CC(¢,¢) ,Adding the defitions...
Integer etype, IDtask

Logical HH converged ! convergence for iteration

! parameters definition

xNu = cm(l) ! Poisson's ratio

dkappa = cm(2) ! Swelling index

dlambda = cm(2) ! Compression index
...... Please add parameters the user needs

if (IDtask.=g. 1) then
hsv = 0.

hsv(1)=e0 ! size of yield surface

hsv(2)=0. ! PORE pressure

hsv(2)=pm0 ! void ratio

...... Please add state variables the user needs
end if

if (IDtask.=g. Z) then
call MATRIXDE (Sig,cm,hsv,CC) !Elastic stiffness matrix
""" i€ (DDtask.cq. ) then
...... Please update stress and state variables
end if
Return

end Subroutine
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Command
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'f" Parameters of UMAT

Parameters
Para-1=
Para-2=
Para-3=
Para-4=
Para-5=
Para-6=
Para-7=
Para-8=
Para-9=

Para-10=

ro

A P =
w

—_

—_

100

1]

UMAT: User defined material

Para-11= D Para-21= IC'
Parai2= 0 Para22= 0 |
Para-13= E Para-23= I:l
Para-14= E Para-24= E
Para-15= E Para-25= IC'
Para-16= D Para-26= I:l
Para-17= E Para-27= II'
Para-18= 0 | Para28= [0 |
Para-19= E Para-29= E
Para-20= E Para-30= II'
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¥ Settings of Monotonic loading
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L= L=

Loading: Triaxial test
Conselidation stage
Consolidation settings
ar= 100
ga= 100
Suction equilibrium

Suction= 0

Loading time= 1

Monotonic loading

Oedometer test | Triaxial test | Simple shear test | Biaxial test | True triaxial test | HCA test

Shear loading

@i

[kPa] Loading time= 1
[kPa] .
Creep or relaxation
O Creep
[kPa] . .
O Relaxation
i Multistage

Multistage

[-]

© axial load= | 100 [kPa]

[h]

o

32



1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947

Figure 9

¥ Multﬁagemﬂbﬂ_@lﬂg ¥ Multistage control ==
Multistage control Multistage control |
Control selection Control selection
i
Draindge v [Luading control mode ~ Draindge A
Draindge Loading control mode
Stress
Settl Undrained Settings Strain
Mixed |
|Stageld | [Epsa '] [Sigr '] [Time - |Stageld  ~ | [Epsa '] |Sigr x| [Time - [
Stage 1= 0 100 1 Stage 1= 0 100 1
Stage 2= 0 100 1 Stage 2= 0 100 1
Stage 3= 0 100 1 Stage 3= 0 100 1
Stage 4= 0 100 1 Stage 4= 0 100 1
Stage 5= 0 100 1 Stage 5= 0 100 1
Stage 6= 0 100 1 Stage 6= 0 100 1
OK ] [ Cancel OK ] [ Cancel
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F Calculator I -

==

Stress & Strain analysis

Stress Strain
oll= -10 [kPa] £l1= 01 |
022= 0 [kPa] £22= 01 [l
033= 8 [kPa] £33= 01 [l
ol2= 9 [kPa] g12= 0 [l
oli= 5 [kPa] £13= 0 1
o23= 1] [kPa] £23= 0 -1
I Calculate I l Clear l
Deviatoric strain | Transformation of coordinates
Principal stress | Deviatoric stress | Principal strain
n= -2 [kPa] ol=  10.076696830622 [kPa]
2= -136 [kPa]  ©2=  4.0000000000000: [kPa]
3= -p43 [kPa] 03=  -16.07669683062: [kPa]
P=  -0.6666666666666 [KPa I= 0.3628 0.2621 -0.858
m= 03240 08148 0.4806
n= 0.8736 -0452 01783

Cancel
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¥ Parameters of SIMSAND - =N

—

Elasticity
e0=
y=
Ko=
n=

Go=

SIMSAND: Simple Critical-state-based double yield surface model

CSL-related Hardeningé&nDilatancy-related
0.852 [ @= 295 [deg] Ad= 1 [
0.25 [ ecl= 0.822 [ kp=  0.0053 [
45 [ A= 0.0899 [ np= 24 [
06 M i= 038 [ nd= 38 !
80 [
o o
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¥ Parameters of ASCM a
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MCC related Parameters
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Cohesive bonding

pb0= 185
b= 2

[kPa]
[

Compressive bonding

®0= 30 [
&= 5 [
&= o2 [
Q0K ] [ Cancel

Plastic modulus constant
kp=" spo iy
Cross-anisotropic elasticity
Eh/Ev=" 1 !

Anisotropy

@ Yes @ No

40



2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419

Figure 16

rz Figure 1 : l = | E i
File
GEs | RSO 9E 0E
80 80 30
60 60
= DDDDDDD = 20
[ 2o0g £ 8
= 40 = 40 =
.
= = 10
20 20
0 0 0
0 10 20 30 0 150 0 1 2 3
& % p'/ kPa Time / h
1.45 150
—yq
14 =100 -
=
w .35 -
=%
s 50
1.3
0 1.25 0
0 10 20 30 10! 10 0 1 2 3
Ga I % P' J kPa Time / h
L
(a)
[4] Figure 1 —— —— — m— om— - (=] 2 [t
Eile
dHe|RATDE|AE
100 30
80
= = - 20
= £ 60 £
B B
10
“ ﬁl
20 0
30 20 40 60 80 100 1 2 3
p'/kPa Time / h
80 1.402 100
—q
60 ‘:djjjjj:\m 1.401 - 20 —_—p
= [
-
=P s 14 = 60
= o copD s
=
20 1.399 40
0 1.398 20
0 10 20 30 10! 102 1 2 3
€ /% o [ KPa Time / h
L

41



2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478

Figure 17
rT Figure 1 - ——— - | L @Eﬂ‘
File
gEe|REODR|0E
40 40 1.5
20 20
k] = a I
Ay & =
= 0 = 0 =
= = o
20 20
-40 -40 0
-1 0 | 2 60 65 70 75 80 0 2 3
€, ! % p'/kPa Time /h
1.45 1.45 100
—_—
]
1.4 1.4 £ 50
=
u w -~
=%
1.35 ;Sﬁgggihk |35§§§§§§§§§§§§§§§§ ¥ UV«AMVVVNAAA/
1.3 1.3 -50
-1 0 1 2 65 70 75 0 2 3
€, ! % p'/kPa Time /h
(a)
4] Figure 1 — S m— — - (= [E ]
Eile
e |RR0DE|0E
40 40 5
20 20
= = - 0
A~ -9 =
Z 0 = 0 =
> > ol 5
-20 =20
40 40 =10
-10 5 0 5 0 20 40 60 80 0 4 6
€, 1 % p'/kPa Time / h
40 3
< 20 2
-9
= u
=0 1
20 0
-10 5 0 5 20 30 40 50 60 0 4 6
€, 1 % p'/kPa Time / h

0



2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Figure 18

Parameters of ANICREEP . =T
f arameters p l
ANICREEP: Anisotropic Creep model for natural soft clays
MCC related parameters Creep Destructuration
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