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Abstract 

In this paper, a Rayleigh wave model in fluid saturated porous materials based on a 

nonlocal Biot theory is proposed. The general characteristic equations expressed in 

terms of the Rayleigh wavenumbers are obtained. A specific fluid saturated porous 

material is used for numerical analysis. The present study shows that the nonlocal 

parameter does not have significant influence on the characteristics of Rayleigh waves 

within a low frequency range when comparing with the prediction of using the classical 

Biot theory. However, the influence of the nonlocal scale effect on the Rayleigh wave 

velocity and the displacement field becomes stronger as the response frequency 

increases. When the frequency exceeds a critical value, the Rayleigh wave velocity 

exhibits a negative dispersion. The displacement fields induced by the Rayleigh wave 

propagating in porous materials are also presented. An interesting phenomenon of the 

*Corresponding author. E-mail address: sk.lai@polyu.edu.hk (S.K. Lai)

https://dx.doi.org/10.1016/j.ijmecsci.2018.08.028 This is the Pre-Published Version.

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

mailto:sk.lai@polyu.edu.hk


 

2 

 

displacement fields is observed that the major axis of the displacement field ellipse will 

have a contra-rotation with respect to the vertical direction with increasing depth. This 

is different from the classical prediction in homogeneous materials. The presence of the 

nonlocal scale effect can also change the geometry property of displacement fields. In 

addition, the amplitude of the vertical displacement is attenuated along the depth, while 

the increment of the nonlocal parameters can strengthen the attenuation. 
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1. Introduction  

Porous materials, such as water saturated soils or sedimentary rocks, are frequently 

studied in geophysical and earthquake engineering [1, 2]. Moreover, air filled porous 

metals that have excellent potential applications in aero-engineering [3, 4] can also be 

found in a variety of engineering fields. Aimed at implementing the problems on 

deformation and dynamical characteristics of porous materials, Biot proposed a series 

of pioneering works [5-9], laying a solid theoretical foundation to investigate porous 

materials. A considerable number of works on porous materials have been reported 

since the experimental verification of the Biot theory by Plona in 1980 [10]. Afterwards, 

there were many intensive studies on the bulk wave characteristics [11-16] in porous 

materials, and much research efforts have also focused on Rayleigh surface waves in 

accordance with the Biot theory [17-22]. 

Rayleigh surface waves are formed by the interaction of both compression and 

shear waves [23]. As a result, the surface waves carry abundant information of the 

mechanical and dynamical properties of media where it propagates. Among the 

potential applications, it is capable of estimating the shear wave velocity and the quality 

factor by the inversion of surface waves [24, 25]. It is also useful for the design of 

detecting landmines [26, 27]. Hence, understanding the characteristics of Rayleigh 

surface waves is highly essential in nature.  

The dispersion of Rayleigh waves in porous media has been studied intensively in 

the past few decades. By simplifying the Biot theory and neglecting the inertia coupling 

between fluids and solids, Jones [28] first investigated the propagation of Rayleigh 
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surface waves in a fluid saturated solid and indicated that there exists at least one type 

of Rayleigh waves for the case where the constant relates to Darcy’s permeability b = 

0. However, Tajuddin [29] pointed out that the solutions obtained by Jones [28] were 

incorrect by re-addressing this problem. He further extended the wave velocity equation 

for an impervious surface, the relationship between the surface wave velocity and the 

Poisson’s ratio was also given. Allard et al. [30] experimentally investigated the 

propagation of Rayleigh-type surface waves at an air-air saturated porous layer 

interface, and the corresponding application on the metrology of porous media was 

suggested. Besides, the asymptotic behavior of surface waves at a vacuum/porous 

medium interface under the low frequency range was implemented by Edelman [31]. 

Based on this study, the existence of two types of surface waves was proved, i.e., the 

common Rayleigh wave with almost no attenuation and the special Stoneley wave with 

a strong attenuation. To investigate the dispersion relation of surface waves over a full 

frequency range, Albers and Wilmanski [32] developed a simplified linear two-

component poro-elastic medium model. Both the Rayleigh and Stoneley waves were 

predicted by their models for the impervious boundary of saturated poro-elastic media 

[32], and a similar conclusion was drawn by Edelman [31]. Under the framework of a 

variational formulation, Placidi et al. [33] proposed a pre-stressed solid-fluid mixture 

theory that can also be used to investigate the propagation of Rayleigh-type surface 

waves in pre-stressed fluid saturated porous media. 

To consider the effect of double-porosity media, Dai et al. [18] studied the 

dispersion and attenuation properties of Rayleigh waves under a permeable boundary 
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by neglecting the coupling mass coefficient and the coupling permeability term. 

Recently, the equivalent-viscoelastic representation of a fluid-saturated model was 

proposed by Zhang et al. [20]. They obtained both the waveform and dispersion 

solutions within the low frequency range in a homogeneous half-space. In addition, the 

propagation characteristics of Rayleigh waves in non-homogeneous and orthotropic 

fluid-saturated porous media were also investigated [22, 34]. In the literature, the 

propagation of surface waves in unsaturated poro-elastic media can also be found in 

some scattering works [17, 19, 35]. 

A well-known wave property of saturated porous materials is the appearance of 

second compression waves [36]. This makes the characteristics of Rayleigh waves 

propagating in porous media become much more complicated. The use of numerical 

approaches frequently encounters difficulties such as convergence problems and 

computational consumptions [20]. Therefore, the development of an efficient analytical 

model is highly desired. From the previous literature, most of the investigations on 

Rayleigh waves in porous media were presented in accordance with the poro-elastic 

Biot theory due to its inherent simplicity in real engineering practice. However, the 

classical Biot theory was built on the simplified assumptions that may be not in 

conformity with practical circumstances, thereby causing deviations from experimental 

observations [16]. To relax this constraint, Tong et al. [16] proposed a nonlocal Biot 

model to improve the classical one by including the effects of pore size and porosity 

dynamics into the Biot theory. In the context of nonlocal-based models, the linear-

elastic constitutive relation is replaced by a nonlocal elastic constitutive relation [37-
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43]. It is found that the dispersion of bulk waves predicted by the nonlocal Biot model 

agrees well with the experimental observations.  

In the present article, we extended the previous work [16] to characterize the effect 

of Rayleigh waves in accordance with the nonlocal Biot theory. The influence of pore 

size and porosity dynamics on the Rayleigh wave velocity is analyzed, and the quality 

factor of a fluid saturated porous material is also studied. An illustrative numerical 

example is given to verify the validity of the nonlocal Biot model. The displacement 

fields of Rayleigh waves at some specific frequencies are also presented. It is found 

that the effects of pore size and porosity dynamics contribute a significant impact on 

the characteristics of Rayleigh waves propagating in fluid saturated porous materials.  

 

2. Formulation of nonlocal Biot model 

Consider a fluid saturated porous material with solid grains surrounded by fluid 

filling in the inter-connected pores with a porosity 0n , the displacement fields of the 

solid and fluid components are denoted by u  and U  to describe the corresponding 

motions, respectively. For brevity and convenience, a vector  0n w U u   is 

introduced to characterize the relative displacement between solids and fluids. By 

neglecting the body force, the fundamental governing equations for a linear, 

homogeneous, isotropic and nonlocal poro-elastic material are given by [16],  

    

   

2 2 2 21 grad grad

grad

f

f

M e M

m F Me M

        


   



        

   

u w u

u w w
  (1) 

where    is the nonlocal parameter that was elaborated in the previous work [16]; 

iie   with ε u ; div   w  is the variation of fluid content per a unit reference 
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volume with div  the divergence operator;  0 01 s fn n       with s   the mass 

density of the solid and 
f  the mass density of the pore fluid;   is the permeability; 

0fm n with   the dynamic tortuosity;  0F    is the frequency-dependent 

fluid viscosity with  F   the viscosity correction factor as discussed in Ref. [16].  

Indeed, the nonlocal stress in Eq. (1) is referred to the total stress of a bulk material 

   [16], i.e., the total stress satisfies the condition  2 21 L       where 
L   is 

the local total stress. It is well known that the total stress is contributed by two parts 

s  and 
f  [8]. The component 

s  represents a force applied to the solid part of 

the faces, while 
f  denotes a force applied to the fluid part of these faces that can 

also be expressed by 0

f

fn p     with 
fp   the pore water pressure. When the 

nonlocal effect is included into the model, the fluid saturated material can be viewed as 

a statistical average single system. One may argue that the nonlocal effect must be 

applied on both solid and fluid components separately. However, it should be 

emphasized that the nonlocal effect considered herein is used to reflect the influence of 

pore size on the dynamic response of the total solid-fluid system. If the nonlocal effect 

is only considered in a single phase, i.e. solid or fluid phase, the entire coupled system 

is manually separated. Hence, the emphasis is transferred to the dynamic response of 

the single solid or fluid component but not the total system. Then, the effect of pore size 

on the total system is hard to be captured. To investigate the influence of pore size on 

the dynamic response of the total system, the governing equation (1) must be used and 

combined with the boundary conditions for incompressible constituents or 

compressible constituents [44] for further analysis.  

In addition, it is worth noting that the viscosity correction factor cannot be 
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neglected for the frequency that exceeds a critical value due to the invalidity of the 

Poiseuille flow assumption [7]. For a water saturated porous material with a pore radius 

of 100 μm  , the critical frequency is around at 127 Hz that commonly exceeds in 

practical engineering problems. The parameter M  is dependent on the bulk modulus 

that can be expressed as [16]  

 

 

 

0 0

0 0

2

0

,

1 ,

,

1 1

b s

s s s b

s s b

f s

M Q n n

K K

n K K n K K
Q

K K K

n K K









   

 

 


 

 

   (2) 

where bK  is the frame bulk modulus; 
fK  and sK are the fluid bulk modulus and 

the solid bulk modulus, respectively.  

A standard simplification process on Eq. (1) is to re-write the displacement fields 

by introducing the following scalar and vector potentials [29]  

1 1 2 2,    u ψ w ψ   (3) 

where  1, 2i i   and  1, 2i i ψ  are the scaler and vector potentials, respectively. 

The subscripts 1 and 2 denote the quantities related to solids and fluids, respectively. 

For a dynamical response in a half-space, only two directions should be considered, 

they are assumed as the x-direction and z-direction. Then, Eq. (3) is expressed as, 

1 12 1 12

2 22 2 22

,

,

x z

x z

u u
x z z x

w u
x z z x

   

   

   
   
   

   
   

   

   (4) 

where 12   and 22   are the second components of the vectors 1ψ   and 2ψ  , 

respectively. For brevity, 12  and 22  are replaced by the notations 1  and 2  in 

the following content. Substitute Eq. (4) into Eq. (1) and manipulate a simple 
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mathematical procedure to eliminate  1, 2i i  , the following governing equations 

can be obtained  

 
 

2 2 2 2 2 2 2

1 2 1 2 1 2

2 2

1 2 1 2 2

2 0

0

f f

f

M M

F
M M m

             

 
      



           

      
  (5) 

Consider a harmonic plane wave travelling in the x-direction, the solutions to Eq. 

(5) can be assumed as: 

     

     

1,2

1,2

j t kx

i i

j t kx

i i

F z e i

G z e i













 

 
   (6) 

where k is the wavenumber and   is the angular frequency of the wave. Substituting 

 1, 2i i   of Eq.(6) into Eq.(5) yields 

 

 

2 2 2 2
2 2

1 2 1 22 2 2 2

2
2

2 2

1 2 1 2

2
0

0

f

f f

f

M

M M

j F
m

M M

     
    

       

 
      

  
    

 



    

  (7) 

Eliminate 2  from Eq. (7) to obtain a fourth-order equation in terms of 1  as 

4 2 2 4

1 5 1 6 1 0              (8) 

where the notations  1 6i i    are defined as

   2 2 2

1 42 2

32
2 5 42 2

1 1

32 4
3 4 62 2

1 1

2
,

,

,

f

f

f

f f

f

m j FM

M M

M M

M M

      
  

   

 
  

     

   
  

     

  
  



    


   


   

Further expanding Eq. (8), we obtain a fourth-order equation in terms of  1F z  as 

 
2 2

2 2 2 2

1 2 12 2
0

d d
k s k s F z

dz dz

  
    

  
  (9) 

where  2 2 2 1i is k k  , i=1,2. 1k  and 2k  that satisfy the equations 2

5

2

2

2

1  kk  
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and 4

6

2

2

2

1 kk  are the wavenumbers of the fast and slow bulk waves. The solution 

of Eq. (9) can be obtained under the condition of no upward traveling wave as 

  1 2

1 1 2

jks z jks z
F z A e A e     (10) 

where A1 and A2 are constants. Using the second equation in Eq.(7), we determine the 

expression of  2F z  as 

  1 2

2 1 1 2 2

jks z jks z
F z A B e A B e     (11) 

where  
2

2 1 2

2

3 3

1i i

k
B s

 

  
   , i=1,2.  

Substitute Eq. (4) into Eq. (1) and eliminate  1, 2i i  , the following governing 

equation in terms of  1, 2i i   can be obtained  

 

 

2 2 2 2 2 2 2 2

1 2 1 2

2 1

0f f

f

j F
m

            


 

 



      





  (12) 

By inserting the second equation of Eq. (12) into the first one gives  

2 2

1 1 2 1 0H H        (13) 

where    2 2 2 2 2

1 fH j F m                and  2

2 fH j m         .  

Obviously, only one shear wave is predicted from Eq. (13). We further expand Eq. (13) 

to reach an equation in the form of  1G z  as 

 
 

2

2 22
12

1

0
zd G z H

k G z
dz H


 

   
 

   (14) 

where 2 2 2

3 1ss k k    and 2 2

2 1sk H H  is the wavenumber of shear waves. 

Assume that there is no upward travel wave to give the solution to  1G z  as follows 

  3

1 3

jks z
G z A e    (15) 

where 3A  is a constant. Then,  2G z  can be easily determined from Eq.(12) 
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  3

2 3 3

jks z
G z A B e    (16) 

where    3 fB j F m       .  

 

3. Rayleigh waves in fluid saturated porous materials 

The displacement potentials  1, 2i i    and  1, 2i i    are available to 

explicitly determine the solid and fluid displacement fields using Eq. (4). The 

constitutive equations of the nonlocal Biot theory is governed by the following 

relationship [16]  

 2 21 L

ij ij        (17) 

where 
ij   is the nonlocal stress and 

L

ij  is the local stress or classical stress. 

Theoretically, the nonlocal stress can be solved according to Eq. (17), as the local stress 

L

ij  is known by using the classical constitutive equations proposed by [8]  

2L

ij ij ij ij f

f

e p

p Me M

   

 

  

  
   (18) 

However, it is difficult to obtain an exact analytical expression of the nonlocal stress 

ij  from a mathematical point of view. To be a good approximation, a complete and 

asymptotic representation of the infinite higher-order governing differential equations 

can be used to replace Eq. (17) as follows [40] 

2 2

1

L n n L

ij ij ij

n

   




      (19) 

Suppose that the stress wave is a plane wave, thus the local stress can be presented 

as  
11 0

j t kxL A e





  . On the right-hand side of Eq. (19), the ratio of the ith term 

( 2,3,...i  ) to the first term is  
 2 1i

k


. The value of the nonlocal parameter   is 

typically in the order of 103 m. The wave number k, by using the soil parameters 
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presented in the next section, can be calculated as 421 rad/m for the slow wave and 38 

rad/m for the fast wave at the response frequency 10 kHz. Therefore, the ratio  
 2 1i

k


 

is significantly small for 3i   (i.e., 2n   in Eq. (19)), and the higher-order terms 

can be neglected.  

From Eqs. (6), (18) and (19), the higher-order terms in Eq. (19) are omitted and 

only the first two terms are taken into consideration. The nonlocal stress terms xz , 

zz  and the pore fluid pressure
fp  can be expressed in terms of the displacements as 

follows: 

     

      

   

3

3

2 2 2 2

3 3

1,2

2 2 2 2 2 2 2

3 3

1,2

2

1,2

1 1

2 1 1 2 1

i

i

i

j t kxjks z jks z

xz s i i i

i

j t kxjks z jks z

zz s i i i

i

j t kxjks z

f i i i

i

k N A e k N Ae e

k s k A e k k s Ae e

p B Mk Ae e







  

   















 
    
 

 
     
 

 







  (20) 

where    2 2 2

12 2 1, 2i iN k M MB k i            and 2

3 32N s k   . The 

boundary conditions at z = 0 for a pervious surface are 

0, 0, 0xz zz f fp p        (21) 

while for an impervious surface become 

0, 0, 0
f

xz zz f

p
p

z
 


   


   (22) 

According to Eqs. (20)-(22), two equation sets for the pervious and impervious 

surfaces are obtained. When we consider the similarity of the Rayleigh wave 

characteristics under these two conditions, only the Rayleigh wave for the pervious 

surface is selected for investigation. The existence of the nontrivial solutions for 

 1, 2,3iA i   requires the determinant of the coefficients to be vanished, that is 
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 0 , 1, 2,3ija i j     (23) 

where  

      

     

   

2 2 2 2 2 2 2

11 1 1 12 2 2 13 3

2 2 2 2 2 2

21 1 1 22 2 2 23 3

2 2

31 1 1 32 2 2 33

2 1 , 2 1 , 1 1

1 , 1 , 1

, , 0

s

s

a k s a k s a s k

a k N a k N a k N

a B Mk a B Mk a

  

  

 

      

     

    

  

Equation (23) is expressed in terms of the wavenumber k . Once the value of k is found, 

the Rayleigh wave velocity can be easily determined by  ReRv k  , in which 

 Re k  means the real part of k.  

Consider that the equation 0ij ja A         has nontrivial solutions, A1 and A2 can 

be expressed in terms of A3 as 

13 32
1 3 13 3

12 31 11 32

13 31
2 3 23 3

12 31 11 32

a a
A A R A

a a a a

a a
A A R A

a a a a

 


  


   (24) 

Then, the displacement fields of the solid components can be expressed as 

   

   

31 2

31 2

1 13 2 23 3

13 23 3 3

j t kxjks zjks z jks z

z

j t kxjks zjks z jks z

x

u jk s R e s R e e A e

u jk R e R e s e A e









  

   
  (25) 

The displacement fields of the fluid components can also be worked out through a 

similar process. In Eq. (25), the amplitudes of the displacement fields are contributed 

by three parts, the first two parts are originated from the fast wave and the slow wave, 

while the last part is originated from the shear wave. Numerical analysis indicates that 

most of the energy from the Rayleigh wave comes from the shear wave, which is the 

major reason to use the Rayleigh wave for the estimation of the shear-wave velocity 

[25]. 
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4.  Results and Discussion 

To fix the idea on the characteristics of Rayleigh waves propagating in a fluid 

saturated porous material, a specific numerical example is given to show the influence 

of the nonlocal effect on the characteristics of Rayleigh waves. An ocean sediment with 

the following properties is selected [16]: 32650 kg ms
  , 3

 1000 kg mf
  , 

2.25GPafK  , 36GPasK  , 43.6bK  MPa, 26.1  MPa, 0 0.47  , 1 201 10 m   ,  

0.001 Pa s   , 1   and 3 m2a  . It is noted that the tortuosity   in the work [16] 

was approximately selected as 1 for convenience. However, the value of    is 

typically larger than 1 according to the analysis of Berryman [45]. A more detailed 

discussion on the dynamic tortuosity can be found in the work of Johnson et al. [46]. In 

this work, we use the approximation equation  0=1 1 1r n     proposed by 

Berryman [45] to calculate the tortuosity as 1.56. Here we have taken 0.5r    to 

obtain the value of   as indicated by Berryman [45] that r should satisfy the condition 

0 1r  . Based on the present nonlocal theory, there is another important parameter 

   that is used to characterize the effects of pore size and porosity dynamics. The 

connection of this parameter to the parameter  proposed by Lopatnikov and Cheng 

[47], which is also used to study the porosity dynamics, was elaborated in the previous 

study [16]. To establish the relationship between the fluctuation of porosity, the 

dissipative stress 
dissP  and the dynamic stress 

dynP , we have [16] 

   

2

2 2

dyn diss

dyn diss

f

P P n

P P

 

 



  

 

     u w
   (26) 

where n is the porosity. Following the mathematical procedure in Ref. [16], the ratio of 

  and can be obtained as  
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 

2
0 0

2
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1

1
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n n

n n

  

   

 


 
   (27) 

in which vs  and vf  are the volume strains of solid and fluid, respectively. Taking 

advantage of Eq. (27) and the parameter  proposed in Ref. [47], the value of the 

nonlocal parameter   can be roughly estimated to be less than 102 m and typically 

in the order of 103 m for many soil materials. However, it is difficult to accurately 

determine the nonlocal parameter value by using Eq. (27), as the exact volume strains 

for fluid or solid cannot be measured separately. In fact, the nonlocal parameter   is 

highly dependent on the porosity and internal structure of porous materials, which can 

be determined by measuring the dispersion characteristics of longitudinal waves 

propagating in a saturated porous material, as elaborated in Ref. [16]. In this work, we 

do not concentrate on the method to obtain a specific value of the nonlocal parameter 

 , while we mainly investigate the variation of   on the characteristics of Rayleigh 

surface waves in saturated porous media. 

In Fig. 1, the Rayleigh wave velocity as a function of the frequency is plotted for 

various nonlocal parameters. The shear wave velocity is also shown as a reference in 

Fig. 1(a). According to the variation of the velocity values at different frequencies, the 

velocity dispersion is divided into three zones, as shown in Fig. 1. Within Zone I, both 

the shear wave and Rayleigh wave velocities keep almost constant. When the frequency 

exceeds the first critical frequency (i.e., about 270 Hz – 280 Hz in this example), the 

velocity increases gradually as the frequency increases. The classical Biot theory 

indicates that the velocity keeps stable again when the frequency beyond the second 

critical frequency (i.e., about 1500 Hz in this example). However, the nonlocal Biot 
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theory predicts a different trend of the velocity variation. For the nonlocal parameter 

0.001m  , the Rayleigh wave velocity starts to deviate from the classical prediction 

as the dispersion enters into Zone III. In Fig. 1(b), this deviation even starts in Zone II 

when increasing the nonlocal parameter (see the case of 0.005m  , the deviation 

starts at  f = 270 – 280 Hz). To understand this mechanism, we may imagine a box 

with several layers from bottom to top. Now we fill each layer by using spherical beads, 

the bead size in each layer from bottom to top gradually decreases, while the bead size 

is kept to be the same in a single layer. Suppose that a plane harmonic travelling wave 

is excited on the top and it propagates downward (regardless of the wave reflection), 

then the wave will slow down gradually because the scattering becomes more and more 

obvious.  

The velocity dispersion of the Rayleigh wave is similar to that of the shear wave 

as shown in Fig. 1(a). It is because the wave energy of the Rayleigh wave is mainly 

contributed by the shear wave. To clearly show this effect, the energy percentages 

contributed by the fast, slow and shear waves in the displacement zu   for different 

nonlocal parameters are presented in Fig. 2. Obviously, the energy contribution 

originated from the shear wave is dominant among others. Within the low frequency 

range, the slow wave has little contribution to the Rayleigh wave. In fact, the energy of 

the Rayleigh wave contributed by the fast wave is several orders higher than that of the 

slow wave within the low frequency range. Therefore, the slow wave can be neglected 

for convenience without causing significant errors in studying practical engineering 

problems within the low frequency range. As the frequency increases, more and more 
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energy is contributed by the slow wave, thus it cannot be neglected for the high 

frequency range. In Fig. 2, it is also found that the distribution of energy contribution 

from different types of waves is almost independent with the nonlocal effect. The 

difference for the cases of 0m   and 0.005m   is less than 1% for the frequency 

range between 1 Hz and 1000 Hz. 

To investigate the attenuation property of Rayleigh waves, the following quality 

factor is introduced.  

 

 
1

Im
2

Re

k
Q

k

     (28) 

and the corresponding loss angle is defined as 

1arctanQ     (29) 

The loss angle as a function of frequency for various nonlocal parameters is shown 

in Fig. 3. The nonlocal parameter does not have significant influence on the loss angle 

within the low frequency range as compared with prediction of using the classical Biot 

model. Increasing the frequency, a significant discrepancy can be observed. There 

exists a critical frequency for different nonlocal parameters. Beyond the critical 

frequency, the loss angle will increase. For 0.001m  , the critical frequency is at 10 

kHz (is not fully shown in Fig. 3). While for 0.005m   , the critical frequency 

decreases to 2 kHz. The drastic change of the loss angle manifests the high attenuation 

of Rayleigh waves. In other words, the Rayleigh wave hardly propagates outwards 

when the frequency exceeds the critical value. This is consistent with the characteristics 

of shear waves predicted by the previous work [16], i.e., the higher attenuation of shear 

waves results in the higher attenuation of Rayleigh waves.  
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Displacement fields induced by the Rayleigh wave predicted at various nonlocal 

parameters and frequencies are depicted in Fig. 4. The displacement fields in the x- and 

z-directions can be calculated by Eq. (25). It is obvious that the displacement fields in 

porous materials are different from that induced by the Rayleigh wave traveling in 

homogeneous single-phase materials, even though it is still the same as an elliptical 

shape. For the displacements in homogeneous materials, the major axis of the ellipse is 

always along the vertical direction, while the minor axis is always along the horizontal 

direction at any depth. Nevertheless, the major axis of the displacement ellipse in 

porous materials will have a contra-rotation with respect to the vertical direction when 

increasing depth. Within the low frequency and the small nonlocal parameter, the 

eccentricity of the displacement ellipse decreases with increasing depth, as shown in 

Fig. 4. It manifests that the phase difference between zu  and xu  is a function of depth. 

For 0.005m  , the displacement ellipse at a frequency of 3000 Hz can only rotate in 

a very small angle as the depth varies from 0 to 0.6 R . It implies that the depth has a 

little impact on the eccentricity of the ellipse. Based on the results in Fig. 4, another 

conclusion can be drawn that the amplitudes of the displacements zu   and xu   are 

attenuated along the depth.  

In Fig. 5, the attenuation of the displacement amplitude zu  for different nonlocal 

parameters is presented. At the low frequency (f =10 Hz), there is almost no difference 

between the results of 0m   and 0.005m  . While for the high frequency (f = 

3000 Hz), a significant discrepancy can be observed for 0m    and 0.005m   . 

This is also revealed in Fig. 4(c) and (d). In Fig. 5(b), the slope of the line for 0   is 
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sharper than that for 0.005m  , which indicates a higher attenuation coefficient for 

0.005m  . It implies that the classical Biot theory may underestimate the influence 

of the depth on Rayleigh waves.   

 

5. Conclusions 

Based on the nonlocal Biot theory, a Rayleigh wave model in fluid saturated 

porous materials is proposed. The general characteristic equations in terms of the 

Rayleigh wavenumbers are obtained under a permeable surface condition. A specific 

fluid saturated porous material is selected for numerical analysis. It is found that the 

nonlocal parameter has a neglected impact on the wave dispersion, as compared with 

the prediction of using the classical Biot theory within the low frequency range. 

However, there is a dominant effect on the wave dispersion in the high frequency range. 

When the frequency exceeds a critical value, the Rayleigh wave velocity decreases with 

increasing frequency. This effect cannot be predicted by the classical Biot theory. 

Besides, the energy contribution by the fast, slow and shear waves is also studied. We 

found that the nonlocal parameter does not have significant influence on the energy 

distribution and most of the Rayleigh wave energy is contributed by the shear wave. 

Therefore, the Rayleigh wave is mainly dominated by the shear wave.  

In this paper, the influence of nonlocal parameters on the loss angle is also 

examined. It is found that there is a specific critical frequency, beyond which the 

Rayleigh wave cannot propagate outwards, corresponding to a certain nonlocal 

parameter. The displacement fields induced by the Rayleigh wave for various 

frequencies are also investigated. It is found that the displacement field ellipse is 
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different from that in a homogeneous material. The major axis of the displacement field 

ellipse is no longer along the vertical direction because of the phase difference between 

the vertical and horizontal displacements with increasing depth in porous materials. 

Besides, it can be predicted that the attenuation of the displacement amplitude is 

strengthened by an increasing nonlocal parameter. The present study mainly focuses on 

the case of pervious surface conditions. However, it is easy to extend this work for the 

condition of impervious surfaces, and it is expected that a similar conclusion can be 

reached. 

Finally, we remark here that the nonlocal scale effect discussed in this paper is 

mainly induced by the effects of pore size and porosity dynamics, it is not related to the 

second strain gradient. In fact, the second gradient poro-mechanics can well treat some 

special phenomena, e.g., capillarity in fluid, plasticity and shear band deformations and 

so on. This is also an important improvement of the Biot theory for wider applications 

in practical engineering (see Refs. [33, 44, 48, 49]). A combination of the nonlocal Biot 

theory with the second gradient poro-mechanics to generalize the Biot model will be 

studied in future.  
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Captions of Figures: 

Fig.1. (a) Comparison of the velocity of the Rayleigh wave (vR) and the shear wave 

(vS); and (b) Variation of the Rayleigh wave velocity for various nonlocal 

parameters .  

Fig. 2. Percentage contribution from the wave energy of the fast, slow and shear 

waves in the displacement zu  (a) 0m   and (b) 0.005m  .  

Fig. 3. Loss angle versus frequency for various nonlocal parameters. 

Fig. 4. Displacement fields of the Rayleigh wave. (Both the displacement components 

ux and uz are normalized to A3. R  is the Rayleigh wavelength. All centers of 

the ellipses are moved to (0,0)).  

Fig. 5. Comparison of the vertical displacement at different frequencies for nonlocal 

parameters 0m   and 0.005m  . 
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Fig. 1. (a) Comparison of the velocity of the Rayleigh wave (vR) and the shear wave 

(vS); and (b) Variation of the Rayleigh wave velocity for various nonlocal parameters .  
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Fig. 2. Percentage contribution from the wave energy of the fast, slow and shear waves 

in the displacement zu  (a) 0m   and (b) 0.005m  .  
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Fig. 3. Loss angle versus frequency for various nonlocal parameters. 
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Fig. 4. Displacement fields of the Rayleigh wave. (Both the displacement components 

ux and uz are normalized to A3. R   is the Rayleigh wavelength. All centers of the 

ellipses are moved to (0,0)).  

  



 

33 

 

 

Fig. 5. Comparison of the vertical displacement at different frequencies for nonlocal 

parameters 0m   and 0.005m  . 

 




