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Abstract 

In this paper, we develop a novel reliable path finding algorithm for a stochastic road 

network with uncertainty in travel times while both electric vehicle energy and 

efficiency are simultaneously taken into account. We first propose a bi-objective 

optimization model to maximize (1) the on-time arrival reliability and (2) energy-

efficiency for battery electric vehicles (BEVs) in a path finding problem. The former 

objective requires finding the reliable shortest path (RSP), which is the path with the 

minimal effective travel time measured by the sum of the mean travel time and a 

travel time safety margin for any given origin-destination (OD) pair. Then, we refer to 

energy-efficiency as the minimum of the electric energy consumption. We discuss the 

non-additive property of the RSP problem since we also consider the link travel time 

correlations, whereas the latter objective satisfies the additive criterion. To this end, 

we illustrate the existence of non-dominated solutions that satisfy both of the two 

objectives. Furthermore, it is shown that the intersection of two candidate sets – one 

for the RSPs and the other for paths with minimal energy-consumption - actually 

contains the optimal solution for the bi-objective optimization problem. The upper 

and lower bounds of the effective travel time are mathematically deduced and can be 

used to generate the candidate path set of this bi-objective problem via the K-shortest 

algorithm. Our proposed algorithm overcomes the infeasibility of traditional path 

finding algorithms (e.g., the Dijkstra algorithm) for RSPs. Moreover, using two 

numerical examples, we verify the effectiveness and efficiency of the proposed 

algorithm. We numerically demonstrate promising potential applications of the 

proposed algorithm in real-life road traffic networks. 

Keywords: Reliable path finding algorithm; Link travel time correlation; Energy-
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1. Introduction 

During the recent decade, battery electric vehicles (BEVs) have gained more and 

more popularity among travelers and governments due to their environment-friendly 

features. However, the supporting infrastructures for BEVs are still in the cradle stage 

and far more than mature, exposing BEV users to operational challenges and 

inconveniences. For instance, by connecting to an outlet or charging device, it 

generally takes several hours to fully recharge a BEV (Johnson et al., 2013) in the 

sharp contrast to the refueling process for fuel vehicles. As the charging process for 

BEVs is more time consuming than fuel ones, BEV travelers have to ponder energy 

efficiency when making path choice decisions besides saving travel time. To address 

this issue, this paper proposes a path finding algorithm that also explicitly considers 

the energy efficiency for travelers in BEVs. 

Travelers are always keen on finding the best path (Yu et al., 2009, 2011; Wu and 

Nie, 2011; Nie et al., 2012; Xu et al., 2017), although the criteria of an optimal path 

may vary over time and from person to person (Nazemi and Omidi, 2013; Faro and 

Giordano, 2016). Traditionally, transportation researchers have focused on finding the 

most reliable paths for travelers who aim to avoid being late when traveling in a 

transportation network with uncertainties (Xu et al., 2011). In fact, traffic 

uncertainties can be caused by many factors, such as adverse weather conditions, 

traffic accidents, vehicle malfunctions, signal failures, big events, and demand 

variations (Asakura and Kashiwadani, 1991; Clark and Watling, 2005; Walting, 2006; 

Shao et al., 2006; Gao et al., 2009). Recently, due to the growing awareness of eco-

sustainability as well as the constantly rising fuel prices, transportation studies have 

started to study eco-routing, which involves the path-finding problem and considers 

carbon emissions reductions (Sun and Liu, 2015; Zeng et al., 2016; Androutsopoulos 

and Zografos, 2017). This study aims to find a path that simultaneously takes account 

of on-time arrival reliability and energy-efficiency. 

 The most reliable path, which is the path that maximizes the on-time arrival 

probability for a given travel time budget, was first introduced by Frank (1969). 

Similar to Asakura and Kashiwadani (1991), here, we refer to travel time reliability as 

the probability that travelers can arrive at their destination node on time. This concept 

of travel time reliability suggests that the path choice criterion consists of two factors: 

the travel time and reliability of the path. Then, Hall (1983) noted that travelers tend 

to reserve a safety margin to hedge against variations of travel times. The sum of the 

mean travel time and the safety margin is called effective travel time or travel time 

budget. Actually, the safety margin is the product of the standard deviation of travel 

time. In the specific case where travel times are normally distributed, the reliability 

measured by the effective travel time (Wu and Nie, 2011), becomes the sum of the 

mean travel time and a path-specific safety margin; and the safety margin, the extra 

time buffer, improves the likelihood of arriving on time (Helander et al., 1997; Xing 

et al., 2011; Samaranayake et al., 2012; Xiao and Lo, 2013; Srinivasan et al., 2014; 

Yao et al., 2014; Doan et al., 2015). Indeed, Rakha et al. (2010) noted that the key 

parameters for estimating path travel time reliability included not only the mean travel 

time but also the travel time variance. Hence, the reliable path is actually the path 

with the minimal effective travel time.  

Methods of finding the reliable path have attracted the attention of researchers over 

the last few decades. Mirchandani (1976) introduced a recursive algorithm that 

enumerated all paths and all travel time possibilities to solve the discrete version of 

Frank’s problem (Frank, 1969). Recently, there have been two major streams – 



 

finding (1) the shortest paths and (2) the alpha-shortest paths. The former stream 

targets the most reliable path given a certain travel time budget. Specifically, the 

reliable path finding problem can be formulated as a multi-objective path finding 

problem with the constraint of variance (Sivakumar and Batta, 1994). Shao et al. 

(2004) proposed a heuristic method for solving this problem that is based on the 

relationship between the mean and standard deviation of the link travel times. Nie and 

Wu (2009) proposed a label-correcting algorithm to find the most reliable path by 

generating all of the non-dominated paths under first-order stochastic dominance. 

Chen at al. (2014) investigated the time-dependent reliable shortest path problem 

(TD-RSPP), which is commonly encountered in congested urban road networks. 

On the other hand, the alpha-shortest path, which was first proposed by Chen and Ji 

(2005), refers to the path that minimizes the required travel time budget given an on-

time arrival probability threshold. Meanwhile, many experts have proposed 

algorithms to solve the reliable shortest path problem (RSPP) in transportation 

networks over the past few decades. Chen et al. (2013a) addressed the problem of 

finding the path with the shortest expected time in stochastic time-dependent (STD) 

road networks by proposing an efficient multicriteria *A algorithm to exactly 

determine the least-expected-time path in STD networks. Chen et al. (2013b) 

presented the multicriteria label-setting and *A  algorithm to find the alpha-reliable 

path when link travel times followed normal distributions. Yang et al. (2014) 

considered the non-anticipativity constraint associated with the a priori path in STD 

road networks and proposed a number of reformulations to establish linear 

inequalities that could be easily dualized by a Lagrangian relaxation. Although most 

works considered either the shortest or alpha-shortest path, Nikolova (2006) 

developed a parametric approach to determine both the alpha-reliable and most 

reliable paths. 

Our work also relates to the stream of energy-efficiency optimization. Specifically, 

Jiang et al. (2013) extended a network equilibrium model to consider mixed gasoline 

and electric vehicular flows. Frank et al. (2013) presented a novel eco-driving 

application that informs the driver about his energy efficiency. Levin et al. (2014) 

demonstrated the impact of the road grade on network wide vehicle energy 

consumption by integrating energy consumption equations based on road load 

equations. It is clear that different types of formulas can be used to describe electric 

energy consumption (EEC). Due to concerns about climate change, the advancement 

of battery technologies and expeditiously rising prices of crude oil, BEVs have gained 

attention in recent years (Riemann et al., 2015; He et al., 2015; He et al., 2016; Chen 

et al., 2016; Chen et al., 2017a, 2017b; Lee and Madanat, 2017; He et al., 2018; Yi et 

al., 2018; Lacobucci et al., 2019; Pan et al., 2019; Wang et al., 2019; Sun and Yin, 

2019). Researchers have proposed a large number of energy consumption formulas, as 

energy consumption is influenced by many factors, including speed (Yang et al., 2014; 

Zhang and Yao, 2015; Xu et al., 2018), distance and travel time (Wang et al., 2013; 

Kluge et al., 2013; He et al., 2014; Yang et al., 2015). He et al. (2014) formulated 

three mathematical models to describe the resulting network equilibrium flow 

distribution on regional or metropolitan road networks considering varied flow 

dependencies on the energy consumption of BEVs and their recharging time. Yang et 

al. (2014) proposed an electricity consumption model to study the effects of the road’s 

slope on the BEV’s electricity consumption (Zhang and Yao, 2015). Without a loss of 

generality, we use the formulas presented in He et al. (2014) and Zhang and Yao 

(2015), respectively. The formula adopted in He et al. (2014) assumes that the energy 

consumption of vehicles is determined according to distance and speed and is 



 

independent of traffic congestion. Meanwhile, the energy consumption of vehicles 

proposed in Zhang and Yao (2015) is affected by BEV’s mass (kg), the road gradient 

and the vehicle speed (m/s). Hence, the energy consumption of BEVs satisfies the 

property of additivity; consequentially, we use the traditional K-shortest algorithm to 

solve the proposed energy-efficient model. 

Although the above studies address either the reliable path finding or energy-

efficient problem, they fail to consider the correlations of travel times between 

different links. On the other hand, Ji et al. (2011) extended the alpha-reliable path 

finding model into a multi-objective reliable path finding model by simultaneously 

considering travelers’ multiple confidence requirements for travel time reliability and 

the link travel time correlations specified by a given covariance matrix. Chen et al. 

(2012) studied the problem of finding the reliable shortest path in a stochastic network 

with spatial correlated link travel times, where the link travel time is assumed to only 

be correlated to the neighboring links within a local ‘impact area’. Later, Wang et al. 

(2016) presented the assumption of spatial correlations restricted to adjacent links and 

investigated the constrained shortest path problem in a transportation network in 

which the link travel times are random variables that follow certain joint probability 

mass functions. However, their work did not consider the reliability in a traffic 

network. By contrast, Zeng et al. (2015) investigated the important problem of 

determining a reliable path in a stochastic network with correlated link travel times. 

The Lagrangian relaxation (LR) approach is applied to solve the non-linear and non-

additive problem. Zhang et al. (2017) proposed a novel LR approach based on a new 

convex problem reformulation to update the Lagrangian multipliers and handle the 

negative cycles of the resulting shortest path problems. In this work, we model the 

spatial correlations of link travel times using a variance-covariance matrix. 

Differently from previous studies, we propose an innovative method of the inequality 

technique to solve the reliable path finding problem in a transportation network with 

uncertainty. Specifically, we contribute to the literature by designing a heuristic 

algorithm to address the non-linear and non-additive properties of the effective travel 

time, for which traditional path-finding algorithms (e.g., the Dijkstra algorithm) are 

inapplicable. 

We summarize the classification of existing studies in Table 1. This paper focuses 

on the above two model frameworks, namely, the optimal reliable path model and 

energy-efficient path model. Our proposed algorithm is based on a rigorous 

mathematical proof of the upper- and lower- bounds of the effective travel time. 

Moreover, the optimal reliable path problem takes the travel time correlations among 

different links into account and models the link travel time correlations by a variance-

covariance matrix. These upper- and lower- bounds are further used to generate the 

candidate path set for energy-efficient reliable path finding using the conventional K-

shortest algorithm (Chen & Feng, 2000). Succeeding in avoiding enumeration, our 

proposed algorithm is thus efficient for medium- to large-scale transportation 

networks. 

 

 

 

 

 

 

 

 



 

 

Table 1 Categories of existing studies 

 Reliability  

 

Energy 

Consumption Deterministic 

Stochastic 

Independent 

Correlation 

Adjacent 

Links 

All 

Links 

Huang & Lam, 2002; √ × × × × 

Shao et al. 2004; Chen 

& Ji, 2005; Nie & Wu, 

2009; Chen et al. 2014. 

× √ × × × 

Chen et al. 2012. × × √ × × 

Ji et al. 2011; Zeng et al. 

2015; Zhang et al. 2017 
× × × √ × 

This paper × × × √ √ 

 

Specifically, this paper bridges a gap in the literature and makes the following 

contributions. 

(1) The proposed bi-objective model simultaneously considers the optimal 

path reliability and BEV energy-efficiency. 

(2) A heuristic algorithm based on the inequality technique is proposed that 

avoids path enumeration and results in polynomial computational 

complexity. Hence, this algorithm can potentially be applied in large-

scale networks. 

(3) Several theorems for the optimal reliable path finding problem are 

established to demonstrate the existence, effectiveness and efficiency of 

the proposed algorithm. 

  The rest of this paper is organized as follows. In section 2, the model formulation 

of the bi-objective model is presented. Then, after mathematically demonstrating the 

foundations, a heuristic solution algorithm is proposed in Section 3. We numerically 

show the effectiveness and efficiency of the algorithm in two extensive case studies in 

Section 4. Finally, conclusions and further studies are discussed in Section 5. 

2. Model formulation 

2.1. Notations and assumptions 

2.1.1. The notations used throughout the paper are listed as follows, unless otherwise 

specified.  

Nomenclature 

Sets:  

A  Set of links in the network. 

E  Set of links between OD pairs. 

http://dict.cnki.net/dict_result.aspx?searchword=%e4%b8%8d%e7%ad%89%e5%bc%8f%e6%8a%80%e5%b7%a7&tjType=sentence&style=&t=inequality+technique


 

n
R   Set of feasible solutions. 

G = (N,A)  
A road network, with N  being the set of nodes and A  being the set 

of links. 

k
E  Kth subset of E . 

M  Set of energy-efficient paths. 

X  Subset of n
R . 

Q  Candidate path set 

Variables:  

a  Mean of the link travel time. 

a  Standard deviation of the link travel time. 

aT  Travel time on link a . 
rs

kT  Travel time on path k  between OD pair rs . 
rs

k  Mean of the travel time on path k  between OD pair rs . 
rs

k  Standard deviation of the travel time on path k  between OD pair rs . 

ab  
Correlation coefficient of the link travel time between links a and 

b . 

i

rs

kt  Effective travel time on path ik . 

rs

k  The safety margin. 

-1( )   
Inverse function of the standard normal cumulative distribution 

function. 
*k  The reliable path. 
*

rk  The optimal reliable path between OD pair rs . 

i

rs

kc  Energy consumption of the BEVs on path ik  between OD pair rs . 

ad  The distance of link a . 
*

ek  The optimal energy-efficient path between OD pair rs . 

f  A vector valued objective function. 

,min
ˆ

i

rs

kt  The lower boundary of path ik  between OD pair rs . 

,max
ˆ

i

rs

kt  The upper boundary of path ik  between OD pair rs . 

û  The minimum of the upper bounds.  

*

rs

k
t  The minimum effective travel time. 

M  Correlation coefficient matrix 

Parameters:  

  The confidence level for the on-time arrival probability. 

K  Number of K -shortest paths 

,

rs

a k  Element of the link-path incidence matrix  . 

  The multiplier for the correlation coefficient matrix ( 0 1  ) 

 

2.1.2. Basic assumption 

A1. It is assumed that the link travel times are non-negative and follow a multivariate 

normal distribution (Chen et al., 2012). Further, the path travel time (sum of link 

travel times) distribution is approximated by normal distribution, which is more 



 

computationally tractable and has an acceptable compromise on accuracy (Zeng et al., 

2015; Zhang et al., 2017). 

A2. The formula of energy consumption presented in He et al. (2014) is not affected 

by traffic congestion. That is, consumption is flow-independent.  

A3. In this paper, it is assumed that the on-time arrival probability of choosing a path 

is greater than or equal to 50%, i.e., 50%  , which represents the travelers’ risk-

neutral and risk-averse path choice behaviors. 

2.2. Concept of the optimal reliable path under the condition of correlation  

  Consider a directed network G = (N,A)  consisting of a set of nodes N  and a set 

of links A . The path travel time, which is denoted as rs

kT , is the sum of the related 

link travel times along the path as 

,

1

m
rs rs

k a k a

a

T T


                              (1) 

where m  is the number of links. The indicator , 1rs

a k   means that link a  is on 

path k , and , 0rs

a k   otherwise. Similar to conventional studies, the path travel time 

rs

kT is the travel time distribution of all of the links along the path and is also a random 

variable with its mean and standard deviation denoted as 
rs

k  
and 

rs

k , respectively.     

In fact, the distribution of link travel times has been extensively investigated in the 

last few decades, because it is an important issue for modeling travel time reliability. 

So far, the typical random distributions usually considered in literature include the 

normal distribution (Watling, 2006; Chen et al., 2013b), the lognormal distribution 

(Srinivasan et al., 2014), and the gamma distribution (Nie et al., 2012). Due to the 

skewness of the link travel time distribution, many studies recommend the lognormal 

distribution for link travel time modeling. Recently, Zeng et al. (2015), used the 

normal distribution to approximate the distribution of path travel times to make the 

computation of the  -reliable paths mathematically tractable. As they showed that if 

link travel times follow the log-normal distribution, the path travel time distribution 

can only be derived numerically by computing the sum of link travel time distribution, 

due to the unavailable closed form PDF or CDF for the sum of the truncated 

lognormal distributed variables.. The assumption is also justified in the simulation 

study shown in the Appendix of Zeng et al. (2015). Thus, we assume the path travel 

time follows a normal distribution (Chen et al., 2012; Zeng et al., 2015) in this study, 

which means that 
2~ ( , ( ) )a a aT N   . In this article, the mean and variance of the path 

travel time between OD pair rs  can be calculated as follows: 

 ,

rs rs

k a k a

a

  



E

 (2) 

 2

, , ,

,

( ) 2rs rs rs rs

k a k a a k b k ab a b

a a b

       
 

  
E E

 (3)  

where 
rs

k  and 
rs

k  are the mean and standard deviation of the path travel time 

between OD pair rs , respectively. The variable ab  is the correlation coefficient 

between links a  and b , and a  and a  are the mean and standard deviation of 

link travel time, respectively. The notion E  is the set of links between OD pair rs , 

and ,

rs

a k  is the decision variable regarding the link-path incidence relationship, 



 

where 1, rs

ka  means that the link a  is on path k , and , 0rs

a k   otherwise. 

The detailed description of the effective travel time or travel time budget can be found 

in Lo et al. (2006) and Shao et al. (2006). The corresponding effective travel time rs

kt  

on path k  between OD pair rs  is depicted as the sum of the mean time rs

k  and 

safety margin rs

k  (Lo et al., 2006; Shao et al., 2006). 

 
rs rs rs

k k kt     (4) 

where the safety margin can be determined by the following chance constraint model: 

 
min

. .Pr[ ]

rs
k

rs rs rs

k k k

rs rs

k k

t

s t T t


 



 

 

 (5) 

where   is a given confidence level. By a simple manipulation, the effective travel 

time in equation (5) can be expressed as follows: 

 
1( )rs rs rs

k k kt      (6) 

where 1( )  is the inverse cumulative distribution function (CDF) of the standard 

normal distribution at the   confidence level. That is, 1( )  is the probability of 

the travel time not exceeding the effective travel time that is not less than  . The   

definition of the effective travel time ensures the reliability of the travel time to be 

greater than or equal to   while minimizing the travel time. Then, the optimal 

reliable path can be defined as follows.  

 

Definition1. Among all of the feasible paths between OD pair rs , the optimal 

reliable path is defined as the path with the minimum effective travel time. 

Mathematically, path *

rk  is the optimal reliable path between OD pair rs  if and 

only if  

 
* arg min rs

r kk t  (7) 

Due to the non-linear and non-additive properties of Eq. (6), the conventional 

shortest path finding algorithms cannot be adopted to find the optimal reliable path.  

2.3. Concept of an energy-efficient path 

On account of concerns regarding climate change and rising prices of crude oil, 

electric bicycles and vehicles have gained attention in recent years. Thus, energy 

consumption of BEVs is taken into consideration in this paper. Actually, researchers 

have proposed a large number of energy consumption formulas. In this paper, we 

consider two different types of energy consumption formulae. The first one is the 

same as in He et al. (2014), which reflect the fact that drivers’ speeds are not affected 

by traffic congestion. Thus, the consumption is flow-independent. Under this 

circumstance, a BEV does not always speed up and speed down when it traverses a 

link. This formula is typically applied to driving on the highways without traffic 

signals. The second type of formula refers to the ones presented in Yang et al. (2014) 

and Zhang and Yao (2015), which incorporate the fact that BEVs’ speeds are affected 

by many factors, such as the BEV’ s mass, the vehicle speed and the road gradient. In 

Fig.1, we describe the detailed speeding process of BEVs in link a . In this case, a 

BEV has to speed up at the beginning of a link and speed down at the end of a link. 

This type formula applies for driving in urban transportation networks consisting of 

arterial roads with signalized intersections.  

 



 

Case A. The first type formula presented in He et al. (2014) 

The energy consumption of BEVs rs

kc  on path k  between OD pair rs  can be 

calculated as follows: 

, ,0.174 0.116rs rs rs

k a k a a k a

a a

c d  
 

    
Ε Ε

 (8a) 

where 
ad  is the distance of link a  and a  is the mean travel time of link a . Eq. 

(8) is as proposed by He et al. (2014). 

 

Case B. The second type formula presented in Yang et al. (2014) and Zhang and Yao 

(2015) 

According to the discussions in Yang et al. (2014) and Zhang and Yao (2015), the 

output power of the BEV is calculated as follows: 
2( cos sin 0.5 ) ( )m D c m accessoryP v emg mg m dv dt C H v P             (8b) 

where m  is the BEV’s mass (kg); e  is rolling resistance coefficient; g  is the 

gravitational constant;   is the road gradient;   is the coefficient related to the 

BEV’s mass; v  is vehicle speed (m/s); DC  is the aerodynamic drag coefficient; H  

is the BEV’s frontal area (m 2 );   is the air density (kg/m 3 ); c  stands for the 

controller efficiency; m  represents the motor efficiency. accessoryP  denotes the 

electricity consumed by other accessories (e.g. the electric power steering).  

Considering the braking process, the BEV’s regenerative braking power can be 

formulated as follows: 
2( cos sin 0.5 )r c m D accessoryP w emg mg m dv dt C H v v P              (8c) 

where w ( 0 1w  ) is the regenerative braking factor, which indicates the 

percentage of the total braking energy that can be recovered by the motor. Moreover, 

we define the parameter w  as follows: 

0.5 5
5

5
0.5 0.3 5

20

v
v m s

w
v

v m s


 

 
   



               (8d) 

In the light of the relationship between the power and energy, the BEV’s energy 

consumption can be calculated as follows: 

,a k

rs rs

k a a

a

c P t


 
Ε

                        (8e) 

where aP  is the total power of the BEV’s battery of link a , which is the sum of mP  

and rP . at  is mean travel time of link a . 

In urban transportation networks, the drivers should decelerate at the end of a 

link due to traffic signals or pedestrian crossing at the intersections. For safety reasons, 

most drivers comply with this rule in practice. For convenience of calculation, the 

BEV’s energy consumption can normally be divided into the following three stages 

shown in Figure 1 ( Yang et al. 2014):   

  The first stage: the BEV’s energy consumption sharply increases because its      

speed increases to start a trip. The energy consumption of this stage can be calculated 

by Eq. (8b) . 

  The second stage: the BEV’s energy consumption is constant since its speed has 

been stable during a trip. The energy consumption of this stage can be calculated by 

Eq. (8b). 



 

  The third stage: the BEV’s energy consumption is decreasing due to the BEV 

regenerates electricity during the process at the end of a trip. The energy consumption 

of this stage can be calculated by Eq. (8c). 

 

 

 

 

 

 

 

 

 

 

 

 

        Fig.1 The detailed speeding process of a BEV in link a  

The notations aV  and ad  represent speed and distance of link a , respectively. 

It is well known that the BEV’s mass is a random variable in networks.  

Definition2. Among all of the feasible paths between OD pair rs , the energy-

efficient path between OD pair rs  is the path with the minimum energy consumption 

of BEVs. Mathematically, path *

ek  is the energy-efficient path between OD pair rs  

if and only if    

 
* arg min rs

e kk c  (9) 

From Eqs. (8a-8e), it is obvious that the conventional algorithm (e.g., the K-shortest 

algorithm) can be adopted to solve the energy-efficient path problem due to the 

additive property. 

 

2.4. Bi-objective path finding model 

In this paper, according to assumption A1, the link travel times are non-negative 

and follow a normal distribution; all of the link travel times are correlated. These 

assumptions are commonly used in studies of stochastic shortest path problems (Chen 

et al., 2012). Based on recent empirical studies, it is also found that a normal 

distribution appears to reflect the reality of most link travel times, and the normality 

assumption can be sufficient from a practical standpoint given its computational 

simplicity (Rakha et al. 2006). Under the normality assumption, the bi-objective 

model can be described as follows: 

Case A: The energy consumption formula of BEVs presented in He et al. (2014). 

1 2

, , , ,

,

, ,

min ( ) ( ) 2

min 0.174 0.116

rs rs rs rs rs

k a k a a k a a k b k ab a b

a a a b

rs rs rs

k a k a a k a

a a

t

c d

         

  



  

 

   



   


  

 
Ε Ε Ε

Ε Ε

      (10a) 

Case B. The energy consumption formula of BEVs presented in Zhang and Yao (2015) 

       

1 2

, , , ,

,

,

min ( ) ( ) 2

min

rs rs rs rs rs

k a k a a k a a k b k ab a b

a a a b

rs rs

k a a k a

a

t

c P t

         





  



   



 


  


Ε Ε Ε

E

     (10b) 

ad  

aV  

,maxaV  

0  

The first stage 

The second stage 

The third stage 



 

Subject to 

              

, ,

-1 ,

0 , ; ,

1 ,

rs rs

a k b k

a b

a k b k

a b k a b k

a k b k

 
 

  


     
   

 
Ε Ε

                

(11)

 

                          
 , 0,1 ,rs

a k a   Ε
                     

(12)

 
  Eqs. (10a) and (10b) are the objective functions that travelers want to minimize. Eq. 

(11) ensures that the reliable shortest path is feasible. Eq. (12) is concerned with the 

link-path incidence variables, which should be binary in nature. Due to the non-

additive property of the objective function, the conventional algorithm cannot be 

adopted to solve the model. Thus, a heuristic algorithm will be proposed in next 

section. 

3. Solution algorithm for solving the proposed bi-objective model 

3.1. Concept of the Pareto efficient solution 

The multi-objective optimization problem (MOP) can be defined as follows: 

                 1min ( ) ( ( ), ( ))pF f f x x x                         (13) 

                     s.t. x                                      (14) 

where 1( , , ) n

nx x x R is the vector of design variables,   is the feasible search 

domain, and ( )if x  is the i th objective function.  

Two basic definitions are given as follows. 

 Let 1
x  and 

2
x  be two solutions of an MOP. 1

x  is said to dominate 2
x  if 

and only if ( ) ( ), {1, , }i if f i p  
1 2

x x .  

 Let x  be called Pareto optimal if there is no other solution in   that 

dominates 
x . 

3.2. Theoretical basis for the first objective function 

It is well-known that the conventional path finding algorithm (e.g., the Dijkstra 

algorithm) is inapplicable in the event of a non-additive effective travel time. The 

optimal reliable path and energy-efficient path can be easily found by calculating the 

effective travel time and energy consumption on all paths with the method of 

enumeration. Meanwhile, the non-dominated efficient solution of the proposed bi-

objective model can also be obtained through the enumeration method. However, path 

enumeration is time consuming and almost infeasible for large-scale networks. 

Therefore, the enumeration method is usually not acceptable in real-world 

applications. To overcome this difficulty, this paper proposes a heuristic algorithm for 

the bi-objective model that avoids path enumeration. The algorithm principles are 

described as follows. 

The first principle of the algorithm is to determine the estimated upper- and lower- 

bounds of the effective travel time. How to establish a proper estimation of the upper- 

and lower- bound ,min ,max
ˆ ˆ( , )

i i

rs rs

k kt t  for the effective travel time of the path ik  is crucial 

in the proposed algorithm. We address this issue in the following theorem. 

Theorem 1 The effective travel time 
i

rs

kt  satisfies the following inequality 



 

considering the link travel time correlations ( 50%  ):  

             , , , ,
i i i

rs rs rs rs

a k a k a k a

a a

t t rs k  
 

      
E E

N E               (15) 

where 
1( )rs

a a at     . 

Proof: According to Eq. (2), the left hand-side of the above inequality (15) can be 

written as follows:  

                , ,
i i

rs rs

k a k a i

a

rs k  


    
E

N E，                       (16) 

Because 50%  , it follows that 1( ) 0   and 0
i

rs

k  . Then, the following 

follows Eqs. (6) and (16):  

      
1

,( ) , , .
i i i i i

rs rs rs rs rs

k k k k a k a i

a

t rs k     



       
E

N E             (17) 

We then prove the right hand-side of inequality (15). According to Eq. (3), 0a   

and 1ab  , we have: 

             

2

, , ,

,

2

, , ,

,

2

,

( ) 2

( ) 2

( ) , , .

i i i i

i i i

i

rs rs rs rs

k a k a a k b k ab a b

a a b

rs rs rs

a k a a k b k a b

a a b

rs

a k a i

a

rs k

       

     

 

 

 



 

 

    

 

 



E E

E E

E

N E

                 (18) 

Plugging inequality (18) into Eq. (6), we have  
1

1 2

, , ,

,

1 2

,

1

,

( )

( ) ( ) 2

( ) ( )

( ) , ,

i i i

i i i i

i i

i i

rs rs rs

k k k

rs rs rs rs

k a k a a k b k ab a b

a a b

rs rs

k a k a

a

rs rs

k a k a i

a

t

rs k

  

        

   

   





 









 

  

 

     

 





Ε Ε

Ε

Ε

N E

          (19) 

Then, substituting Eq. (16) into inequality (19), we have 

             

1

,

1

, ,

,

( )

( ) , ,

, ,

i i i

i i

i

rs rs rs

k k a k a

a

rs rs

a k a a k a i

a a

rs rs

a k a i

a

t

rs k

t rs k

   

    









 



 

     

    



 



Ε

E Ε

E

N E

N E

           (20) 

Therefore, theorem 1 has been proved according to inequalities (17) and (20). □ 

According to theorem 1, the lower- and the upper-bounds of the effective travel 

times are given as below:  

Lower bound: 

,min ,
ˆ , ,

i i

rs rs

k a k a i

a

t rs k 


    
E

N E                  (21) 

Upper bound: 

     
1

,max , ,
ˆ ( ( ) ), ,

i i i

rs rs rs rs

k a k a a k a a i

a a

t t rs k    

 

       
E E

N E  .     (22) 

Eq. (22) shows that the lower- and upper-bounds of the effective travel times are 

additive with respect to each link. Therefore, the K-shortest algorithm can be applied 



 

to find the i -shortest path ik  between OD pair rs  using the lower bounds of the 

effective travel times (see Eq. (21)). Then, the correlated stochastic path finding 

problem can be transformed into a deterministic path finding problem.  

The second principle in the algorithm is to determine the candidate set of reliable 

paths. We assume that there are l  paths between OD pair rs , and we denote these 

paths as 1 2, , lk k k Ε , the path set E  is defined as a set of all feasible paths 

between OD pair rs . The corresponding effective travel times are denoted as 

1 2
, ,

l

rs rs rs

k k kt t t . For each path ik , we use Eqs. (21) and (22) to estimate upper- and 

lower- bounds of the effective travel times  ,min ,max
ˆ ˆ,

i i

rs rs

k kt t . The estimated upper bounds 

of those paths are denoted as 
1 2,max ,max ,max

ˆ ˆ ˆ, ,
l

rs rs rs

k k kt t t , and the minimal upper bound of 

the paths is set as  

1 2,max ,max ,max
ˆ ˆ ˆˆ min{ , , }

l

rs rs rs

k k ku t t t  .                 (23) 

It is clear that *

rs

k
t  is the minimal effective travel time, therefore 

* ,
i

rs rs

k ik
t t k  Ε                       (24) 

The effective travel time of path ik  satisfies  

,max
ˆ

i i

rs rs

k kt t                          (25) 

Then, we incorporate inequality (16) with (17): 

* ,max
ˆ ,

i

rs rs

k ik
t t k  Ε                       (26) 

Hence, path ik  is not the reliable path between OD pair rs  if path ik E  and it 

satisfies the inequalition ,min
ˆ ˆ

i

rs

kt u . Otherwise, path 
ik  may be the reliable path. 

Theorem 2 Let path set Q  be the set that contains the alternative reliable paths. The 

reliable path *k  must be included in the candidate path set Q  if path ik  satisfies 

the following:  

(i) if ik Q , then ,min
ˆ ˆ

i

rs

kt u , and 

(ii) if ik Q , then ,min
ˆ ˆ

i

rs

kt u . 

Proof: This theorem is proved via reduction to absurdity. Assume that *k  is the 

optimal path with the minimal effective travel time and path *k  does not belong to 

Q  (i.e., 
*k Q ). Hence, if the optimal reliable path *k  does not belong to Q , it 

satisfies the following:   

* ,min
ˆ ˆrs

k
t u                           (27) 

Based on Eq. (23), the minimal upper bound of the paths between OD pair rs  

satisfies the following inequality:  

                        ,max
ˆ ˆ,

i

rs

k it u k  Ε                        (28) 

Following Eqs. (27) and (28), an inequality can be obtained as follows: 

                        *,max ,min
ˆ ˆˆ ,

i

rs rs

k ik
t u t k   Ε                     (29) 

Apparently, path ik  and path 
*k  satisfy the following inequalities: 

                            ,max
ˆ

i i

rs rs

k kt t                              (30) 

                            * * ,min
ˆrs rs

k k
t t                              (31) 

Then, the new inequality can be obtained while incorporating inequalities (29) and 

(30) into (31), as below:   



 

            * *

*

,max ,min
ˆ ˆˆ , ,

i i

rs rs rs rs

k k i ik k
t t u t t k k k      Ε                (32) 

Inequality (32) shows that the effective travel time on path ik  is less than that on 

path *k . Therefore, path *k  is not the optimal reliable path, which contradicts the 

assumption that path *k  is the optimal reliable path with the minimal effective travel 

time. To this end, path *k  must be an alternative reliable path (i.e., *k Q ). □ 

Therefore, we use the K-shortest algorithm in the proposed algorithm by using the 

lower bound criterion (see Eq. (21)). As the value of parameter ‘K’ increases, the 

number of candidate paths will increase. When the parameter ‘K’ equals the total 

number of paths between the OD pair, the optimal path for the RSPP must be included 

in the candidate path set. In other words, if the parameter ‘K’ in the K-shortest 

algorithm is sufficiently large, the optimal path in the RSPP must be in the candidate 

path set.  

Remark: 

In practice, the parameter ‘K’ can be set as a positive integer. For example, if ‘K=10’, 

the number of paths in the candidate path set is less than or equal to 10. As parameter 

‘K’ increases, the optimal path in the RSPP becomes more and more likely to be 

included in the candidate path set. However, a larger value of parameter ‘K’ means a 

longer computational time. Thus, we recommend to set a reasonable ‘K’ to balance 

the efficiency and feasibility of the proposed algorithm, though the techniques to 

determine an optimal K is out of the scope of this study. 

 

Based on Eq. (21), we can find out that the lower-bound of the effective travel time 

is not affected by on-time arrival probability  . On the contrary, the upper-bound of 

the effective travel time is determined by on-time arrival probability  , as shown in 

Eq. (22). Using the on-time arrival probability, the travelers’ risk attitudes toward 

travel time uncertainty can be identified by the following three types (Yin and Ieda, 

2001; Chen et al., 2012): 

  Risk-averse: if on-time arrival probability 50%  ; 

  Risk-neutral: if on-time arrival probability 50%  ; 

  Risk-seeking: if on-time arrival probability 50%  . 

Therefore, BEV users can be classified into three types in terms of their risk-taking 

attitudes under travel time uncertainty. In this paper, we only consider the non-trivial 

case of risk-averse behaviors; and hence, the associated on-time arrival probability   

is greater than 50%. We also assume that the on-time arrival probability   is the 

same for all travelers in the network. 

3.3. Theoretical basis for the second objective function 

Recent researches have proposed a large number of energy consumption formulas; 

and in this paper we adopt two different types of energy consumption formulas--- the 

one that is proposed by He et al. (2014) (see Eq. (8a)) and the other proposed by Yang 

et al. (2014) and Zhang and Yao (2015) (see Eq. (8b)). Apparently, both types of the 

formulas satisfy the additive property (He et al. (2014), Yang et al. (2014) and Zhang 

and Yao (2015)). Thus, many conventional algorithms can be used to solve the second 

objective. In this paper, we aim to find some feasible paths, whose energy 



 

consumptions are less than or equal to the specified value maxEEC . Therefore, we use 

the K-shortest algorithm (Yang and Chen, 2006) to find the accurate solution and then 

to address the energy consumption issue.  

 

3.3. Solution algorithm 

Based on the above theorems, the detailed procedures of our presented heuristic 

algorithm are described as below. 

Inputs: 

OD pair ( )r,s  and on-time arrival probability  , 

The mean and variance of the link travel time a  and a , 

Link distance 
ad , 

Correlation coefficient of the link travel times ab , and 

A pre-given size of the candidate set max 0K  , which is a sufficiently large integer. 

maxEEC  denotes the upper bound of acceptance range for travelers’ energy 

consumption. 

maxETT  denotes the upper bound of acceptance range for travelers’ effective travel 

time. 

Outputs: 

The non-dominated efficient solutions to the optimal reliable and energy-efficient 

path finding problems. 

 

Step 1: Initialization: set 1i  , Q . 

Step 2: Carry out the K-shortest ( maxK K ) path algorithm to calculate the energy 

consumption results with Eqs. (8a) and (8e). The K-shortest path finding 

algorithm will stop if the energy consumption of path nk  (Case A) or mk  

(Case B) is greater than the specified value maxEEC . Then, put the results 

into sets 1M  and 2M . 

Step 3: Find the corresponding paths among the energy consumption results and 

denote them as 
1( 1,2, )ik i n M  and 

2( 1,2, )jk i m M  with Eq. (9).  

Step 4: Use the Dijkstra algorithm (Dijkstra, 1959) with respect to the upper bound of 

the effective travel time (Eq. (22)) to find a path that is denoted as the 

current optimal reliable path. Then, put it into the candidate path set Q . 

The corresponding upper bound of this path is denoted as û , as defined in 

Eqs. (22) and (23).  

Step 5: Find the i -shortest path ik  between OD pair rs  using the K -shortest 

algorithm with the lower bounds of the effective travel times 
,min

ˆ
i

rs

kt (see Eq. 

(21)). 

Step 6: If ,min
ˆ ˆ

i

rs

kt u   

If maxi K  

  If ,min max
ˆ

i

rs

kt ETT  

 Put the path ik  into candidate path set Q  and 1i i  . 



 

Then, go to step 5.  

Else 

Go to step 7. 

Else 

Go to step 7. 

         End 

       Else 

         Go to step 7. 

       End 

Step 7: Calculate the effective travel time of path ( 1,2, )ik i q  in set Q . If the 

effective travel time of path 
ik  is greater than maxETT , remove the path 

ik  

from set Q . Then, denote the number of paths in path set Q  is q . 

Step 8: Compare the energy-efficient paths (
1M  and 

2M ) in step 3 with the reliable 

paths ( Q ) in step 6. The path 
*

pk  is a non-dominated efficient solution and 

satisfies the following criterion: 

 There is not a path k  that satisfies the inequalities 
*
p

rs rs

k k
c c  and 

*
p

rs rs

k k
t t , and 

there is at least one path ik  that satisfies the inequality *
i p

rs rs

k k
c c  or *

i p

rs rs

k k
t t .  

Remark: Because in this algorithm we use the K-shortest algorithm with the 

polynomial computational complexity (Yang and Chen, 2006), the complexity of our 

proposed algorithm is polynomial. 

 

In order to demonstrate the accuracy of the obtained, we present the following 

theorem to show the small error between the obtained heuristic solution and the 

optimal one. 

 

Theorem 3 The solution of the reliable path using the proposed algorithm is denoted 

as rs

kt . According to Eqs. (21) and (22), the upper and lower bounds of effective 

travel time 
rs

kt  can be calculated and denoted as ,min

rs

kt  and ,max

rs

kt . The maximal error 

between the solution rs

kt  and the optimal solution ,

rs

m optimalt  is  ,max ,min

rs rs

k kt t . 

Proof: We assumed that the solution rs

kt  is not the optimal solution. Then, there must 

exist an optimal solution ,

rs

m optimalt  ( m k ). According to Eqs. (21) and (22), the 

upper and lower bounds of effective travel time rs

kt  can be calculated and denoted as 

,max

rs

kt  and ,min

rs

kt . Similarly, we can also obtained the upper and lower bounds of 

optimal solution ,

rs

m optimalt  and denoted as ,max

rs

mt  and ,min

rs

mt . Based on Step 5 in the 

algorithm, the lower bound of the effective travel time can be obtained with the 

method of K-shortest algorithm. Therefore, the lower bound of the optimal solution 

,min

rs

mt  is equal or greater than the lower bound of the solution ,min

rs

kt  ( ,min ,min

rs rs

k mt t ) 

provided m k . The upper bound of 
rs

kt  is ,max

rs

kt  and the lower bound of optimal 

solution ,

rs

m optimalt  is ,min

rs

mt . Thus, they satisfy the following inequalities: 

,max

rs rs

k kt t                          (33) 

, ,min

rs rs

m optimal mt t                          (34) 



 

The error between the solution rs

kt  and the optimal solution ,

rs

m optimalt  can be 

expressed as: 

, , ,max ,min( ) ( )rs rs rs rs rs rs

k m optimal k m optimal k mt t t t t t               (35) 

Because m k , an inequality can be obtained as follows: 

,min ,min ,min ,min

rs rs rs rs

k m m kt t t t                    (36) 

Then, substituting inequality (36) into inequality (35), we have 

, ,

,max ,min

,max ,min

,max ,min

( )

( )

( )

)

rs rs rs rs

k m optimal k m optimal

rs rs

k m

rs rs

k k

rs rs

k k

t t t t

t t

t t

t t

   

  

  

 

               (37) 

Therefore, theorem 3 has been proved according to inequality (37).□ 

3.4. An illustrative simple network  

To this end, we apply this reliable energy-efficient path finding algorithm to a 

simple network (Figure 2) with BEVs to demonstrate the reliability effectiveness of 

our proposed algorithm. In Figure 2, the mean and standard deviation of the link 

travel times (in minutes) are marked near each link with the format “mean/standard 

deviation”. Table 2 presents the link travel time correlation coefficient matrix of this 

simple network and we set the value maxETT  equals to 50 minutes. We add some 

input data for the second objective function. The link distances are assumed to be the 

average speed (30km/h) multiplied by the mean link travel times. The BEV’s mass is 

assumed to be 2000kg. The values of other BEV’s related parameters are shown in 

Table 6.   
 
 

 

 
 

 

 
 

 

 
 

 
 

 

 

 

Fig. 2. A simple illustrative network 

 

Table 2 Link travel time correlation coefficient matrix of the simple network 

Link (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

(1) 1 0.53 -0.26 0.69 -0.13 0.25 0.32 -0.15 0.23 0.15 -0.34 0.21 

(2) 0.53 1 0.63 0.15 0.59 -0.21 0.34 0.15 0.16 0.26 0.33 0.28 

(3) -0.26 0.63 1 0.23 -0.34 0.69 0.17 -0.34 0.22 0.31 0.15 -0.26 

(4) 0.69 0.15 0.23 1 0.65 -0.23 0.76 0.32 -0.14 0.23 -0.25 0.16 

(5) -0.13 0.59 -0.34 0.65 1 0.73 0.21 -0.69 0.32 0.16 0.24 0.26 

(6) 0.25 -0.21 0.69 -0.23 0.73 1 0.33 0.24 0.81 -0.35 0.16 -0.32 

(7) 0.32 0.34 0.17 0.76 0.21 0.33 1 0.76 0.23 0.14 -0.32 0.31 

1 2 3

4 65

7 8 9

2(1) : 6.9 / 0.4 2(2)22.4 /1.2

2(3) : 25.5 /1.3 2(4) :8.2 / 0.5 2(5) : 23.9 /1.3

2(6) : 26.3 / 2.1
2(7) : 7.3 / 0.6

2(8) : 23.5 /1.8 2(9) : 5.9 / 0.2 2(10) : 6.4 / 0.5

2(11) : 26.3 /1.5 2(12) : 7.3 / 0.6



 

   

Using this network, we illustrate the steps of our proposed algorithms below. 

(1) Set the on-time arrival probability as 80%  , and consequently, 
1(0.8) 0.84  . 

(2) Denote the six paths from node 1 to node 9 as 1 2 6, , ,k k k  and their 

corresponding effective travel time of the paths as 
1 2 6
, , ,rs rs rs

k k kt t t . According to step 4 

in Section 3.3, the minimal upper bound of the effective travel times (Eqs. (22) and 

(23)) is ˆ 29.73u  . 

(3) Estimate the lower bound using Eq. (21). 

1 1,min ,
ˆ 28.30rs rs

k a k a

a

t  


 
E

; 
1

[1, 4,9,12]kpath   (link sequence of path) 

2 2,min ,
ˆ 28.80rs rs

k a k a

a

t  


 
E

; 
2

[1,4,7,10]kpath   (link sequence of path) 

3 3,min ,
ˆ 59.60rs rs

k a k a

a

t  


 
E

; 
3

[1, 2,5,10]kpath   (link sequence of path) 

(4) Calculate 
3 ,min

ˆ ˆ59.60 29.73rs

kt u   . This indicates that path 3k  is not a 

reliable path. As a result, the iteration stops and the resulting candidate set of reliable 

paths is 1 2{ , }k kQ .  

(5) Calculate the effective travel times of paths in ( 1 2{ , }k kQ ) using Eq. (6). 

1
29.29rs

kt  ; 
1

[1, 4,9,12]kpath   (link sequence of path) 

2
30.04rs

kt  ; 
2

[1 4,7,10]kpath  ，  (link sequence of path) 

We can conclude that path 1k  is the optimal reliable path from origin node 1 to 

destination node 9 with an effective travel time of 
1

29.29rs

kt   minutes. To verify the 

proposed algorithm, we enumerate the effective travel times of all 6 paths in Table 3. 

The optimal energy efficient path from origin node 1 to destination node 9 is path 1k  

([1, 4, 9, 12] ) and the corresponding energy consumptions are 5.47 and 4.77 for cases 

A and B. The results of the enumeration method (in Table 3) illustrate that the 

proposed algorithm can find the energy-efficient reliable path ( 1k ). Here we set K =2 

in Step 6 of the K-shortest path algorithm.  

Table 3 Results of a simple network with different algorithms 
The results of the proposed algorithm The results of the enumeration algorithm  

Path

ik  

Effective travel  

Time 
i

rs

kt  (mins) 

Energy 

consumption 

Link 

sequence 

Path

ik  

Effective travel  

time 
i

rs

kt  (mins) 

Energy 

consumption 

Link 

sequence 

A B A B 

1k  29.29 5.74 4.77 [1,4,9,12] 
1k  29.29 5.74 4.77 [1,4,9,12] 

2k  30.04 5.85 4.79 [1,4,7,10] 
2k  30.04 5.85 4.79 [1,4,7,10] 

     
3k  61.71 12.1 5.43 [1,2,5,10] 

     
4k  67.65 13.1 5.55 [3,6,9,12] 

     
5k  68.33 13.3 5.56 [3,6,7,10] 

     
6k  85.11 16.7 5.92 [3,8,11,12] 

(8) -0.15 0.15 -0.34 0.32 -0.69 0.24 0.76 1 0.73 -0.21 0.25 0.36 

(9) 0.23 0.16 0.22 -0.14 0.32 0.81 0.23 0.73 1 0.35 -0.43 0.36 

(10) 0.15 0.26 0.31 0.23 0.16 -0.35 0.14 -0.21 0.35 1 0.56 0.25 

(11) -0.34 0.33 0.15 -0.25 0.24 0.16 -0.32 0.25 -0.43 0.56 1 0.39 

(12) 0.21 0.28 -0.26 0.16 0.26 -0.32 0.31 0.36 0.36 0.25 0.39 1 



 

After comparing the results in Table 3, our proposed algorithm results in the 

identical solution as the enumeration, which requires the calculation of the effective 

travel time of 6 paths. We thus verify the effectiveness and efficiency of our proposed 

energy-efficient reliable path finding algorithm.   

4. Numerical Examples 

In this section, we apply our proposed energy-efficient reliable path algorithm to 2 

real-life transportation networks and compare the algorithm with alternative 

approaches if applicable. Our numerical experiments are conducted using Matlab 7.0  

on the Windows 10 platform running on a PC with an Intel Core(TM) i7-6500U 2.5 

GHz CPU and 4 GB of memory. 

4.1. Example 1: Effectiveness of finding the non-dominated efficient solutions to the 

bi-objective model 

The Tuen Mun Road Corridor Network of Hong Kong (Lam et al., 2001; Lam et al., 

2002; Shao et al., 2018), shown in Figure 3, consists of 6 OD pairs, 4 nodes, 10 links, 

and 20 paths. The mean travel time was observed over 50 identical independent 

workday time periods. The variance-covariance matrix of the link travel times was 

generated using 50 simulations from the standard stochastic user equilibrium (SUE) 

model (Shao et al., 2018). The resulting mean and variance-covariance matrix of the 

link travel times are as shown in Tables 4 and 5, respectively. The related parameters’ 

values of Eqs. (8b-8e) are shown in Table 6 (Yang et al., 2014). The variables 

maxETT  and maxEEC  are set as 60 minutes and 2.5 kwh, respectively. 

 

 
Fig. 3. Tuen Mun Road Corridor Network in Hong Kong 

 

Table 4. Mean and Variance of the Link Travel Times 

Link no. Mean link travel time (mins) Variance link travel time (mins 2 ) Distance (km) 
1  8.514 0.07860 5.89 
2 17.592 0.87510 5.89 
3 18.618 0.85944 5.51 
4  9.102 0.07230 5.51 
5  0.798 0.00096 0.28 
6  0.498 0.00042 0.28 
7  8.868 0.26616 2.68 
8  3.600 0.01464 2.68 
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9  9.606 0.24036 4.6 
10  5.022 0.00642 4.6 
 

Table 5. Link Travel Time Covariance Matrix (mins 2 ) 

 

Table 6 The values of the BEV’s related parameters 
e  0.015 
g  6.6710 11  
  1 o  

  1.1 

DC  0.3 

H  1.8 
  1.2 

c  0.85 

m  0.85 

accessoryP  1000 

 

4.1.1. Spatial correlation analysis 

  To normalize the link travel time covariance in the whole network, we first 

calculate the correlation coefficient for every pair, abl  and cdl , using the following 

formula: 

 
cov( , )cd ab cd

ab

ab cd

l l


 


 (38) 

The resulting correlation coefficient matrix is presented in Table 7. The value of  
cd

ab  

is between -1 and +1, with cd

ab =+1 indicating a positive correlation and cd

ab =-1 

indicating a negative correlation. To facilitate the sensitivity analysis in the following 

subsection, we introduce a multiplier   to vary the values of the correlation 

covariance matrix. 

 

Table 7. Correlation Coefficient Matrix 

 

Link 

no. 
1 2 3 4 5 6 7 8 9 10 

1 0.07860 -0.00834 -0.00624 0.07464  0.00330 0.00012 0.00522 0.01164 0.00258  0.01056 
2 -0.00834 0.87510 0.86664 -0.01434  0.00504 0.00378 0.20754 -0.00138 0.20562 -0.00264 

3 -0.00624 0.86664 0.85944 -0.01314  0.00582 0.00318 0.21324 -0.00294 0.21012 -0.00318 

4 0.07464 -0.01434 -0.01314 0.07230  0.00216 0.00060 -0.00312 0.01398 -0.00462  0.01152 
5 0.00330 0.00504 0.00582 0.00216  0.00096 -0.00036 0.00852 -0.00108 0.00744 -0.00030 

6 0.00012 0.00378 0.00318 0.00060 -0.00036 0.00042 -0.00156 0.00168 -0.00096  0.00084 

7 0.00522 0.20754 0.21324 -0.00312  0.00852 -0.00156 0.26616 -0.00432 0.25236 -0.00108 
8 0.01164 -0.00138 -0.00294 0.01398 -0.00108 0.00168 -0.00432 0.01464 -0.00300  0.00924 

9 0.00258 0.20562 0.21012 -0.00462  0.00744 -0.00096 0.25236 -0.00300 0.24036 -0.00078 

10 0.01056 -0.00264 -0.00318 0.01152 -0.00030 0.00084 -0.00108 0.00924 -0.00078  0.00642 

Link 

no. 
1 2 3 4 5 6 7 8 9 10 

1 1 -0.0318 -0.0240 0.9901 0.3799 0.0209 0.0361 0.3431 0.0188 0.4701 

2 -0.0318 1 0.9993 -0.0570 0.1739 0.1972 0.4300 -0.0122 0.4483 -0.0352 

3 -0.0240 0.9993 1 -0.0527 0.2026 0.1674 0.4459 -0.0262 0.4623 -0.0428 
4 0.9901 -0.0570 -0.0527 1 0.2593 0.1089 -0.0225 0.4297 -0.0350 0.5347 

5 0.3799 0.1739 0.2026 0.2593 1 -0.5669 0.5330 -0.2881 0.4898 -0.1208 

6 0.0209 0.1972 0.1674 0.1089 -0.5669 1 -0.1475 0.6775 -0.0955 0.5115 
7 0.0361 0.4300 0.4459 -0.0225 0.5330 -0.1475 1 -0.0692 0.9977 -0.0261 

8 0.3431 -0.0122 -0.0262 0.4297 -0.2881 0.6775 -0.0692 1 -0.0506 0.9531 

9 0.0188 0.4483 0.4623 -0.0350 0.4898 -0.0955 0.9977 -0.0506 1 -0.0199 
10 0.4701 -0.0352 -0.0428 0.5347 -0.1208 0.5115 -0.0261 0.9531 -0.0199 1 



 

4.1.2 Numerical solutions analysis 

To illustrate how the variables of the on-time arrival probability and correlation 

coefficients impact the optimal paths, we consider the three scenarios shown in Table 

8. To facilitate the sensitivity analysis in the following subsection, we introduce a 

multiplier   to vary the values of the correlation covariance matrix. As mentioned 

previously, the energy consumption function of BEVs satisfies the property of 

additivity. In other words, parameters   and   do not influence the results of the 

proposed energy-efficient path model. To this end, we focus on the impacts of 

parameters   and   on the reliable shortest path problem.   
 

Table 8. Three cases illustrating the impacts of   and   on reliable paths 

Scenario Variable   Variable   Goal 

A √(varying) ×(fix) 
Account for parameter  ’s impact on the 

reliable path only. 

B ×(fix) √(varying) 
Account for parameter  ’s impact on the 

reliable path only. 

C √(varying) √(varying) 
Account for the joint effects of parameters 

 ’s and  ’s impacts on the reliable path. 

   

Scenario A shows how the on-time arrival probability   impacts the reliable path 

while keeping =1 . There are four paths from origin node 1 to destination node 4 

(Figure 3). Path 1 (2, 7) (link sequence) is the optimal reliable path, and the effective 

travel time is 0.4628 hours, with an on-time arrival probability of =90% . Figure 4 

illustrates that the paths’ effective travel time increases while the on-time arrival 

probability   increases. For instance, the effective travel times on path 1 (2, 7) (link 

sequence) with on-time arrival probabilities of 50%, 75%, and 90% are 0.441, 0.4525 

and 0.4628 hour, respectively.  

  In scenario B, we exhibit the impacts of the multiplier of the correlation coefficient 

matrix   on the reliable paths while keeping an on-time arrival probability of 

=90% . Figure 5 depicts the effective travel times of all 4 paths under varied 

amounts of the multiplier  . It is observed that the path effective travel time 

increases as the multiplier   increases. For instance, the effective travel times on 

path 1 with multipliers of 25%, 50%, and 75% are 0.4518, 0.4563 and 0.4598 hours, 

respectively. Interestingly, Figure 5 also shows an extraordinarily small gap in the 

effective travel time between paths 2 and 3.  



 

0.4 0.42 0.44 0.46 0.48 0.5 0.52
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Effective travel time (hour)

O
n
-t

im
e
 a

rr
iv

a
l 
p
ro

b
a
b
ili

ty
 

Path 1 (2,7)

Path 2 (3,6,7)

Path 3 (2,5,9)

Path 4 (3,9)

90%

75%

50%

0.45250.441 0.4628

 
Fig. 4. Scenario A: Effective travel times of paths under different values of on-time 

arrival probability   

In scenario C, we demonstrate the joint effects of the on-time arrival probability   

and the multiplier of the correlation coefficient matrix   on the optimal reliable path 

(path 1). The results are shown in Figure 6. For comparison purposes, we also depict 

the plane of the on-time arrival probability =50%  as the benchmark plane. The 

effective travel time of path 1 increases from 0.441 hours to 0.481 hours as the 

multiplier   increases with the on-time arrival probability  , ranging from 50% to 

100%. By contrast, the effective travel time of path 1 decreases (from 0.441 hours to 

0.402 hours) as the multiplier   increases if the on-time arrival probability   falls 

below 50%. This effect is due to the increasing monotonicity of the inverse 

cumulative density function of the normal distribution when  >0.5, and vice versa 

for  <0.5. Therefore, it suggests that ignoring the on-time arrival probability   and 

correlation coefficient matrix   may lead to the over- or under-estimation the path’s 

effective travel time. For better illustration purposes, we present the precise amounts 

of the effective travel times for all of the reliable paths in Table 9. 
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Fig. 5. Scenario B: Effective travel times of paths under different values of the 

multiplier of the correlation coefficient matrix   
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Fig. 6. Scenario C: Effective travel time under different values of the on-time arrival 

probability   and the multiplier of correlation coefficient matrix   
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We observe that the effective travel time of optimal reliable path 1 increases as the 

multiplier of the correlation coefficient matrix   increases if the on-time arrival 

probability is =90% . For instance, the effective travel time on path 1 with 

multipliers of the correlation coefficient of = 0.25, 0.5, 0.75, and 1 are 0.4518, 

0.4563, 0.4598 and 0.4628 hours, respectively. On the other hand, the effective travel 

time of optimal reliable path 1 decreases as the multiplier of the correlation 

coefficient matrix   increases given an on-time arrival probability of =10% . That 

is, the effective travel time on path 1 with multipliers of the correlation coefficient of 

= 0.25, 0.5, 0.75, and 1 are 0.4302, 0.4257, 0.4222 and 0.4193 hours, respectively. 

Due to the zero value of the inverse cumulative density function, the path effective 

travel times are independent of the multiplier of the correlation coefficient matrix   

when the on-time arrival probability is =50% . To this end, we show that the 

parameters of the on-time arrival probability   and correlation coefficient matrix   

play important roles in our proposed bi-objective model. 

 

Table 9. Results in the Tune Mun Road Network under different values of multipliers 

of the correlation coefficient matrix   and on-time arrival probability   among 

OD pairs 1-4  

  
Paths 

(Link sequence) 
Effective travel time (hour) 

=1  =0.75  =0.5  =0.25  

 

=90%

 

Path 1 (2, 7) 0.4628 0.4598 0.4564 0.4519 

Path 2 (3, 6, 7) 0.4879 0.4850 0.4816 0.4772 

Path 3 (2, 5, 9) 0.4881 0.4852 0.4818 0.4773 

Path 4 (3, 9) 0.4916 0.4888 0.4854 0.4810 

 

=50%

 

Path 1 (2, 7) 0.4410 

Path 2 (3, 6, 7) 0.4664 

Path 3 (2, 5, 9) 0.4666 

Path 4 (3, 9) 0.4704 

 

=10%  

Path 1 (2, 7) 0.4193 0.4222 0.4256 0.4301 

Path 2 (3, 6, 7) 0.4449 0.4478 0.4512 0.4556 

Path 3 (2, 5, 9) 0.4451 0.4480 0.4514 0.4559 

Path 4 (3, 9) 0.4492 0.4520 0.4554 0.4598 

 

4.1.3 Effects of BEV’s mass on the energy consumption in case B 

  In this section, we study the effects of BEV’s mass on their energy consumption. 

The categories of BEVs considered are: Compact, Medium-sized, Luxury, 

Transporter. The mass of the four reference vehicles are assumed to be 1500kg, 

2000kg, 2500kg and 3000kg, respectively. Then, the detailed results are shown in 

Figure 7. 
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Fig. 7. Case B: Energy consumption of BEVs with different masses 

 

Apparently, the energy consumption of BEVs increases as their mass increases. For 

instance, the energy consumption on path 1 with the mass of m  1500, 2000, 2500 

and 3000 kg are 0.9088, 1.0503, 1.1919 and 1.3334 kwh, respectively. In figure 7, the 

energy consumption of path 2 is 1.9629 kwh and much larger than path 1. This is 

because there are three links in path 2 and only two links in path 1. In each link, the 

traveler need to speed up in the first stage and the acceleration process (the first stage) 

will consume the most energy along the link, echoing the finding in Yang et al., 

(2014). As the BEV’s mass increases, the difference between the energy consumption 

of path 1 and path 2 also increases. For instance, the difference between the EEC of 

path 1 and path 2 is 1.9629 0.9088 1.0541   kwh with the BEV’s mass of 1500 kg. 

Whereas, the difference becomes 3.4085 1.3334 2.0751   kwh when the BEV’s 

mass is 3000 kg. This indicates that the BEV’s mass plays an influential role on 

energy consumption.      

4.1.4 Effects of speed limit on the proposed bi-objective model 

The increased traffic uncertainty triggered by speed limit may impact the non-

dominated efficient solutions to our bi-objective problem. Mathematically, we use the 

mean and variance of the link travel times to depict the uncertainty of the speed of 

BEV (the average speed is defined as divide the distance of link a  by the mean of 

the link travel time). Actually, we adopted two different formulas to calculate the 

energy consumption of BEVs. The first formula presented by He et al. (2014) is easy 

to calculate with K-shortest algorithm (Yang and Chen, 2006). Following the results 

of the second formula proposed by Yang et al. (2014), the time consuming of first 

stage (acceleration process) is about 6 seconds and the third stage (deceleration 

process) will cost about 4 seconds. Based on the above discussion, the energy 

consumption formula proposed by Yang et al. (2014) and Zhang and Yao. (2015) can 



 

also be divided into three parts. The BEV’s mass is assumed to be 2000kg. 

Meanwhile, the value of maximum speed of BEV is assumed to be double of the 

average speed of link a . We compare the original results of the proposed bi-

objective model with those of the doubled mean and variance of the link travel times 

presented in Table 10.  

Specifically, both the effective travel time and energy consumption grow with the 

uncertainty of the link travel time in case A. For example, when the values of the 

mean and variance are doubled given an on-time arrival probability of 90%  , the 

effective travel time of path 1 increases from 0.4628 to 0.9233 hours and the energy 

consumption of path 2 (3, 6, 7) increases from 1.53 to 1.58 kwh. However, the energy 

consumption decreases when the values of the mean and variance double in case B. 

This is because when the values of the mean and variance become double, the average 

speed and the maximum speed are reduced to half. Under this circumstance, the 

energy consumption of the first stage (acceleration process) must decrease as the 

maximum speed is reduced to half. For example, when the values of the mean and 

variance become double given an on-time arrival probability of 90%  , the energy 

consumption of path 1 (2, 7) decreases from 1.05 to 0.98 kwh. These results indicate 

that the speed of BEV may influence the effective travel time and the energy 

consumption. That is, the speed of BEV has a significant impact on the optimum 

solution to the bi-objective model. 

In Table 10, we also present the non-dominated efficient solutions (path 1 and path 

2) in case A in this network and suggest that the optimum solution of this bi-level 

problem, which depends on the travelers’ priority if they prioritize on-time arrival 

reliability over energy-efficiency, is Path 1. By contrast, if energy consumption is 

taken as a priority over on-time arrival reliability, Path 2 becomes the optimum 

solution. However, the path 1 (2,7) is the optimal solution with the minimum effective 

travel time 0.4628 hour and the minimum energy consumption 1.0503 kwh in case B.  

 

Table 10. Results in the Tune Mun Road Corridor Network under different values of 

the mean link travel time and variance link travel time among OD pairs 1-4 ( 1  ) 

 Paths 

(Link sequence) 

Effective travel time (hour) EEC (kwh) 

90%   50%   10%   Case A Case B 

Mean link travel 

time ( a ) 

Variance link travel 

time (
2

a ) 

Path1 (2, 7) 0.4628 0.4410 0.4193 1.5423 1.0503 

Path 2 (3, 6, 7) 0.4879 0.4664 0.4449 1.5279 2.4448 

Path 3 (2, 5, 9) 0.4881 0.4666 0.4451 1.9281 2.1588 

Path 4 (3, 9) 0.4916 0.4704 0.4492 1.8137 1.6798 

Mean link travel 

time ( 2 a ) 

Variance link travel 

time (
22 a ) 

Path1 (2, 7) 0.9233 0.8820 0.8406 1.5935 0.9756 

Path 2 (3, 6, 7) 0.9735 0.9328 0.8920 1.5820 1.2139 

Path 3 (2, 5, 9) 0.9741 0.9332 0.8922 1.9822 1.1822 

Path 4 (3, 9) 0.9811 0.9408 0.9004 1.8683 1.1187 

 

4.2. Example 2: Efficiency of the proposed algorithm 

The Sioux Falls network consists of 24 nodes and 76 links. The paths are initially 

generated for the 96 OD pairs (Origin nodes: 1, 4, 2 and 5, Destination nodes: 13, 20, 



 

21 and 24; Origin nodes: 13, 20, 21 and 24, Destination nodes: 1, 2, 4 and 5; Origin 

nodes: 6, 7, 8 and 18, Destination nodes: 3, 12, 14 and 23; Origin nodes: 3, 12, 14 and 

23, Destination nodes: 6, 7, 8 and 18; Origin nodes: 9, 10, 11 and 16, Destination 

nodes: 15, 17, 19 and 22; and Origin nodes: 15, 17, 19 and 22, Destination nodes: 9, 

10, 11 and 16).  
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Fig. 8. Sioux Falls network for numerical example 2 

  Similarly to Shao et al., (2018), we test our proposed algorithm with the mean link 

travel time observed over 50 homogeneous, independent workday time periods and 

the variance-covariance matrix of link travel time generated from 50 simulations with 

the standard SUE model. The link distances are assumed to be 2.5 times greater than 

those of the link free-flow travel times and the BEV’s mass is assumed to be 2000kg. 

The values of other BEV’s related parameters are shown in Table 6. The variables 

maxETT  and maxEEC  are set as 120 minutes and 15 kwh, respectively. 

 

  As we verify the efficiency of the algorithm in this network, the detailed results are 

omitted. The average computing time between OD pair 1-20 under different values of 

the on-time arrival probability   are shown in Table 11. To be specific, the average 

running time increases as the on-time arrival probability   increases because a 

higher arrival probability requires more paths to be selected in the candidate path set. 

The average running time is almost 3 seconds for this medium size traffic network 

with 90% on-time reliability, thus suggesting the promising potential of efficiency in 

a large-scale network. 

 

Table 11. Computational time of the proposed algorithm 

On-time arrival probability   (%) 60 70 80 90 

Maximum number of paths maxK  4 21 62 95 



 

Average computational time (second) 0.28 0.51 1.63 2.97 

4.3. Example 3: The non-dominated solutions of the proposed model in large-scale 

networks 

In this section, we conduct the experiments using the large-scale networks existing in 

most urban areas. The grid-based network as shown in Figure 9 is adopted in this 

example. The test network consists of 220 nodes and 409 links as shown in Figure 10. 

The mean and variance of link travel times are randomly generated using a normal 

distribution, as shown in Table 12. The covariance matrix of the link travel time is 

randomly generated to be a positive definite matrix, consistent with the variances of 

generated link travel times. The BEV’s mass is assumed to be 2000kg. The values of 

other BEV’s related parameters are shown in Table 6. The variables maxETT  and 

maxEEC  are set as 220 minutes and 35 kwh, respectively. 

  

Fig. 9. Grid-based network in Hong Kong 

Table 12. Bounded constraints for randomly generating link travel time  

Mean of link travel time (minute) [3 16] 

Variance of link travel time (minute 2 ) [0.1 0.2] 

On-time arrival probability 90% 

Distance of each link (meter) [1000 3000] 

 

According to the proposed model and the heuristic algorithm in sections 2 and 3, 

the detailed results between OD pair 1 and 220 are shown in Figures 11 and 12. The 

results in Figure 10 are obtained with the energy consumption formula proposed by 

He et al. (2014) (Case A). Obviously, there are three non-dominated solutions in the 

test network. Meanwhile, the results in Figure 11 are calculated with the energy 

consumption formula proposed by Yang et al. (2014) (Case B). Apparently, there are 

seven non-dominated solutions in the test network. The energy consumptions with 

different formulas are different. Thus, different kinds of energy consumption formulas 

may play a significant role in the travelers’ choice. The computational time of a 

desktop computer with Core(TM) i7-6500U 2.5 GHz CPU, a 4 GB memory and a 

Windows 10 operation system is 702 s. It is evidenced from this example that 



 

proposed heuristic solution algorithm can be applied to a large-scale network. 

 

Fig. 10. Test network for example 3  
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Fig. 11. Case A: The non-dominated solutions between OD pair 1 and 220   
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Fig. 12. Case B: The non-dominated solutions between OD pair 1 and 220 

In order to show the impacts of the on-time arrival probability   on the non-

dominated paths, we present the non-dominated solutions under various values of   

in Figure 13. 
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Fig. 13. The non-dominated solutions between OD pair 1 and 220 under different 

values of on-time arrival probability   
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Figure 13 shows the influences of on-time arrival probability   on the non-

dominated solutions. For example, in Case B, the numbers of non-dominated 

solutions are 2, 3, 6, 8 for on-time arrival probabilities  =60%, 70%, 80% and 90%, 

respectively. The results indicate that a higher on-time arrival probability can lead to a 

larger number of non-dominated solutions. This is because the effective travel times 

of non-dominated paths increase as on-time arrival probability   increases. This 

example also shows that energy consumption issue could impact on the non-

dominated solutions. For instance, there are three non-dominated solutions in Case A 

with an on-time arrival probability   of 90%. By contrast, the number of non-

dominated solutions is 8 in Case B even with the same  . This is because Cases A 

and B utilize the energy consumption formulae Eqs. (8a) and (8e) respectively. As a 

result, different amounts of non-dominated solutions are found in Cases A and B. This 

also indicates that the number of non-dominated paths for the arterial roads (Case B) 

is greater than that of expressways (Case A), all the other parameters remaining the 

same.  
 

5. Conclusions and further studies 

This paper proposed a bi-objective model for finding an optimal reliable energy-

efficient path in stochastic traffic networks with BEVs. To be specific, the proposed 

model accounts for both the on-time arrival probability and correlated link travel 

times in a stochastic network. Our proposed algorithm takes advantage of the 

inequality technique to address the non-linear and non-additive issue embedded in the 

on-time arrival reliability objective and the features in the polynomial computational 

complexity. With the use of the illustrative example studied in this paper, we 

demonstrated the following: 

(i) The effective travel times of the reliable energy-efficient paths depend on the 

on-time arrival probability and correlation coefficient matrix as well as the mean and 

variance of the link travel times in uncertain road networks,  

(ii) The optimal path to this bi-objective problem is dependent on the travelers’ 

personal preferences, and  

(iii) The effectiveness and efficiency of our proposed algorithm for applications. 

Our proposed bi-objective model and its solution algorithm can significantly help 

travelers budget their travel time with a given on-time arrival probability (Yu et al., 

2011) and fixed energy consumption, even in a large-scale transportation network 

with uncertainties. However, this paper has several limitations, and thus, we suggest 

the following future research works. 

(1) The proposed reliability-based (or reliable) path finding model is a static model 

that calculates the effective travel times in stochastic road networks. Extending the 

reliable path finding model to a time-varying stochastic network in a dynamic 

setting (Xu, et al., 2011b; Sever et al., 2018) is promising for further research. 

(2) Our proposed reliable path finding model only considers the spatial link travel 

time correlations. The temporal correlations should also be considered in the 

future. 

(3) Different values of on-time arrival probability   to represent various travelers’     

risk-taking attitudes can be worthwhile for further study. 

(4) To verify the application of our proposed algorithm, a large-scale transportation 

network is worth being constructed in future research (Yu et al., 2012).   

(5) The proposed algorithm can be further extended for solving the RSPP for risk-



 

seeking ( 50%  ) path choice behaviors. Further research could be carried out to 

design more robust path finding algorithms for multiple risk-taking path choice 

behaviors under network uncertainty.  

(6) The proposed method depends on the assumption that the path travel time follows 

multivariate normal distribution. Actually, the path travel time distribution should 

be calibrated using real data, which may not follow normal distribution with 

symmetric density function. How to overcome this limitation by considering other 

distribution of path travel time in reliable path finding problem deserves further 

extension of our study. 

(7) There are many different electric vehicle classes in transportation network. The 

proposed model only considers the effective travel time and energy consumption 

of private electric vehicles. Further studies could be conducted to consider the 

reliable path finding problem for electric buses (Chen et al., 2018).   

(8) With the developments of big data and machine learning technologies, how to use 

the methods of deep learning and reinforcement learning (Yao and Moawad, 2019; 

Qi et al., 2019) to accurately estimate the effective travel time and energy 

consumption deserves further study.  
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