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Abstract 24 

Naturally formed soils (e.g., residual soils and deposit clays) usually show an absent range of 25 

particle size. Frequently used by geotechnical communities worldwide, such gap-graded soils 26 

can be simplified as binary mixtures composed of fine soil matrix and coarse rock aggregates. 27 

In this study, an elastoplastic model is proposed for gap-graded soils based on a volume 28 

average scheme and homogenization theory. The proposed model incorporates a structural 29 

variable to account for the evolution of the inter-granular skeleton of rock aggregates. The 30 

model is then implemented in a numerical code by the linearized integration technique 31 

proposed by Bardet and Choucair (1991). It is shown that the model can predict a wide range 32 

of variations of the overall shear responses with the increase in volume fraction of rock 33 

aggregates. An isotropic loading induces a nonuniform stress distribution in gap-graded soils, 34 

where the stress in the soil matrix is lower than that of the rock aggregates. The stress path of 35 

the matrix is approximately parallel with that of the rock aggregates during triaxial shear 36 

loading. The proposed model contains only one additional structure parameter compared with 37 

the generalized modified Cam clay model, which can be easily calibrated from the data of a 38 

conventional triaxial compression tests. Comparison between our model predictions and the 39 

experimental data from literature indicates that the propose model can well reproduce the 40 

mechanical responses of gap-graded soils within a wide range fraction of rock aggregates. 41 

 42 

Keywords: Elastoplastic model; Gap-graded soils; Volume average scheme; Homogenization 43 

theory   44 
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1. Introduction 45 

Natural soils are usually composed of fine-grained soil and rock aggregates with a great range 46 

gap of size distribution (Yang and Juo, 2001; Zhao et al., 2007; Ueda et al., 2011; Change et 47 

al., 2014; Ng et al., 2016; Deng et al., 2017; Cui et al., 2017; Xu and Coop, 2017; Yang et al., 48 

2018). Such gap-graded soils have frequently been treated by mixture theory as binary 49 

mixtures consisting of soft soil matrix and stiff rock inclusions (Vallejo, 2000; Peters and 50 

Berney, 2010; Zhou et al., 2016; Shi and Yin, 2017). In arid and semi-arid areas, the fine-51 

grained soils originate from the disintegration of parent rocks (from surface inwards) due to 52 

weathering, e.g., wetting-drying cycles or temperature oscillations. Since the disintegration is 53 

mainly a physical process, the soil matrix has the same mineral composition as the rock 54 

blocks. The soil matrix may also be a resultant of erosion and transportation of sedimentary 55 

soils from other places, followed by subsequent deposition (Chandler, 2000). However, this 56 

may probably happen in wet areas. The binary gap-graded soils are used as geotechnical 57 

structures worldwide, such as riprap, dam and high-fill subgrade (Zhao et al., 2007; Vallejo, 58 

2000; Chen and Cui, 2017). The rock fraction has a considerable influence on the workability 59 

of these geo-structures (Vallejo, 2000; Peters and Berney, 2010; Zhou et al., 2016). 60 

The mechanical behavior of gap-graded soils was documented by many previous 61 

researchers, including laboratory work (Graham et al., 1989; Kumar, 1996; Yin, 1999; 62 

Vallejo, 2000; Monkul et al., 2005; Monkul and Ozden, 2007; Ueda et al., 2010; Shi and Yin, 63 

2018; Shi et al., 2018) and numerical simulations (González et al., 2004; Dai, 2015; Ng et al., 64 

2016; Zhou et al., 2016; Shi and Herle, 2017; Wu et al., 2017). Most of these works focus on 65 

the qualitative analysis of the test data, with relatively scarce theoretical work on the gap-66 

graded soils reported. To this end, a model incorporating the coarse fraction effect is proposed 67 

here for gap-graded soils, which is further validated by reported experimental data. 68 
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2. Structure of gap-graded soils 69 

Structure evolution with increasing volume fraction of rock aggregates 70 

For a small volume fraction of rock inclusions, the coarse aggregates may suspend in the 71 

matrix, and the overall mechanical behavior depends on the soil matrix and the interaction 72 

between the matrix and inclusion phases. With increasing volume fraction of the aggregates, 73 

contacts between the aggregates gradually form. However, these may only be partial contacts. 74 

The inter-granular skeleton of aggregates can support a higher stress than the matrix due to 75 

the partial contacts and soil bridges between the aggregates (Jafari and Shafiee, 2004; Fei, 76 

2016; Shi and Yin, 2017). When the volume fraction of soil matrix approximates the 77 

maximum porosity of the inclusions (loosest packing state of coarse aggregates), a continuous 78 

inter-granular skeleton forms. The corresponding fraction of the matrix is noted as ‘transition 79 

fines content’ (Monkul and Ozden, 2007). In this study, we only consider the fine content 80 

beyond the ‘transition fines content’, which corresponds to soils in intense weathering areas. 81 

An extremely small fine content (e.g., close or equal to zero) may result in macro-pores 82 

between the rock aggregates, which is beyond the scope that the mixture theory can treat. 83 

Volume fraction of rock aggregates 84 

Due to its dual-level configuration, it is challenging to provide an exact description of the 85 

structure of a gap-graded soil. To this end, the volume fraction concept is introduced in the 86 

subsequent analysis (see, e.g., de Boer and Ehlers, 1986; Didwania and de Boer, 1999). This 87 

concept leads to a substitute (smeared) continua with reduced physical quantities of the 88 

constituents, which can be easily incorporated into the mixture theory. 89 

A gap-graded soil is simplified as a mixture of matrix and inclusions, with the matrix 90 

being the soft soil and the inclusions being the rock aggregates. As mentioned above, the 91 

structure transition of gap-graded soils is controlled by the volume fraction of the rock 92 
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aggregates a , provided that the rock aggregates are randomly arranged in the soil matrix. 93 

Therefore, the coarse volume fraction a  can be introduced as a bridge between the overall 94 

behavior of the mixture and that of the soft soil matrix. The compressibility of the matrix is 95 

much higher than that of the rock inclusions, thus the volume fraction of rock aggregates 96 

increases with increasing compression loading. The volume fraction of rock aggregates is 97 

hence a state dependent variable. For a given coarse mass fraction, it can be formulated as a 98 

function of the overall void ratio e  and the void ratio of the soil matrix me : 99 

(1 )

m
a

m

e e

e e






                                                             (1) 100 

The void ratio of the soil matrix me  is given as 101 

( )

( )

a m a a
m

a a

e e
   

 




1-

1-
                                                   (2) 102 

where a  is the dry mass fraction of rock aggregates; m  and a  are the particle densities of 103 

the soil matrix and the rock aggregates, respectively. Two fractions of aggregates are used in 104 

this work: the volume fraction a  and the dry mass fraction a . a  is used for homogenizing 105 

state variables of binary gap-graded soils in the sequel analysis. The dry mass fraction a  is 106 

commonly adopted in laboratory tests, since it is constant during compression and shearing 107 

process. In numerical simulations, the volume fraction of aggregates depends on the stress 108 

state which is computed from the overall void ratio and the dry mass fraction of aggregates 109 

(Eqs. (1) and (2)). Note that this is not applicable for a mixture with very high coarse fractions, 110 

in which the macro-pores may exist between the rock aggregates. 111 

Volume average stresses and strains 112 

Due to the difference of stiffness between the two phases of a mixture, the interaction at the 113 

interface may result in a nonuniform stress (strain) field. As the essential load-carrying 114 
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members of the mixture, the hard rock aggregates sustain a higher loading than that of the 115 

ductile matrix, and the loading increases with the volume fraction of the aggregates (Tandon 116 

and Weng, 1988). Correspondingly, with increasing volume fraction of the rock aggregate, 117 

the strain experienced by the matrix phase decreases, and the magnitude of stress in the matrix 118 

drops.   119 

In the following, the focus will be placed on modeling the mechanical behavior in the 120 

frame of continuum mechanics rather than describing the microstructure of the mixture media. 121 

As suggested by Tandon and Weng (1988), the mean-field theory provides a reasonable 122 

approximation for describing the behavior of geomaterials. Using the volume fraction concept, 123 

all physical and geometric quantities can be defined in a predefined space (e.g., deformation, 124 

motion, and stress invariants). In the sequel, the stress and strain variables are approximated 125 

by the statistical average values of the real ones (de Boer, 2006). It is of convenience to use 126 

two subscripts, ‘a’ and ‘m’, to denote quantities pertaining to the rock aggregates and soil 127 

matrix, respectively. Following the volume average scheme, the overall stress tensor ij   and 128 

overall strain tensor ij  can be expressed as 129 

            (3a) 130 

            (3b) 131 

where tV  is the representative elementary volume (REV) of gap-graded soils, ( )% x and ( )ij
% x  132 

are local stress and strain over the defined REV. aV  and mV  are the volumes of the rock 133 

aggregates and soil matrix, respectively. ,ij a  , ,ij m  , ,ij a  and ,ij m  are the stress and strain 134 

variables of the two constituents. Note that the stiffness of rock aggregates is extremely high, 135 

thus, a negligible deformation can be expected within the conventional stress range, i.e., 136 



7 

 

, 0ij a  . 137 

The constitutive relationship of the gap-graded soils depends on the following factors: (1) 138 

the stress-strain relationships for the two phases. The rock aggregates are extremely hard 139 

with negligible deformation, and the soil matrix shows a plastic deformation when subjected 140 

to an external loading. (2) The homogenization approaches which builds a bridge between 141 

the overall compliance (stiffness) and the respective ones of the two phases. These two 142 

factors will be addressed in the following two sections. 143 

 144 

3. Modeling the soil matrix 145 

Natural soil-rock mixtures usually contain a fraction of soil matrix higher than the ‘transition 146 

fines content’. In this case, the overall behavior of the mixtures depends on that of the soil 147 

matrix, partial contacts between the coarse aggregates and the interaction at the interface 148 

between the matrix and aggregates. In the absence of a continuous inter-granular skeleton, the 149 

mechanical behavior of the soil matrix provides a frame of reference for assessing the overall 150 

behavior of the gap-graded soil. It is assumed that the soil matrix follows an incremental 151 

stress-strain relationship. A numerical scheme based on the tangent homogenization is 152 

adopted to compute the overall compliance of the soil matrix (Ju and Sun, 2001).  153 

Elastic deformation 154 

Following the convention of classical soil mechanics, compressive stress and strain are 155 

taken as positive. An incremental elasto-plastic description is adopted for the ductile soil 156 

matrix. The incremental strains of the soil matrix ,ij m  is decomposed into an elastic part ,

e

ij m  157 

and a plastic part ,

p

ij m :  158 

, , ,d =d de p

ij m ij m ij m                                                             (4) 159 



8 

 

Logarithmic volumetric strain is adopted in this study. It is assumed that the logarithmic value 160 

of the specific volume mv  changes linearly with the effective mean stress mp  of the matrix 161 

(Butterfield, 1979) for both virgin compression and swelling curves. Following this 162 

assumption, the elastic incremental stress-strain relationship can be expressed as 163 

, ,

,

(1 )1
d = d

3(1 2 ) 3(1 2 )

e m m
ij m ik jl ij kl kl m

e m m mK

 
     

 

 
 

  
                                (5) 164 

where ,
m

e m

m

p
K




  is the elastic modulus, m  is the slope of the swelling line of the matrix in 165 

double logarithmic ln : lnm mv p  relationship, m  is the Poisson’s ratio of the soil matrix, ij , 166 

ik , jl  and kl  are Kronecker’s symbols. 167 

Plastic flow 168 

The fabric of a natural gap-graded soil depends on its history of formation, and the soil may 169 

be anisotropic due to a preferred orientation of the rock aggregates during erosion, 170 

depositional and post-depositional processes (Zhou et al., 2017). As a preliminary 171 

investigation, only the isotropic case is considered in this study. It is widely accepted that the 172 

critical state type models (Roscoe and Burland, 1968; McDowell and Hau, 2004; Yao et al., 173 

2004, 2012; Gao and Zhao, 2012, 2015, 2017; Zhao and Gao, 2016) can well reproduce the 174 

stress-strain relationship of reconstituted soils. A generalized form of the Modified Cam clay 175 

model proposed by McDowell and Hau (2004) is adopted. The yield surface for the soil 176 

matrix mf  is given as 177 

2
2 2 2

2 2:    0;    ( 1)
1 1

mk
m m m c

m m c m

m c m

M p M p
f q p k

k p k

  
    

  
                            (6) 178 

where mq  is the deviatoric stress of the matrix, cp  represents the size of the yield surface, 179 

mM  is a strength parameter corresponding to a unique critical state line in :mp q  stress plane, 180 
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and mk  controls the shape of the yield surface. Note that the Critical State Line (CSL) in the 181 

compression plane changes with the shape parameter mk . 182 

In the sequel, the stress-strain relationship of the soil matrix will be presented following 183 

the incremental plasticity theory presented by Scott (1985) which has been adopted in plastic 184 

fractional order plasticity (Sun and Shen, 2017; Sun et al., 2018). The size of the yield surface 185 

cp  acts as a hardening variable. Consistency condition of the yield surface gives 186 

d d 0m m
kl c

kl c

f f
p

p




 
  

  
                                           (7) 187 

In many critical state models, the evolution of hardening variable cp  is assumed as a 188 

function of the plastic volumetric strain increment ,d p

v m  (e.g., Yao et al., 2009; Yao and 189 

Zhou, 2013; Hong et al., 2014): 190 

, ,

,

d
d d d

d

p pc c
c v m v mp

v m m m

p p
p  

  

 
  


                                         (8) 191 

where m  is the slope of the Normal Compression Line (NCL) in double logarithmic 192 

ln : lnm mv p  plot. Note that a linear relationship between ln mv  and ln mp  is assumed for the 193 

virgin compression of the soil matrix here.  194 

The plastic (volumetric) strain increment ( ,d p

v m  or ,d p

ij m ) of the soil matrix is related to 195 

the maximum gradient of the plastic potential surface mg : 196 

,d =dp m
v m m

m

g

p
 




                                                  (9a) 197 

,

,

d =dp m
ij m m

ij m

g
 






                                                (9b) 198 

where d m  is a positive plastic multiplier. Substitution of Eqs. (8) and (9a) into Eq. (7) gives 199 
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1

, , ,

, ,

1
d = dm

m ij m kl m kl m

p m ij m

g
m n

K
 





 
    

                                  (10) 200 

where ,p mK  is the plastic modulus of the soil matrix, the unit vectors ,ij mm  and ,kl mn  represent 201 

the normal to the potential surface and yield surface of the matrix, respectively: 202 

,

, ,

=

m m

c c m
p m

m m m m

kl m ij m

f g

p p p
K

f g 

 

 

   

  

  

; 
,

,

,

=

m

kl m

kl m

m

kl m

f

n
f













; 
,

,

,

=

m

ij m

ij m

m

ij m

g

m
g













                  (11) 203 

where 
ij ij ijx x x . Substitution of Eqs. (5), (9b) and (10) into Eq. (4) gives 204 

, , ,d = dij m ijkl m kl mC                                                          (12a) 205 

, , ,

, ,

(1 )1 1
=

3(1 2 ) 3(1 2 )

m m
ijkl m ik jl ij kl ij m kl m

e m m m p m

C m n
K K

 
   

 

 
  

  
              (12b) 206 

 207 

4. A new homogenization approach for gap-graded soils 208 

The majority of early homogenization studies have been developed based on linear elasticity 209 

consideration of the constituents (Eshelby, 1961; Hill, 1965; Mori and Tanaka, 1973; Lielens 210 

et al., 1998). However, a gap-graded soil is not typical soils that can be described in the 211 

classical mixture theory for three-fold reasons: (1) the soil matrix in a gap-graded soil is 212 

dominantly plastic, (2) the modulus of the rock aggregates is normally much larger compared 213 

with that of the matrix, and (3) the interface between the constituents is not perfect. To this 214 

end, a new homogenization model is proposed based on mixture theory for gap-graded soils. 215 

Effective compliance tensor 216 

The microstructure of natural gap-graded soils can be defined by selecting a suitable REV 217 

with randomly distributed rock aggregates. The work by Tu et al. (2005) on mixtures with 218 
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this kind of microstructure reveals that increasing the modulus of aggregates significantly 219 

improve the overall modulus for small modulus ratios (the ratio of the modulus of the 220 

aggregates to that of the matrix). Further increase of the modulus ratio brings the overall 221 

modulus to a limit state (named as ‘saturation state’ by Tu et al., 2005). Therefore, it is 222 

reasonable to relate the overall modulus of a gap-graded soil to the one of the soil matrix and 223 

the inter-granular skeleton regardless of the modulus of the rock-aggregates. 224 

The overall modulus of a gap-graded soil increases with the volume fraction of rock 225 

aggregates, and it should meet the following two requirements: (1) for a gap-graded soil with 226 

negligible fraction of aggregates, e.g., 0s  , the overall elastic modulus eK   and plastic 227 

modulus pK  are assumed to be approximately close to the corresponding ones of the soil 228 

matrix, i.e., ,e e mK K  and ,p p mK K . (2) when the inter-granular void ratio (the ratio of the 229 

volume of inter-granular space to that of the aggregates) approaches the minimum void ratio 230 

of the rock aggregates, additional external load is mainly sustained by the inter-granular 231 

structure. Hence, the overall modulus should be much larger than that of the soil matrix.  232 

The homogenization model proposed by Shi and Yin (2017) for the compression behavior 233 

of sand-marine clay mixtures is modified for the gap-graded soils:  234 

,ln = ln ln(1 )e e m aK K                                            (13a) 235 

,ln = ln ln(1 )p p m aK K                                          (13b) 236 

where   is a structure variable representing the inter-granular structure evolution given by  237 

= a

a a






 

 
 

 

%

%
                                                      (14) 238 

where   is a structure parameter controlling the sensitivity of the structure variable on the 239 

volume fraction of rock aggregate, a
% is the maximum volume fraction of aggregates for 240 

pure coarse inclusions, and it corresponds to the minimum void ratio of the rock aggregates 241 
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mine : 242 

min

1
=

1+
a

e
%                                                        (15) 243 

Analogous to the stress-strain relationship of the soil matrix, the overall one can be 244 

expressed as 245 

d =d d de p

ij ij ij ijkl klC                                                 (16a) 246 

(1 )1 1
=

3(1 2 ) 3(1 2 )

m m
ijkl ik jl ij kl ij kl

e m m p

C m n
K K

 
   

 

 
  

  
                   (16b) 247 

where ijm  and kln  are unit vectors representing the normal to the potential surface and yield 248 

surface of the gap-graded soils, respectively: 249 

= kl
kl

kl

f

n
f













; =
ij

ij

ij

g

m
g













                                             (17) 250 

Stress concentration tensor 251 

The overall compliance tensor of the gap-graded soil can be expressed as a function of the 252 

soil matrix using an incremental stress (or strain) concentration tensor. By applying the 253 

volume average scheme, the stress concentration tensor is defined as 254 

,d = dij m ijkl kl                                                       (18) 255 

Considering that the deformation of the rock aggregates is negligible, the overall 256 

incremental strain of the gap-graded soils is given as 257 

,d (1 )dij a ij m                                                     (19) 258 

Combination of Eqs. (12a), (16a), (18) and (19) leads to the following stress concentration 259 

tensor 260 
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1

,

1
=

1
ijkl pqij m pqkl

a

C C





                                              (20) 261 

Simplification of the full constitutive model 262 

To reproduce the stress-strain curves of the gap-graded soils, one must identify the yield 263 

surface f  and the plastic potential surface g  in order to determine the yield direction vector 264 

kln  and the plastic flow direction vector ijm . In the sequel, the unit flow and loading vectors 265 

of the gap-graded soil are derived by assuming an associated flow rule. 266 

Based on a similar form of the incremental total strain (Eq. (19)), the overall incremental 267 

plastic strain of the gap-graded soils is related to that of the soil matrix: 268 

,d (1 )dp p

ij a ij m                                                        (21) 269 

The overall plastic strain increment of the gap-graded soils is proportional to the 270 

maximum gradient of the corresponding plastic potential surface g : 271 

d =dp

ij

ij

g
 






                                                       (22) 272 

Substitution of Eqs. (9b) and (22) into (21) yields the following equation: 273 

,

d
=

(1 )d

m m

ij a ij m

gg 

   



   
                                              (23) 274 

where
 
d m , d , and a  are scalars. In consideration of the definitions of yield direction and 275 

flow direction vectors in Eqs. (11) and (17), it follows that 276 

,=ij ij mm m                                                        (24) 277 

An associated flow rule is assumed for the gap-graded soils, i.e., the yield surface f  is the 278 

same as the plastic potential surface g , so that 279 

=ij ijn m                                                          (25) 280 

The compliance tensor of the gap-graded soils is represented by the following equation: 281 
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, ,

1 1
= (1 )

3 (1 2 )
ijkl m ik jl m ij kl ij m kl m

e m p

C m m
K K

     


    
                   (26) 282 

 283 

5. Model parameter calibration and numerical simulations  284 

Calibration of model parameters 285 

The proposed elastoplastic model in the Section 4 contains seven parameters: mM , mN , m , 286 

m , m , mk ,  . Six of them are for the constitutive model of the soil matrix, denoted by a 287 

subscript ‘m’. mM  is a strength parameter of the soil matrix, which can be calibrated from the 288 

critical state data in :m mp q  stress plane; mN  and m  describe the Normal Compression Line 289 

of the soil matrix in double logarithmic ln : lnm mv p  plot; m corresponds to the slope of the 290 

swelling line of the clay matrix in ln : lnm mv p  compression plane; m  is Poisson’s ratio of the 291 

soil matrix, which can be determined from the initial stiffness in triaxial compression test; mk  292 

is a shape parameter controlling the shape of the yield surface, which can be calibrated from 293 

the critical state line in ln : lnm mv p  compression plane;   is a structure parameter describing 294 

the evolution of inter-granular skeleton with increasing volume fraction of rock aggregates. 295 

A minimum of three conventional tests are required for the calibration of the seven model 296 

parameters: an oedometer test or isotropic compression test on the pure soil matrix, and 297 

triaxial shear tests on both the pure soil matrix and a gap-graded soil with a predefined mass 298 

fraction of the rock aggregates. mN , m  and m  can be determined from the loading-299 

reloading curves of an oedometer (isotropic compression test) of the soil matrix. mM , m  300 

and mk  can be calibrated from a triaxial shear test on the pure soil matrix. The structure 301 

parameter   is calibrated by trial and error using the data of a triaxial shear test on a gap-302 
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graded soil. 303 

Stress integration of the constitutive model 304 

The model presented above is a rate-type stress-strain relationship, which can be solved by 305 

the linearized integration technique proposed by Bardet and Choucair (1991). The explicit 306 

integration scheme is utilized in this work to describe the material point response of various 307 

rock-soil mixtures from literature. It can be readily implemented into finite element codes for 308 

boundary value problems, which reduces the difficulties arising from the high non-linearity of 309 

the mechanical behavior of mixture soils. The overall loading constraints for the gap-graded 310 

soils in laboratory testing conditions can be linearized into the following equation (Bardet and 311 

Choucair, 1991): 312 

d + d =dijk jk ijk jk iP Q Y                                                      (27) 313 

where ijkP  and ijkQ  are constant coefficients, d iY  is a loading increment during a loading 314 

process. In consideration of the overall stress-strain relationship (Eq. 16), Eq. (27) becomes 315 

( + )d =dijk ipq pqjk jk iP Q C Y                                                 (28) 316 

It is more convenient to use the stress increment of the soil matrix ,d jk m  as the principal 317 

invariants for a boundary value problem. Substitution of Eq. (18) into Eq. (28) gives 318 

-1

,( + ) d =dist ipq pqst stjk jk m iP Q C Y                                            (29) 319 

The numerical stress integration procedure of the proposed model is outlined as follows: 320 

(1) Suppose an initial isotropic overall stress state ( )jk j k 
 =0 kPa, ( )jk j k 

 =10 kPa, with a 321 

uniform stress distribution , ,kl m kl a kl      . Under this assumption, there may be a small 322 

deviation at the initial stage of loading, which is negligible when the stress level is 323 

significantly higher than 10 kPa.   324 

(2) Determine the stress and strain constraint tensors ijkP  and ijkQ  based on the loading 325 
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conditions in laboratory testing. The test can be either stress controlled or strain controlled, 326 

or (stress-strain) mixed controlled. 327 

(3) For a given overall effective stress (or strain) increment at the current computation step328 

d iY , the stress increment of the soil matrix ,d jk m is calculated. 329 

(4) If the assumed stress state of the soil matrix , ,+djk m jk m    is still within the yield surface 330 

(Eq. (6): , ,( +d ) 0m jk m jk mf     ), the stresses and strains are updated as  331 

, , ,+djk m jk m jk m     ; , , , ,+ djk m jk m jkrt m rt mC                                    (30a) 332 

-1

,+ dpq pq pqjk jk m      ; , ,+(1 ) dpq pq s pqrt m rt mC                                (30b) 333 

(5) If the assumed stress state is beyond the yield surface, the stress increment is reduced so 334 

that the new stress increment ,d jk m   pushes the stress state onto the yield surface, i.e., 335 

, ,( + d ) 0m jk m jk mf      . So that the current stresses and strains are 336 

, , ,+ djk m jk m jk m      ; , , , ,+ djk m jk m jkrt m rt mC                                     (31a) 337 

-1

,+ dpq pq pqjk jk m       ; , ,+(1 ) dpq pq s pqrt m rt mC                                 (31b) 338 

(6) Update the following state variables: the compliance tensor of the soil matrix ,jkrt mC , the 339 

structure variable  , the overall compliance tensor jkrtC , the stress concentration tensor 340 

-1

pqjk . 341 

(7) Reset the loading increment d (1 )di iY Y  , and compute the stress increment ,jk m   due 342 

to the plastic deformation (based on Eq. (29)).  343 

(8) The stress and strain tensor are computed by using Eq. (30), and the size of the yield 344 

surface of the soil matrix cp  is updated. Repeat steps (3)-(8) to proceed with the next 345 

round of computation until the loading is completed. 346 
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Simulations of the proposed model 347 

Following the numerical integration procedure presented above, simulations of drained 348 

triaxial tests of gap-graded soils using the proposed model is performed in this section. The 349 

calibrated model parameters for the proposed model are given in Table 1. The shape 350 

parameter mk =2 is assigned for the yield surface of the soil matrix, which is reduced to an 351 

ellipse adopted in the Modified Cam clay model. The maximum volume fraction of the pure 352 

rock aggregates is assumed to be 0.65, and the two phases (soil matrix and rock aggregates) 353 

have the same value of particle density: 2650 kg/m
3
. An initial (isotropic) effective stress of 354 

10 kPa is assumed, and the initial state of the soil matrix is assumed on the Normal 355 

Compression Line. The sample is then isotropically compressed to 200 kPa, followed by a 356 

shear process. 357 

The simulation results of the drained triaxial test of gap-graded soils are shown in Fig.1. A 358 

small value of the structure parameter is assumed =0.05  first, and four different rock mass 359 

fractions are considered (0.00, 0.10,0.20,0.40). It is not surprising that the sample with a 360 

higher rock fraction shows a smaller deformation, and an increase of the rock fraction 361 

improves the overall stiffness of the gap-graded soils remarkably. However, the effect of rock 362 

fraction on the overall shear strength is negligible. Note that the kinks in Fig. 1d is induced by 363 

the change of stress path (from isotropic compression to triaxial shear). To provide an insight 364 

into this phenomenon, the stress-strain curves of the soil matrix is shown in Fig. 2. It is seen 365 

that an isotropic loading leads to a non-uniform stress distribution in the gap-graded soils. The 366 

final stress (at the end of the isotropic loading process) in the soil matrix is smaller than the 367 

corresponding overall value. The stress paths of the soil matrix and the rock aggregates are 368 

almost parallel during the subsequent triaxial shear loading stage. The overall shear strength 369 

of normally consolidated mixtures is related to the critical stress state of the soil matrix and 370 

rock aggregates. A lower stress in the matrix in conjunction with a higher stress in the 371 
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aggregates results in a comparable shear strength to that of the pure soil matrix. 372 

The overall behavior of gap-graded soils with a high value of structure parameter (ξ=0.35) 373 

is presented in Fig. 3. It reveals a different coarse fraction effect from the one with a lower 374 

value of structure parameter (ξ=0.05, see Fig. 1). Both the initial stiffness and ultimate shear 375 

strength increase continuously with increasing rock fraction. This is consistent with the results 376 

of some gap-graded soils from literature (Jafari and Shafiee, 2004; Fei, 2016; Ruggeri et al., 377 

2016). To further evaluate the performance of the proposed model, more simulations with 378 

different values of structure parameter are performed (where the dry mass fraction is assumed 379 

to be 0.40). The results are presented in Fig. 4. It indicates that overall shear strength 380 

increases as the structure parameter increases. The structure parameter is controlled by the 381 

particle shape and the particle size distribution of the coarse aggregates. 382 

 383 

6. Validation of the proposed model 384 

The shear strength of a gap-graded soil is affected by the volume fraction, the particle shape 385 

and particle size distribution of the rock aggregates (Jafari and Shafiee, 2004; Fei, 2016; 386 

Ruggeri et al., 2016). For some gap-graded soils the shear strength is insensitive to the 387 

volume fraction of rock aggregates until the rock particles form a continuous skeleton (Wood 388 

and Kumar, 2000). However, the shear strength of other gap-graded soils may increase 389 

continuously with increasing rock fraction (Jafari and Shafiee, 2004; Fei, 2016; Ruggeri et al., 390 

2016). Benchmark analysis in the previous section reveals that the proposed model can 391 

simulate the shear strength behavior of the above two cases by assigning different values for 392 

the structure parameter. Three gap-graded soils from literature are used to validate the 393 

proposed model: (1) the natural gap-graded soils presented by Ruggeri et al. (2016); (2) the 394 

Kaolin clay-gravel mixtures from Jafari and Shafiee (2004); (3) the Kaolin clay-sand mixtures 395 

(data from Wood and Kumar, 2000). 396 
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Natural gap-graded soils (Ruggeri et al., 2016) 397 

The poorly graded soil investigated by Ruggeri et al. (2016) consists of coarse grain particles 398 

and fine grey soil matrix, with a composition of 8% clay, 27% silts, 37% sand and 28% gravel. 399 

The shape of its PSD (particle size distribution) curve shows an absence of fine sand fraction. 400 

The pure soil matrix consists of 22% clay and 78% silts, and it has a liquid limit of 30% and a 401 

plastic limit of 18%. Three different mixtures were tested based on the PSD of the coarse 402 

aggregates: (1) HTP: the first series contains aggregates smaller than 16 mm, (2) HTP10: the 403 

grain size of the second series is smaller than 2.0 mm, and (3) HTP40: the third one has a 404 

grain size finer than 0.425 mm. The mixtures were prepared by mixing the soil matrix with 405 

the coarse aggregates in dry conditions. The reconstituted sample was first consolidated in a 406 

consolidometer at a vertical stress of 200 kPa to hold the sample together, then it was further 407 

consolidated at 400 kPa followed by triaxial shear under drained conditions. Four different 408 

cases of mass fractions of the coarse aggregates (10%, 20%, 30%, and 40%) are compared 409 

with the proposed model predictions. 410 

Kaolin clay-gravel mixtures (Jafari and Shafiee, 2004) 411 

Jafari and Shafiee (2004) have performed a series of triaxial tests on clay-gravel mixtures. 412 

The soil matrix is a commercial Kaolin clay. The particle density of the Kaolin material is 413 

2740 kg/m
3
. The liquid limit and plastic limit are 69% and 31%, respectively. The gravel was 414 

retrieved from a riverbed. It consists of sub-rounded aggregates with a particle density of 415 

2660 kg/m
3
. The size of gravel particles varies within a narrow range of 4.75 mm to 6.30 mm, 416 

with an average size of 5.55mm. The minimum void ratio of the gravel material was not given 417 

by the authors, and it was assumed as 0.41 following the summary of granulometric properties 418 

of granular materials by Herle and Gudehus (1999). Three initial volume fractions of the 419 

gravel aggregates were considered: 20%, 40%, and 60%. The gravel was first mixed with dry 420 
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Kaolin clay according to designated gravel fractions. The specimens were then compacted 421 

layer by layer (ASTM1999: standard compaction test). Finally, the specimens were saturated, 422 

consolidated and compressed under undrained strain-controlled conditions. Since the Normal 423 

Compression Line of the pure Kaolin matrix was not provided by the authors, an alternative 424 

one done by Atkinson et al. (1987) was used for calibrating parameters, since it has 425 

approximately the same Atterberg limits as the commercial Kaolin clay used by Jafari and 426 

Shafiee (2004).  427 

Kaolin clay-sand mixtures (Wood and Kumar, 2000) 428 

The mixture tested by Wood and Kumar (2000) consists of Kaolin matrix and coarse uniform 429 

sand inclusions. The Kaolin clay has a liquid limit and plastic limit of 80% and 39%, 430 

respectively. Most of the soil particles (95%) of soil matrix are finer than 0.002 mm. The size 431 

of sand particles is more or less uniform around 2.0 mm, and the particle shape is sub-angular 432 

to sub-rounded. The maximum and minimum porosity of the coarse sand is 0.50 and 0.37, 433 

respectively. The particle densities are 2620 and 2650 kg/m
3
 for kaolin and sand, respectively. 434 

First, water was added to the dry Kaolin powder to reach a desired water content of 120%. 435 

The slurry was mixed homogeneously, and then coarse sand particles were added. Finally, the 436 

sample was pre-consolidated in a consolidometer, followed by a further pre-consolidation 437 

(400 kPa), (reloading) and shearing in a triaxial cell. Three different consolidation ratios of 438 

the mixture were considered: OCR = 1.0, 1.3, and 4.0. 439 

Model predictions on the three gap-graded mixtures  440 

It is assumed that the mixtures have a uniform initial stress of 10 kPa, followed by an 441 

isotropic compression and a further triaxial shearing process. The model parameters for the 442 

gap-graded soils are given in Table 2, which were determined from the procedure summarized 443 

in Section 5. Note that the values of the structure parameter ξ for natural gap-graded soils are 444 
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0.57/0.60/0.63 for HTP/HTP10/HTP40, respectively. The predictions based on our model are 445 

compared against tests data for all three gap-graded mixtures are shown in Figs. 5-16.  446 

Figs. 5-10 present a comparison of our model predictions with the experimental 447 

observations made by Ruggeri et al. (2016) on natural gap-graded soils. It is seen that the 448 

proposed model can well reproduce the effect of coarse fraction on the mechanical responses 449 

and volumetric deformation behavior of the tested natural gap-graded soils. The experimental 450 

results of the kaolin-clay and kaolin-gravel mixtures obtained by Jafari and Shafiee (2004) 451 

and the numerical simulations using the proposed model are presented in Figs. 11-12. The 452 

shear strength is moderately underestimated by the proposed model at the confining stress of 453 

100 kPa, which may be attributed by the overconsolidation due to the compaction during 454 

sample preparation. The simulations are consistent with the experimental data for volume 455 

fractions of 20% and 40%, However, a difference arises between the experimental data and 456 

the simulation curves for a high fraction of aggregates (60%). This may be due to the 457 

following two reasons: (1) large pores may exist in the soil matrix or the interface between the 458 

two phases; (2) an associated flow rule is assumed for the gap-graded soils, which may be not 459 

applicable in case where the inter-granular skeleton of aggregates controls the deformation 460 

process.  461 

Different values of shape parameter are calibrated from the data of drained triaxial tests 462 

(km=1.6) and from the undrained triaxial tests (km=2.0) (Wood and Kumar, 2000). If km=2.0 is 463 

adopted for all numerical simulations, comparison of predictions with the experimental data 464 

of kaolin clay-sand mixtures (Wood and Kumar, 2000) are shown in Figs. 13-16. Noticeably, 465 

the proposed model cannot well capture the overall shear stress and overall volumetric 466 

deformation in drained triaxial tests. This may be due to the fact that the shape parameter is 467 

calibrated from the undrained tests. For a better fitting of the experimental data of the pure 468 

Kaolin clay, km=1.6 is adopted for a further comparison for the drained case (solid lines Figs. 469 
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13 and 14). Evidently, it is seen that the difference of overall shear stress between the 470 

simulations and experimental data significantly decreases in the drain case, whereas the 471 

overall volumetric strain remains underestimated. This can be interpreted by the deficiency of 472 

the generalized modified Cam clay model which underestimates the volumetric strain of the 473 

pure kaolin matrix in drained triaxial tests. 474 

 475 

7. Conclusions 476 

An elastoplastic constitutive model has been proposed for gap-graded soils based on mixture 477 

theory and a volume-average homogenization scheme. Validation of the model against 478 

experimental data has been presented. A summary of the features of present model and 479 

conclusions are presented below:  480 

 (1) The effect of inter-granular skeleton is considered by incorporating a structure parameter 481 

which evolves with the volume fraction of the rock aggregates. A small value of the structure 482 

parameter yields a negligible increase of the overall shear strength. However, a higher value 483 

of structure parameter can simulate a continuous increase of overall shear strength with 484 

increasing rock fraction. 485 

(2) Simulation of the proposed model provides insights into the mechanisms governing the 486 

evolution of inter-granular skeleton. An isotropic loading may induce a nonuniform stress 487 

distribution in gap-graded soils, where the stress in the soil matrix is lower than that of the 488 

rock aggregates. The stress paths of the phases are almost parallel during subsequent triaxial 489 

compression loading. 490 

 (3) Compared with the generalized Modified Cam clay model, the proposed model has only 491 

one additional structure parameter, which can be estimated by trial and error using the data of 492 

a triaxial compression test on gap-graded soils with a prescribed fraction of rock aggregates. 493 

The other model parameters can be calibrated from an oedometer (or isotropic compression) 494 
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test and a triaxial test on the pure soil matrix. 495 

Test data of three different gap-graded soils from the literature are compared with the 496 

predictions of the proposed model, revealing that the proposed model can well reproduce the 497 

stress strain relationship of gap-graded soils. However, it is noteworthy that the proposed 498 

model has been targeted for binary gap-graded soils, based on the following hypotheses: The 499 

inter-granular space is fully filled with fine soil matrix. In intense weathering areas, fine 500 

content is usually beyond the minimum porosity of the pure aggregates, and no macro-pores 501 

prevail between the large aggregates (Kavvadas et al. 1996; Vallejo and Mawby, 2000; Zhou 502 

et al., 2017). Therefore, it can be simplified as binary mixtures and be treated using mixture 503 

theory. However, The macro-pores would arise in case that the volume fraction of matrix is 504 

less than the minimum porosity of pure aggregates, and the decreasing of fine fraction leave 505 

increasing macro-pores between the coarse aggregates. This kind of soils cannot be properly 506 

modelled within the mixture theory, and further efforts need to be devoted to address this 507 

issue. 508 

 509 
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Table 1. Model parameters for benchmark analysis of the proposed model  

Parameters Mm Nm λm κm μm km ξ 

Value 1.4 0.6 0.05 0.01 0.22 2.0 0.00/0.05/0.20/0.35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Model parameters for validation of the proposed model  

Parameters Natural gap-graded soils Kaolin-gravel mixtures Kaolin-sand mixtures 

Mm 0.97 0.98 0.80 

Nm 0.817 1.269 1.35 

λm 0.056 0.089 0.085 

κm 0.019 0.030 0.020 

μm 0.35 0.23 0.30 

km 2.0 1.1 2.0 (1.6) 

ξ 0.57/0.60/0.63 0.07 0.05 
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Figure 9: Experimental stress-strain data and numerical simulations HTP40 series (Natural gap-graded soils)

10



0

2

4

6

8

0 5 10 15 20

ε
v
 /

 %

εs / %

ψs=0.00: Test 
ψs=0.10: Test
ψs=0.30: Test

ψs=0.00: Model
ψs=0.10: Model
ψs=0.30: Model

(a) ψa=0.10, 0.30

0

2

4

6

8

0 5 10 15 20

ε
v
 /
 %

εs / %

ψs=0.00: Test 
ψs=0.20: Test
ψs=0.40: Test

ψs=0.00: Model
ψs=0.20: Model
ψs=0.40: Model

(b) ψa=0.20, 0.40

Figure 10: Experimental volumetric strain and numerical simulations of HTP40 series (Natural gap-graded
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Figure 11: Experimental stress-strain data and numerical simulations (Kaolin clay-gravel mixtures)
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Figure 12: Experimental data of excess pore water pressure dissipation and numerical simulations (Kaolin
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Figure 13: Experimental stress-strain data and numerical simulations of drained triaxial test (Kaolin clay-sand
mixtures)
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Figure 14: Experimental volumetric strain and numerical simulations of drained triaxial test (Kaolin clay-sand
mixtures)
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Figure 15: Experimental stress-strain data and numerical simulations of undrained triaxial test (Kaolin clay-
sand mixtures)
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Figure 16: Experimental data of excess pore water pressure dissipation and numerical simulations of undrained
triaxial test (Kaolin clay-sand mixtures)
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