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Abstract: This paper presents a multi-scale stochastic dynamic analysis method for offshore structures. 

The uncertainties in the structural material parameters, such as mass density and Young’s modulus, 

are considered. They are assumed to be lognormal distributions and represented by using the 

Karhunen–Loeve (KL) and Polynomial Chaos (PC) expansions. Since the variance of the output 

responses is unknown, the output vibration response is represented by using PC expansion. The multi-

scale stochastic analysis is conducted with PC expansions of different orders representing responses at 

different DOFs defined as three categories, namely, important, less important and the least important 

ones. Iterated Order Reduced (IOR) model reduction technique is employed to remove the PC 

coefficients of slave DOFs. Two numerical examples are taken to verify the accuracy and efficiency 

of the proposed method for the multi-scale stochastic dynamic response analysis of offshore risers. 

The response statistics such as mean value and variance can be obtained from the proposed method. 
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The results are compared with those from Monte Carlo Simulation (MCS) and Stochastic Finite 

Element Method (SFEM). Results demonstrate that the computational demand for uncertainty 

evaluation is greatly reduced, and the accuracy of the results is maintained.  
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1 Introduction 

Performance-based structural analysis and design are becoming a significant topic in civil 

engineering community. Structural performance assessment can more realistically be done in a 

probabilistic sense, since uncertainties inevitably exist in the dimensions, geometry, material 

properties, loading and the numerical modelling assumptions of structures (Haukaas and Der 

Kiureghian, 2004). Probabilistic structural analysis is receiving more attention in the last decades 

(Stefanou, 2009). Many approaches been proposed to simulate the random properties due to the 

uncertainties, i.e. Karhunen–Loeve (KL) expansion method (Huang et al., 2001), orthogonal series 

expansions (Stefanou, 2009) and optimal linear estimation method (Li and Der Kiureghian, 1993). 

With the realized random input, Monte Carlo Simulation (MCS) is a traditional method to evaluate the 

probabilistic characterization of the model output. Other methods, i.e. Neumann series expansion 

(Yamazaki et al., 1988), Polynomial Chaos (PC) expansion (Xiu and Karniadakis, 2002) and the first-

order second-moment method (Dolinski, 1982) have also been developed to determine the stochastic 

characteristics of output with random input variables. Stochastic structural analysis has been widely 

performed in many engineering areas, e.g. settlement analysis of a foundation (Sudret and Der 

Kiureghian, 2000), reliability assessment of structures (Haldar and Mahadevan, 2000), and 

performance-based earthquake engineering (Kiureghian and Fujimura, 2009), etc. 

With the growing needs for the exploitation of oil and gas in the deeper water, marine risers are 

pipe used in floating operations to convey drilling fluid and to guide tools between the drilling vessel 

and the wellhead at the ocean floor. Monitoring the conditions of marine risers is essential for the 

offshore industry since the failure of the risers may cause significant lost and catastrophic consequence. 
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With an increase in drilling operations in harsh environments, the requirements and limits of marine 

risers have become more essential due to uncertainties involved in response prediction and prolonged 

drilling programs. Many research works have been done to investigate the dynamic behavior of marine 

risers, i.e. vortex induced vibrations (Chen et al., 2015; Feng et al., 2017; Tsukada and Morooka, 2016; 

Wu et al., 2016). A detail review on the modelling and analysis techniques of flexible risers can be 

found in (Patel and Seyed, 1995). However, most of existing studies are based on deterministic 

analyses, which assumed that the system parameters were specific constant values.  

Uncertainty analysis of marine structures gains a significant amount of attention in recent years. 

Alibrandi and Koh (2017) presented a study on stochastic dynamic analysis of a floating production 

system with the first order reliability method and Secant Hyperplane Method. The vessel model and 

marine riser were simplified as a 2-DOF model. The uncertainties of the output responses under 

random sea wave loading was evaluated. He and Low (2013) proposed a technique to predict the 

collision probability of risers. The random inputs, such as the drag coefficient, current, vessel motions 

and riser mass were considered. Yang and Wang (2013) utilized the surrogate model to evaluate the 

influences of random variables on the stability of pipeline. The uncertainties in the soil properties, 

structural modelling, and hydrodynamic loads were considered. Cabrera-Miranda and Paik (2017) 

evaluated the probabilistic distribution of loads. A metamodel was developed to predict the loads, such 

as axial tension waves, winds, and currents. Ni et al. (2018) performed the stochastic dynamic response 

analysis of marine risers considering Gaussian system uncertainties. Model reduction was employed 

to reduce the dimension of the stochastic dynamical system and therefore the computational demand 

in the stochastic dynamic response analysis. 
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Using Gaussian random fields to simulate the uncertain system parameters has been widely studied 

in the above literatures. However, the assumption is not necessarily true and suitable to model all the 

material properties, i.e. Young's modulus and yielding strength, etc. In the soil-structure system 

analysis, the material constitutive parameters were assumed to follow the lognormal distribution 

(Barbato et al., 2010). To study the uncertainty effect on the natural frequencies of a bridge, the Young’s 

modulus of the bridge is considered having a lognormal distribution (Wan et al., 2017). Other research 

works on lognormal random inputs can be referred to (Barbato et al., 2013; Gupta and Arun, 2018; 

Saydam and Frangopol, 2013). Realizations of a Gaussian random field with a large coefficient of 

variation may include negative outcomes, which are physically meaningless. From a practical point of 

view, the lognormal random fields appear attractive in this sense because they are naturally positive 

valued (Sudret and Der Kiureghian, 2000).  

The stochastic Young’s modulus and mass density are assumed having lognormal distributions, 

represented with KL and PC expansions. The statistics of parameters are defined based on the design 

information and literatures. The stochastic output response is represented by using PC expansion. The 

accuracy of uncertainty analysis depends on the order of PC expansion. In this study, the degrees-of-

freedom (DOFs) of the structure are classified into three categories, namely, important DOFs which 

will be represented with high order PC expansions, less important DOFs with low order PC expansions 

and unimportant DOFs being eliminated. High order PC expansions will be used for DOFs with high 

significance and interest. Iterated Order Reduced (IOR) method (Xia and Lin, 2004b) is employed to 

reduce the dimension of the stochastic system and reduce the computational demand. Those PC 

expansion coefficients associated with unimportant DOFs are to be removed, and the computational 
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efficiency is improved. Numerical studies on a simplified riser model with beam elements and a 

cylinder riser model with shell elements are conducted. The statistics of the responses of riser models 

obtained with the proposed approach are compared with those calculated from MCS and Stochastic 

Finite Element Method (SFEM). Results demonstrate that the accuracy and efficiency of the proposed 

approach are good by keeping the PC expansion coefficients associated with the main DOFs, based on 

the used IOR model reduction technique.  

 

2 Representation of lognormal random inputs 

2.1 PC expansion 

PC expansion is an efficiency tool to model the stochastic processes. The first research work on 

PC expansion was developed by Wiener (1938), who used Hermite polynomials and Gaussian random 

variables to represent the stochastic processes. Xiu and Karniadakis (2002) found that the optimal 

exponential convergence rate cannot be generated when the Hermite polynomial is used to represent 

the non-Gaussian processes. The theory of PC expansion is briefly reviewed in this section and is used 

to represent the random inputs and outputs later. A random process α(θ) can be treated as a function of 

the random input variable θ, with the following equation 
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where pψ   (p=0, 1, 2, …) are the p-th terms in the PC expansion, and aj1, j2, j3 are deterministic 

coefficients. 

 To reduce the computational demand, the expansion in Eq. (1) is truncated. Taking a two-

dimensional case for example, the PC approximation can be expressed as 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

0 0 1 1 1 2 1 2
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, , , , , , , , ...
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                    a a a
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α θ ψ ψ ξ ψ ξ

ψ ξ ξ ψ ξ ξ ψ ξ ξ

ψ ξ ξ ξ ψ ξ ξ ξ ψ ξ ξ ξ ψ ξ ξ ξ

= + +

+ + +

+ + + + +

     (2) 

 A new polynomial functions Ψk is defined to replace ψk with one-to-one correspondence. Eq. (2) 

can be expressed in a matrix form as  

( ) ( )( )
0

ˆk k
k

a Ψα θ ξ θ
∞

=

=∑                              (3) 

where ˆka  are the deterministic PC coefficients. The two-dimensional expansion as shown in Eq. (2), 

in this case, can be expressed as, 

( ) 0 0 1 1 2 2 3 3 4 4 5 5ˆ ˆ ˆ ˆ ˆ ˆa Ψ aΨ a Ψ a Ψ a Ψ a Ψ  = + + + + + α θ                 (4) 

The polynomials ( )( )kΨ ξ θ  are orthogonal and they satisfy the following relation 

( ) ( ) ( )2,k l k klΨ Ψ Ψξ θ ξ θ ξ θ δ=                          (5) 

where δkl is the Kronecker delta. The symbol •  is the inner product, and the value of 𝛹𝛹𝑘𝑘2 can be 

calculated theoretically (Ghanem and Spanos, 2003). 

 

2.2 KL expansion of lognormal random fields 

KL expansion is combined with PC expansion to represent the lognormal random field of 

uncertainties in the material parameters. 𝐻𝐻(𝜒𝜒, 𝜃𝜃)  and 𝐻𝐻�(𝜒𝜒)  represent a second-order random 
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process and its mathematical expectation, respectively. ( )cov 1 2,C χ χ   is the covariance matirx of 

𝐻𝐻(𝜒𝜒,𝜃𝜃). The covariance matrix ( )cov 1 2,C χ χ  is bounded, symmetric and positive definite, which can 

be decomposed with the eigenvalues λn and eigenvectors ( )nϕ χ  as  

( ) ( ) ( )cov 1 2 1 2
0

, n n n
n

C λ ϕ ϕ
∞

=

=∑χ χ χ χ                          (6) 

The eigenvectors are orthogonal and satisfy following equation 

( ) ( )q n qnV
dϕ ϕ δ=∫ χ χ χ                              (7) 

where δqn is the Kronecker delta function. Therefore, the eigenpairs ( )( ),  n nλ ϕ χ  can be calculated 

from the homogeneous Fredholm integral equation as 

( ) ( ) ( )cov 1 2 2 2 1, n n nV
C dϕ λ ϕ=∫ χ χ χ χ χ                       (8) 

𝐻𝐻(𝜒𝜒,𝜃𝜃) can be expressed as 

( ) ( ) ( ) ( )
( )

1

,

, n n n
n

H

H H

σ θ

θ λ ϕ ξ θ
∞

=

= +∑
χ

χ χ χ


                      (9) 

where ( )H χ  is the mean value of ( ),H θχ  and ( )nξ θ  is a set of uncorrelated standard Gaussian 

variables. Moreover, an explicit expression for ( )nξ θ   can be obtained by multiplying ( ),Hσ θχ  

with ( )nϕ χ  and integrating through the domain V as follows 

( ) ( ) ( )1 ,n nV
n

H dσξ θ θ ϕ
λ

= ∫ χ χ χ                        (10) 

Using the first m-th term eigenvalues and eigenvectors, the random field ( ),H θχ   can be 

approximated as 

( ) ( ) ( ) ( )
1

ˆ , n

m

n
n

H H gθ ξ θ
=

= +∑χ χχ                       (11) 
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where ( )ng χ  is the deterministic function ( )n nλ ϕ χ . 

 Gathering the random variables ( )1ξ θ  , ( )2ξ θ  , ( ), nξ θ    into a n×1 vector ξ and ( )1g χ  , 

( )2g χ ,∙∙∙, ( )n g χ  into a 1n×  vector ( )g χ , the lognormal random field can be approximated with 

( )ˆ ,H θχ  as (Sudret and Der Kiureghian, 2000) 

( ) ( ) ( ) ( )ˆexp , exp Tl H Hθ   = = +   χ χ χ ξg χ              (12) 

 Using PC expansion, Eq. (12) can be expressed as  

( ) ( ) ( )
0

M

n n
n

l l Ψ
=

=∑χ χ ξ                               (13) 

where M is the number of polynomial functions, which depends on the number of KL expansion terms 

and the order of PC expansion p  

( )
( )

!
1

! !
m p

M
m p
+

+ =                                (14) 

and  

( )
( )( )
( )( )2

ˆexp , n

n
n

E H
l

E

θ Ψ

Ψ

  =
χ

χ
ξ

                            (15) 

where ( )E •  denotes the expectation. 

Since the first coefficient corresponds to 0 1Ψ = , we have  

( ) ( ) ( ) ( ) ( )2 2
0

1

1 1exp exp
2 2

=
M

i g
n

l H g H σ
=

   = + +     
∑χ χ χ χ χ               (16) 

where ( )gσ χ  is the standard deviation of ( )ˆ ,H θχ . The other ones can be expressed as    

( ) ( )
( )( )

( )0 2

n
n

n

E
l l

E

Ψ

Ψ

 + =
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g χξ
χ χ

ξ
                          (17) 

The details of closed-form solution can be found in (Sudret and Der Kiureghian, 2000). 
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3 Stochastic system with lognormal uncertainties 

3.1 Equation of motion of a marine riser 

A marine riser is a long and flexible pipe, which connects the sea floor with the offshore platform. 

The dynamic response of the structure can be calculated by using the idealized beam model and the 

fourth order partial differential equations (Cabrera-Miranda and Paik, 2019; Hong and Shah, 2018; 

Teixeira and Morooka, 2017) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
4 2 2

4 2 2

, , , ,
, , , , , ,

x z t x z t x z t x z t
EI z t T z t m z t c z t p z t f z t

z z t t
∂ ∂ ∂ ∂

− + + + =
∂ ∂ ∂ ∂

   (18) 

where ( ),EI z t , ( ),T z t , ( ),m z t , c, ( ),p z t , ( ),f z t  and z are the bending stiffness, the tension 

force, the mass per unit, the drag coefficient, the nonlinear restoring force, the hydrodynamic force, 

and the distance to the sea level, respectively, as shown in Figure 1.  

The majority of the risers have a telescoping joint at the top, which enables the riser to move freely 

in the vertical direction. Therefore, the tension force ( ),T z t  is not considered. The nonlinear drag 

force ( ),p z t  can be represented by the duffing model, or polynomial types of nonlinearities (Li et 

al., 2018; Torres et al., 2015). Since the objective of this paper is to investigate the effect of 

uncertainties in the stochastic material properties on the lateral vibration response of the riser under 

the lateral sea wave loads, the nonlinear drag force is also neglected. When the finite element method 

is applied to study the dynamic behavior of marine risers (Spanos and Chen, 1980), Eq. (18) can be 

written as 

( ) ( ) ( ) ( )t t t t+ + = mx cx kx f                       (19) 
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where k, c and m denote the stiffness, damping and mass matrices of the riser, respectively; ( )tx , 

( )tx  and ( )tx  are the displacement, velocity and acceleration responses, respectively. ( )tf  is 

the applied sea wave loading on the riser. The Rayleigh damping model is used in this study.  

In this study, the lognormal uncertainties in the structural parameters are considered in the 

stochastic response analysis and a multi-scale stochastic analysis approach is proposed to improve the 

computational efficiency and keep the accuracy. This is the main innovation of this paper, which is 

extended based on a previous study (Ni et al., 2018). The stochastic wave loading is given by Morison 

equation (Koh et al., 2018; Zuo et al., 2017). It should be noted that validations of numerical model 

and sea wave loading are not within the scope of this paper. Verifications of simulation results are 

presented by comparing the results from the proposed multi-scale analysis method with those from 

MCS and SFEM. 

 

3.2 Hydrodynamic force  

 The sea wave loading is modeled by the Joint North Sea Wave Observation Project (JONSWAP) 

spectrum (Walden et al., 1973) with Morison equation (Veritas, 2000). First, the sea surface elevation 

is stochastically generated 

( )
( )2

2 2
4 exp

242 5 52 exp
4

m

m

f f
fmfS g f

f
σ

ηη α π γ

 −
 −
 − −  

  
= −  

   
                  (20) 

where, η, γ and g are the the sea surface elevation, the peak enhancement factor, and gravitational 

acceleration, respectively. The peak enhancement factor γ is usually given as 3.3 and f is the wave 

frequency in Hz. The other parameters in Eq. (20) are obtained as  
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( ) 0.222
100.076 vα

−
=                               (21) 

( ) 1/32
10

11 /mf v F g
π

−
=                              (22) 

0.07,
0.09,

m

m

 f f
  f f

σ
≤

=  >
                              (23) 

where F is the fetch length and v10 is the mean wind velocity at 10 m above the sea surface. After the 

sea surface elevation spectrum Sηη is obtained, the sea surface elevation can be simulated in the time 

domain as   

 ( ) ( ) ( )( )
1

2 cos
n

i i i
i

t S tω ηηη ∆ ω ω ϕ ω
=

= +∑                    (24) 

where ( )iϕ ω  is the random phase angle uniformly distributed over the range of 0 ~ 2π. The 

transverse sea wave force per unit length of the riser can be estimated from Morison equation (Veritas, 

2000) as 

( ) 21
2 4water d x x water m p xt C v v C d aπρ ρ= +f                      (25) 

where Cd and Cm are the drag and inertia coefficients, respectively, ρwater is the sea water density and 

dp is the outer diameter of the riser. The velocity vx and acceleration ax of water particles in the 

horizontal direction can be found in (Zuo et al., 2017), which are not introduced in details for 

conciseness. 

It is interesting to investigate the riser systems with different boundary conditions, the effects of 

floating vessel motions, geometric nonlinearity and more sophisticated riser models. These factors play 

an important role in the uncertainty analysis. The details of a riser model without the presence of a 

floating vessel are described, and this model is taken as an example for the stochastic dynamic response 

analysis. It should be noted that the main objective of this paper is to develop a multi-scale stochastic 



13 

 

dynamic analysis method and evaluate the effect of uncertainties in system parameters with lognormal 

distributions on the dynamic responses. 

 

3.3 Representation of the system parameters 

The combination of KL and PC expansions is used to define the uncertain system parameters with 

lognormal distributions as discussed in Section 2.2. In this study, the material parameters such as mass 

density and Young’s modulus, are represented as lognormal random fields. The mass density ( ),ρ θχ  

and Young’s modulus ( ),E θχ  can be approximated as  

( ) ( ) ( )1 1
1 0

ˆ ,
M

i i
i

ρ

ρ θ ρ Ψ
=

=∑χ χ ξ                            (26) 

( ) ( ) ( )2 2
2 0

ˆ ,
EM

i i
i

E Eθ Ψ
=

= ∑χ χ ξ                           (27) 

Substituting Eq. (26) into Eq. (19), the mass matrix of the stochastic system is written as 

( ) ( ) ( )1 1
1 0

M

i i
i

ρ

θ Ψ
=

=∑M M χ ξ                             (28) 

( )( )( )1 1
1 1

ne ne
e T

i i i
i i

A dlρ
= =

= =∑ ∑ ∫M M N χ N                       (29) 

where N and A are the shape function and cross-sectional area, respectively. 

Similarly, the stiffness matrix can be calculcated with 

( ) ( ) ( )2 2
2 0

EM

i i
i

θ Ψ
=

= ∑K K χ ξ                            (30) 

In this paper, the Rayleigh damping matrix is used. The damping matrix considering the 

uncertainties is expressed as  
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( ) ( ) ( ) ( )1 1 2 2
1 0 2 0

EM M

i i i i
i i

ρ

α θ β θ α Ψ β Ψ
= =

   
= + = +   

  
∑ ∑C M K ξ M ξ K              (31) 

3.4 Representation of responses
 

A random dimension vector θ is used to represent the spatial–temporal dimension. The response 

vectors of the stochastic system are expressed as (Xiu and Karniadakis, 2003)  

( ) ( ) ( ) ( )1 2, , , , , , ,
T

doft x t x t x tθ θ θ θ =  x                        (32a) 

( ) ( ) ( ) ( )1 2, , , , , , ,
T

doft x t x t x tθ θ θ θ =  x                          (32b) 

( ) ( ) ( ) ( )1 2, , , , , , ,
T

doft x t x t x tθ θ θ θ =  x                          (32c) 

where the subscript represents the DOF number of the structure. 

Because the spatial correlation of nodal acceleration ( ),t θx , velocity ( ),t θx  and displacement 

( ),t θx   are unknown, the stochastic output responses can be represented by the PC expansions 

according to Eq. (3) with truncations (Xiu and Karniadakis, 2002) 

( ) ( ) ( )
0

,
tM

j
j

j
t Ψ tθ θ

=

=∑x U                             (33a) 

( ) ( ) ( )
0

,
tM

j
j

j
t Ψ tθ θ

=

=∑x U                             (33b) 

( ) ( ) ( )
0

,
tM

j
j

j
t Ψ tθ θ

=

=∑x U                             (33c) 

where ( )j tU  is the vector of PC expansion coefficients of ( ),t θx ; ( )j tU  and ( )j tU  are the first 

and second derivatives of the coefficient vector ( )j tU  , respectively. Mt is the dimension of PC 

expansion, which can be calculated as (Sudret and Der Kiureghian, 2000) 

( )
( )

!
1

! !
E r

t
E r

K K p
M

K K p
ρ

ρ

+ +
+ =

+
                            (34) 
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where pr is the order of the PC expansion of the output responses, Kρ and KE are the numbers of KL 

expansion terms for the mass density and Young’s modulus, respectively.  

Substituting Eqs. (28), (30) and (33) into Eq. (19) without considering the uncertainty in the 

damping matrix, we have 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1
1 0 0 0

2 2
2 0 0

t t

tE

M M M
j j

i i j j
i j j

MM
j

i i j
i j

Ψ Ψ t Ψ t

                                              Ψ Ψ t t

ρ

θ θ θ

θ θ

= = =

= =

    
+    

    
  

+ =  
  

∑ ∑ ∑

∑ ∑

M U C U

K U F

 

        (35) 

Taking the inner product on both sides of the equation with ( )kΨ θ  and employing the orthogonal 

property in Eq. (35), we have 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1
0 1 0 0

2 2
0 2 0

, ,

, ,

t t

t E

MM M
j j

i j k i j k
j i j

M M
j

i j k i f k
j i

Ψ Ψ Ψ t Ψ Ψ t

                                 + Ψ Ψ Ψ t Ψ

ρ

θ θ θ θ θ

θ θ θ θ

= = =

= =

+

=

∑∑ ∑

∑∑

M U CU

K U F

 

         (36) 

Rewriting Eq. (36) in the matrix multiplication form, we have  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )
( )

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )
( )

( )

0, 0,0,0 0,1 0,0 0,10 0

1 11, 1,1,0 1,1 1,0 1,1

,0 ,1 , ,0 ,1 ,

t t

t t

t t
t t t t t t t t

M M
s s s s s s

M M
s s s s s

M MM M M M M M M M
s s s s s s

t t
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where  

( ) ( ) ( ) ( ),
2 2

2 0
,

EM
j k

s i j k i
i

Ψ Ψ Ψθ θ θ
=

= ∑K K        ( , 0,1, 2, , tj k M=   )         (38a) 

( ) ( ) ( ) ( ),
1 1

1 0
,

M
j k

s i j k i
i

Ψ Ψ Ψ
ρ

θ θ θ
=

=∑M M       ( , 0,1, 2, , tj k M=  )         (38b) 
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( ) ( ), 2j k
s k jkΨ θ δ=C C               ( , 0,1, 2, , tj k M=  )         (38c) 

( ) ( ) ( ) , 0
,

0, 1, 2,3, ,
k

k
t

t k=
t Ψ

k= M
θ


= = 



f
F f


                        (38d) 

Similarly, we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ),
1 1 2 2

1 2
, ,

EM M
j k

s i j k i i j k i
i i

Ψ Ψ Ψ Ψ Ψ Ψ
ρ

α θ θ θ β θ θ θ
   

= +   
  

∑ ∑C M K     (39) 

Eq. (37) can then be simplified as 

( ) ( ) ( ) ( )s s s s s s st t t t+ + =M U C U K U F                      (40) 

With the above derived equation, the coefficients of PC expansion can be solved with mode 

superposition method (Borino and Muscolino, 1986). 

 

3.5 Multi-scale Uncertainty Quantification with Model reduction 

When only the first several terms of KL expansion and a low order of PC expansion are used to 

represent the random input and outputs, the matrix size in Eq. (39) will increase significantly. It takes 

a long time to obtain the PC coefficients. Model reduction technique gains many attentions in recent 

years and many methods, such as Guyan method (Guyan, 1965), Iterated Improved Reduced System 

(IIRS) technique (Friswell et al., 1995) and IOR method (Xia and Lin, 2004b) have been developed. 

Model reduction methods have been successfully used in the areas of structural condition assessment 

(Li and Law, 2012) and sensitivity analysis (Weng et al., 2017). It has been reported that IOR method 

has a faster convergence ratio and better model reduction results (Xia and Lin, 2004a). In this study, 

IOR is employed to reduce the dimension of the stochastic dynamic system and therefore the 

computational demand. Only the essential PC expansion coefficients are preserved in the calculation.  
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Multi-scale uncertainty quantification can be achieved with model reduction technique as shown 

in Figure 2. The nodes in a structure can be classified into three categories, i.e. i) very important ones. 

For these nodes, PC expansion with a high order will be used to represent the random output; ii) less 

important ones. A low order PC expansion will be used; and iii) the least important ones. The statistical 

responses of these least important nodes are not of interest, and the corresponding coefficients of PC 

expansion can be eliminated. These coefficients to be eliminated are defined as the slave DOFs, and 

the others with high and low orders are defined as the master DOFs.  

To apply model reduction technique in the stochastic response analysis with Eq. (40), Ks and Ms 

can be rewritten in a partitioned form as 

mm ms
s

sm ss

 
=  
 

K K
K

K K
, mm ms

s
sm ss

 
=  
 

M M
M

M M
                    (41) 

where m and s denote the master and slave DOFs, respectively.  

 The computational steps can be summarized as follows 

Step 1: Initialization with ( )0 1 T
G ss ms

−= = −t t K K  , [ ], T
G G =T I t  , T

G G G=K T KT   and 

( )0 T
d G G=M T MT . 

Step 2: Obtain the transformation matrix ( ) ,
Tk k  =  T I t , where 

( ) ( )( )1 11 1      k
ss ms ss d

k k
G G

−− − − = + +  t t K M M t M K                  (42) 

( ) ( ) ( )1 1 1k k kT T
d ss ms G ms sst t− − −   = + + +   M M M t M M                  (43) 

 Step 3: The reduced system matrices are obtained as 

( ) ( ) ( )Tk k k
r

 =  M T MT  and ( ) ( ) ( )Tk k k
r

 =  K T KT                (44) 
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Step 4: Repeat Step 2 and Step 3 until the convergence criteria are satisfied. The convergence 

criteria is defined as 

( ) ( )

( )

1it it
mm mm

it
mm

Tol
−Λ −Λ

≤
Λ

                            (45) 

where ( )it
mmΛ  are the eigenvalues of the reduced system.  

The Rayleigh damping is used for the stochastic system with a reduced dimension 

r r rα β= +C M K                             (46) 

The reduced stochastic system matrices, i.e. Mr, Kr and Cr, are used for the stochastic dynamic 

response analysis. The PC expansion coefficients, namely ( )r tU , ( )r tU  and ( )r tU , of the reduced 

system, are calculated by using the mode superposition method (Borino and Muscolino, 1986). After 

the coefficients of PC expansion are obtained, the mean value of nodal displacements MEANU can be 

evaluated as 

( )0
rMEAN t=U U                            (47) 

The variance of nodal displacements VARU is obtained as 

( ) ( )2 2

1

lP
j

r j
j

VAR t Ψ θ
=

 =  ∑U U  or ( ) ( )2 2

1

hP
j

r j
j

t Ψ θ
=

  ∑ U              (48) 

where Pl and Ph are the dimensions of low order and high order PC expansions, respectively. 

 

4 Numerical Studies 

4.1 Beam model 

In this section, numerical simulations on an offshore riser simulated by using Euler beam elements 

will be conducted. The details of the two-dimensional finite element model are shown in Figure 3. The 



19 

 

marine riser has a length of 100m and outer diameter of 0.1524m. The structure is simulated with 20 

elements and each element has 2 node and 4 DOFs. Totally, there are 40 DOFs for the numerical model. 

The riser has a fixed end at the bottom and the free end at the top. The vertical deformation caused by 

the floating vessel motions in waves is not considered in this study due to the large size of the stochastic 

system matrices and intensive computational requirement. Only the uncertainties in the structural 

material properties will be considered. The mean values of flexural rigidity and the mass per unit length 

are 4×1010 Nm² and 15 kg/m, respectively, which are assumed as two independent lognormal random 

variables. In this example, the spatial correlation is expressed by an exponential covariance function 

as  

( ) ( )2 2
1 2 /2

cov 1 2,
z z a

gC z z eσ
− −

=                         (49) 

where σg is the standard deviation of the Gaussian random field. The parameter a is the correlation 

length and the expression 1 2z z−  is the distance between two points of interest, respectively.  

When the designed lognormal distribution has a mean value of μl and standard deviation of σl, the 

corresponding value for the Gaussian distribution (μg and σg) are 

( )
2

2
ln 1l

g
l

σσ
µ

  
 = + 
   

                          (50) 

( ) ( )21ln
2g l gµ µ σ= −                           (51) 

The correlation length is in this study 50m and 20% uncertainties in the flexural rigidity and mass 

density are considered. To simulate the lognormal random field, the first six terms of eigenvectors and 

eigenvalues as described in Eq. (11) are used, and the designed lognormal distribution can be 

represented with Eq. (13). Different orders of PC expansions is performed to evaluate accuracy of the 
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lognormal random field. The first, second, and third order of PC expansions are studied. The 

Probability Density Function (PDF) and Cumulative Distribution Function (CDF) are then obtained. 

Figure 4 shows the statistical distribution properties of the flexural rigidity, i.e. PDF and CDF, 

comparing with their analytical values. The results with different orders of PC expansions are shown 

and the comparison indicates that a higher order of PC expansion will obtain a better accuracy to 

represent the lognormal random input. In the following studies, the third order PC expansion is selected 

to simulate the lognormal distributions of uncertain system material properties, i.e. flexural rigidity 

and mass density. 

The simulated marine riser is subjected to sea wave loading with zero initial condition. To simulate 

the sea wave loading with Eq. (25), the following parameters are used: ρwater=1030 kg/m3, Cd=1.36, 

Cm=2, v10=15 m/s, F=20000, fm=0.245 Hz, and dp=0.1524m. Figure 5 shows the sea wave loading 

generated from the JONSWAP spectrum and Morison equation. The full current load is applied from 

z=100 to 70 m, and the load reduces linearly from z=70 to the ocean floor z=0.  

The uncertainty in damping is also considered in this study. Rayleigh damping model is used and 

the coefficients are α=0.6263 and β=0.0003, respectively. These two coefficients are obtained from the 

first two natural frequencies without considering the uncertainties. In this study, the responses under 

the sea wave loads are analyzed. The vertical loading from the floating platform to the top end of the 

riser is not considered.   

SSFEM and MCS method are carried out to verify the accuracy of the proposed approach. In the 

MCS method, 50,000 simulations are conducted to obtain the reference statistical properties. These 

calculations for uncertainty analysis take 16 hours by using a computer of an i7-3770 CPU and 24 GB 
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RAM. A convergence study is performed first to check the statistics with different numbers of 

simulations. Statistical results of the displacement response at the top in the horizontal direction are 

evaluated and shown in Figure 6. These results verify that the statistics from 50,000 simulation runs is 

accurate enough and they can be taken as baseline for comparison in the subsequent studies. The results 

from SFEM with second and third order PC expansion will be discussed later. 

In multiscale stochastic dynamic analysis, the vibration responses are represented by using the 

third order PC expansion. The responses of the rotational DOFs are usually not important and of 

intereste in the response analysis. These DOFs are defined as no important, and their PC coefficients 

are defined as the slave DOFs. The horizontal translations from Nodes 1-10 are defined as less 

important DOFs, and low order PC expansions (the 2nd order) are used. The horizontal translations of 

Nodes 11-20 are defined as important ones, and high order PC expansions are used. This is shown in 

Figure 7. Since these DOFs of the top part of the riser usually have larger responses, they are therefore 

considered as the important ones. The nodes in the bottom part of the riser are assumed as less 

important ones. For the less important nodes, only the PC coefficients in the first and second order 

terms are selected as the master DOFs. All the three order terms of PC coefficients of the important 

nodes are defined as the master DOFs.  

The calculated horizontal deformations at the top end of the riser from MCS, SFEM and the 

proposed approach are shown in Figure 8. The mean values of these methods are almost the same as 

shown in Figure 8(a), and the variances are also in a very good agreement as shown in Figure 8(b). 

The horizontal deformation at the middle of the riser, i.e. Node 10, is represented by using the second 

order PC expansion. The computational results from MCS, SFEM and the proposed approach are 
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shown in Figure 9. The accuarcy of the obtained response variances from the proposed approach is 

slightly better than that from SFEM with the second order approximation. It should be noted that in 

this case, the SFEM with the second order approximation is employed to have a fair comparsion with 

the proposed approach. One possible reason is that the responses of some DOFs with a higher 

improtance are approximated with the third order PC expansion, which may improve the accuracy. 

When the PC coefficients are obtained with the mode superposition method, PDF and CDF of the 

horizontal deformation of the structure at the top and middle can be evaluated and shown in Figures 

10 and 11. The response statistics at the top of the riser obtained from the proposed approach and 

SFEM with the third order PC expansion match well with those from MCS. The predicted response 

statistics at the middle of the riser are not as good as those at the top of the riser. This is because the 

truncation error associated with a lower order approximation with the second order PC expansion.  

The computational time of SFEM, MCS, and the proposed multiscale method are shown in Table 

1, respectively. The matirx size of the dynamic system are 40, 5460, 3640 and 18200 respectively for 

MCS, the proposed multiscale analysis approach, SFEM with the second order PC expansion and 

SFEM with the third order PC expansion, respectively. The required computation of time for each case 

is 12h, 2481s, 171s and 4131s, respectively. These results show the proposed approach takes less 

computational time than MCS and SFEM with third order PC expansion, while has a good accuracy 

in pedicting the response statistics. 
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4.2 Hollow cylinder model 

A three-dimensional riser model is selected in this study to investigate the accuracy and 

performance of the proposed multi-scale stochastic analysis method. The segment of the riser has a 

length of 4 m with an outer radius of 0.1 m. The thickness of the riser is 5 mm. The mean values of the 

mass density and Young’s modulus are 7850 kg/m3 and 200 GPa, respectively. The numerical model 

of the riser is simulated with shell elements in MATLAB. Each element has 4 nodes and 24 DOFs. The 

mesh size is 0.5 m in the longitudinal direction, while the cross-section is discreted into 16 elements. 

The finite element model of the riser has totally 128 elements and 864 DOFs, as shown in Figure 12.  

The spatial correlation is described by a three dimensional exponential covariance kernel as 

( ) ( )( ) ( ) ( ) ( )( )2 2 22 2 2
1 2 1 2 1 2/ / /2

cov 1 1 1 2 2 2, , , , , x y zx x l y y l z z l
C x y z x y z eσ

− − + − + −
=           (52) 

with the correlation lengths lx=ly=0.05m and lz=1m. Uncertainties in the Young’s modulus is considered 

to understand the stochastic dynamic behavior of the structure. 30% uncertainty level is considered in 

the Young’s modulus. The lognormal random field is respresented by the first four eigenvalues and 

eigenvectors of KL expansion and the third order PC expansion. 

The riser has a fixed end at the bottom. The sea wave loading is applied on the structure with non-

uniform distribution in the y-direction. The loading is full applied from z=4m to 3m and linearly 

decreases to zero from 3m to the sea bottom. The parameters in the sea wave loading are F=100000 

(fetch length), 10v =10m/s (mean wind velocity at 10 m above the sea surface), pd  =0.2m (outer 

diameter of the structure). The other parameters are the same as those described in Section 4.1. The 

uncertainties in damping is also considered in this study. The Rayleigh damping is used with the 

coefficients of α= 3.5969 and β= 5.31×10-5.  
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MCS and SFEM are performed to obtain the reference values to verify the accuracy of the 

proposed multiscale analysis method. The results from SFEM with different orders of PC expansions 

are shown in Figure 13 with those results from MCS. The results from SFEM with third order PC 

expansions matches well with those from MCS. The results from SFEM with first/second order PC are 

slightly difference with those from MCS. A higher order PC expansion leads to a better result. Table 2 

shows the computational time of MCS and SFEM. It takes more than 160 hours to obtain the response 

statistics with 50000 runs for MCS because of the complexity of the used model. It takes a less 

computational time for a lower order PC expansion in SFEM as shown in Table 2, however, the 

accuracy in the response statistics are also reduced.  

The proposed approach balances the required computational time due to a higher order PC 

expansion, and maintains the accuracy by defining the master DOFs with a high importance and 

interest. The displacements along the y-direction are represented with third order PC expansion, while 

the displacements along the z-direction are represented with first order PC expansion. Since the 

responses along the y-direction are of more importance than the vertical DOFs. The deformation along 

the x-direction is very small, because the loads are applied in the y-z plane. These DOFs along the x-

direction and all the rotational DOFs are not of interest and important, and therefore the corresponding 

PC coefficients of these DOFs are selected as the slave ones. The third order PC expansion is performed 

to obtain system matrices (Ms and Ks) and then IOR method is used to eliminate the unwanted slave 

DOFs to obtain Mr and Kr. The stochastic dynamic analysis is then conducted and the response results 

are shown in Figures 14 and 15, comparing with the results from SFEM and MCS. For the responses 

along the y direction, the random output is represented with third order PC expansion. The results of 
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response statistics match well with those results from MCS and SFEM with the third order PC 

expansion, as shown in Figure 14. The results from the low order PC expansion is shown in Figure 15. 

The mean values of responses from MCS, SFEM with the first order, and the proposed approach are 

almost the same, while the variance is slightly different from those results from MCS but better than 

SFEM with the first order PC expansion only. Figure 16 compares the obtained PDF of the 

displacement response with different methods. Those DOFs with higher order expansions have a good 

accuracy, matching well with the results from SFEM and MCS. For those DOFs with lower order 

expansions, there is some minor difference due to the errors associated with the low order PC 

expansions to represent the responses. Table 2 shows the matrix size and the computational time. The 

computational time required for MCS is about 160 hours, however, the proposed multi-scale analysis 

method takes about 0.5 hour. The results show that the computational efficiency is significantly 

improved with the proposed method and the accuracy is the same as those from MCS. 

 

5 Conclusions 

Using Gaussian random fields to simulate the uncertain system parameters has been studied. 

However, this assumption is not necessarily true and suitable to model all the material properties. In 

this paper, the uncertainties in the mass density and Young’s modulus are assumed having lognormal 

distributions, which is different from previous works but more realistically modelled. The lognormal 

random fileds are represented by a combination of KL and PC expansions. A multi-scale stochastic 

dyanmic analysis method is developed to evaluate the response statistics of marine risers, considering 

the lognormal uncertainties in the material parameters. The random outputs, such as stochastic 
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displacement, are approximated with different orders of PC expansions. High accuracy of uncertainty 

analysis results can be obtained for those responses approximated with a high order PC expansion. 

Responses at those DOFs with less and least importances are represented with low order PC expansions 

to reduce the matix size of the stochastic dynamic system and the computational efforts. Therefore 

three categories of DOFs are defined, namely, (a) important ones with high order PC expansions; (b) 

less important ones with low order PC expansions, and (c) the least important ones to be eliminated. 

Model reduction technique, i.e. IOR method, is used to eliminate the slave PC coefficients, and the 

multi-scale stochastic dynamic response analysis is performed. The response statistics are obtained 

from the PC coefficients directly, and compared with those from MCS and SFEM. Numerical studies 

on marine risers with lognormal uncertainties in material properties are conducted. The results from 

the proposed method match well with those from MCS, with significantly less computational time 

required. The computational demand is significantly reduced with the model reduction technique, 

however, the accuracy of the stochastic response analysis results keeps the same. 
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Table 1 Matrix size and computational time for the riser simulated as a beam model 

Method 
The proposed 

approach 

SFEM  
(The second order 

PC expansion) 

SFEM  
(The third order 
PC expansion) 

MCS 

Matrix size 5460 3640 18200 40 
Computational 

time  
2481s 171s 4131s 12h 

 

 

Table 2 Matrix size and computational time for the riser simulated as a cylinder model  

Method The proposed approach SFEM (2nd) SFEM (3rd) MCS 

Matrix size 5120 3840 26880 768 

Computational time  2137s 203s 4762s 160h 
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Figure 1 Schematic of a marine riser 
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Figure 2 Categories of the DOFs in the model reduction  
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Figure 3 Numerical model of a riser  
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(a) represented random input with KL and PC expansions 

 

  

(b) PDF of the represented random input (c) CDF of the represented random input 

Figure 4 Representation of random fields 

 

  

0 2000 4000 6000 8000 10000

10 10

2

3

4

5

6

2 4 6 8

10 10

0

1

2

3

4

5

6
10 -11

analytical value
first order
second order
third order

2 4 6 8

10 10

10 -4

10 -3

10 -2

10 -1

10 0

analytical value
first order
second order
third order



36 

 

 

 

 

 

 

Figure 5 Sea wave loading 
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(a) Convergence of response variance at the top of the riser at 

t=30s  

 

(b) Convergence of response mean value at the top of the riser 

at t=30s  

Figure 6 Convergence analysis of MCS with different numbers of simulations 
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Figure 7 Selection of orders in PC expansions  
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(a) Mean value  

 

 

(b) Variance 

Figure 8 Response statistics of the horizontal displacement at the top end of the riser 
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(a) Mean value  

 

(b) Variance 

Figure 9 Response statistics of the horizontal displacement at the middle of the riser 
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(a) PDF 

 

(b) CDF 

Figure 10 Probability distribution of the response at the top end of the riser with MCS, SFEM  

and the proposed approach at t=30s 
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(a) PDF 

 

(b) CDF 

Figure 11 Probability distribution of the response at the middle of the riser with MCS, SFEM  

and the proposed approach at t=30s  
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Figure 12 Hollow cylinder model 
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(a) Mean value  

 

(b) Variance 

Figure 13 Response statistics of the displacement at the critical point along y-direction from SFEM 

with different orders of PC expansions and MCS 
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(a) Mean value  

 

(b) Variance 

Figure 14 Response statistics of the displacement at the critical point along y-direction from different 

methods 
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(a) Mean value  

 

(b) Variance  

Figure 15 Response statistics of the displacement at the critical point along z-direction from different 

methods 
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(a) PDF of response at the critical point along y-direction 

(t=16.5s) 

 

(b) PDF of the response at the critical point along z-

direction (t=16.5s) 

Figure 16 PDF of the responses at the critical point from the different methods 
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