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Abstract 9 

This paper presents a new computational approach named hybrid Chebyshev surrogate model 10 

with discrete singular convolution (CSM-DSC) method to study the nondeterministic dynamic 11 

characteristics of functionally graded (FG) porous beams with material uncertainties. In the 12 

proposed approach, interval analysis can be directly applied in hybrid CSM-DSC computational 13 

framework, then the upper and low bounds of the dynamic responses of FG porous beams with 14 

various boundary conditions can be readily obtained. Based on Hamilton’s principle and 15 

Timoshenko beam theory, the governing equation is established and solved by DSC method. By 16 

utilizing the higher-dimensional Chebyshev surrogate (HDCS) model, the approximate 17 

performance function involving uncertainty in three critical material properties, such as Young’s 18 

modulus, mass density and porosity coefficient, is developed numerically. In order to verify the 19 

validity and accuracy of the proposed method, deterministic analysis and nondeterministic 20 

analysis are implemented to compare the present results against the published ones, and those 21 

obtained by the finite element method (FEM) and quasi-Monte Carlo simulation (QMCS) 22 

method. A comprehensive parametric study is then conducted to examine the influences of 23 

material parameter uncertainties, porosity distribution patterns, porosity coefficient, boundary 24 

conditions, and aspect ratio on the bounds of frequencies. The results show that the uncertainty 25 

of Young’s modulus has the most significant effect on beam’s dynamic responses, followed by 26 

that of mass density whereas the influence of the uncertain of porosity coefficient is much less 27 

pronounced.  28 

 29 
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1. Introduction  36 

It is known that the density of cortical region is larger than that of trabecular region in femur 37 

[1]. Such non-uniform or graded density in bone can optimize the overall mechanical 38 

performance of the skeletal structures. This has also been found in microcellular plant structures 39 

such as wood, bamboo and some plant stems [2]. Inspired by these natural phenomena, the 40 

functionally graded metallic foam was fabricated and soon became very popular material in both 41 

research and industry communities. Previous researches on functionally graded porous materials 42 

demonstrated that they have outstanding impact energy absorption, high strength-weight ratio, 43 

excellent energy-efficiency, as well as low thermal conductivity, advantageous damping and 44 

acoustical absorptivity properties. Owing to their superior and unique material properties, FG 45 

porous materials have found a wide range of applications in electronics, biomedical, aerospace, 46 

civil and automotive engineering.  47 

Extensive analytical, numerical and experimental works on various static and dynamic 48 

behaviors such as static bending[3, 4], free and forced vibrations[5, 6], elastic buckling and 49 

postbuckling[3, 7, 8], and dynamic stability for FG structures[5, 9-12], especially for porous 50 

structures have been conducted these years. Chen et al. [3] studied the effect of different 51 

porosity distributions on buckling, bending, and free and forced vibrations of FG porous beams 52 

under a harmonic point load, an impulsive point load and a moving load with constant velocity. 53 

The nonlinear dynamic buckling of FG porous beams was presented by Gao et al. [12] based on 54 

analytical-numerical method and finite element method. Numerical results for four different 55 

types of FG porosity patterns including two symmetric, one non-symmetric and uniform 56 

porosity distributions were presented. Gao et al. [13] employed Galerkin technique and multiple 57 

scales method in nonlinear primary resonance analysis of FG porous cylindrical shells. Ziane et 58 

al.[14] presented the thermal buckling of FG porous box beams with simply supported and 59 

clamped-clamped boundary conditions. Most recently, nanocomposite metal foams have been 60 

successfully synthesized and attracted considerable research attention [15-21]. Kitipornchai and 61 

his co-workers [22] made the first attempt to study the buckling and free vibration 62 

characteristics of FG porous nanocomposite beams reinforced by graphene platelets (GPLs) that 63 

are non-uniformly dispersed in metal matrix. Following this pioneering work, Chen et al. [7] 64 

investigated the combined effects of different porosity distribution and GPLs distribution 65 

patterns on the vibration and postbuckling behaviors of FG porous nanocomposite beams. The 66 

bending and thermal buckling behaviours of FG-GPLs laminated beams was investigated by 67 

Shen et al.[4]. By employing the differential quadrature method, Gao et al. [23] studied the 68 

nonlinear free vibration of GPL reinforced FG porous nanocomposite plates with various 69 
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boundary conditions and found that porosity distribution plays a more important role than GPL 70 

dispersion pattern.  71 

It should be mentioned that almost all of the existing investigations on FG porous structures 72 

are deterministic in which all material parameters such as Young’s modulus, mass density, 73 

porosity coefficients, etc., are assumed to be deterministic constants. The success of such 74 

analyses is largely underpinned by predetermined material and geometric properties as well as 75 

reasonable assumptions. However, the presence of uncertainty, unpredictability and randomness 76 

in system parameters at different levels is inevitable due to various errors in fabrication and 77 

manufacturing processes, especially for functionally graded materials whose manufacturing is 78 

far from mature. Ghasemi et al. [23] discussed the metamodel-based probabilistic optimization 79 

of CNT/polymer composite structures in the framework of stochastic multi-scale material model 80 

and a kriging metamodel. Their study showed that deterministic methods for nanocomposite 81 

modelling and optimization may lead to erroneous results in certain cases. The metamodel-based 82 

approach was also used by García-Macías et al. [24] in the analysis of FG carbon nanotubes 83 

(CNTs) reinforced plates with random CNT distributions and materials parameters. Dey et al. 84 

[25] presented the random sampling-high dimensional model representation (RS-HDMR) 85 

method to discuss the stochastic free vibration analysis of angle-ply composite plates. It has 86 

been well accepted that probabilistic structural analysis based on the complete statistical 87 

information of the stochastic systems and the corresponding probability distributions is capable 88 

of producing more accurate results. Unfortunately, such complete statistical information and 89 

probability distributions are either almost impossible or extremely expensive to obtain in reality. 90 

This calls for the non-probabilistic approaches, for example, fuzzy method, interval analysis and 91 

convex model, to name but just a few, as the alternative methods for practical use. Gao et al. [26] 92 

proposed the Chebyshev surrogate model to study the upper and lower bounds of dynamic 93 

buckling responses of Euler-Bernoulli beams. Wu et al. [27] employed the finite element 94 

method in static analysis of FG structures with interval variables. Under the similar framework, 95 

they [28] investigated the linear elastic problem of FG porous beam structures with material, 96 

geometrical and loading uncertainties. The mechanical behaviour of a 3D heterogenous 97 

materials with uncertain-but-bounded parameters was analysed by Ma et al. [29]. All these 98 

studies revealed that the interval-based uncertainty procedures can obtain reliable upper and 99 

lower bounds from the uncertain-but-bounded parameters with significantly improved 100 

computational efficiency. 101 

Although rapidly developed manufacturing techniques make the production of FG porous 102 

materials possible, it is still very difficult to manufacture such materials according to the 103 

intended design distributions. This attributes to the fact that experimental results sometimes do 104 
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not match preconceived expectations of theoretical simulations. On the other hand, due to the 105 

inherent and random complexity in fabrication process, the mechanical properties of the FG 106 

porous materials, especially the Young’s modulus, mass density and porosity coefficients, are 107 

not deterministic in nature. Therefore, the nondeterministic analysis of FG porous structures is 108 

an important topic that requires urgent attention due to its practical significance. However, to the 109 

best of the authors’ knowledge and as can be seen from the above literature review, no previous 110 

work has been done on the dynamic characteristics of FG porous structures with uncertainty 111 

material properties.  112 

To fill in this research gap, a novel nondeterministic dynamic analysis of shear deformable 113 

FG porous beams using Chebyshev surrogate method is proposed in this paper to investigate the 114 

upper and lower bounds of dynamic responses. Both frequencies and mode shapes of the FG 115 

porous beams with material uncertainties are studied by interval analysis. Firstly, discrete 116 

singular convolution (DSC) method in conjunction with the Hamilton’s principle is employed to 117 

obtain eigenvalue equation for deterministic analysis. Based on the Chebyshev interpolation 118 

series, the interpolation points of each interval material parameter are created. By inputting all 119 

observation points into analytical-numerical solution, the outcome of interest is obtained. Then 120 

the approximate performance function is established between inputs and outputs with all the 121 

interval variables through the higher-dimensional Chebyshev surrogate (HDCS) model. The 122 

effectiveness and validity of the proposed method are thoroughly examined by two steps: 123 

deterministic analysis and nondeterministic analysis. For deterministic analysis, the accuracy of 124 

the presented method is verified against the results of other authors and finite element method; 125 

As for nondeterministic analysis, the efficacy of the HDCS model is compared with quasi-126 

Monte Carlo simulations (QMCS) method. Finally, a detailed parametric analysis is conducted 127 

to study the influence of porosity distribution patterns, porosity coefficient, boundary conditions, 128 

aspect ratio on the bounds of frequencies as well as the influence of material parameters with 129 

various uncertainty degrees.  130 

2. Material properties of functionally graded beams 131 

Fig.1 shows a simply supported Timoshenko beam made of different types of porosity 132 

distributions, where w0 denotes the structural deflection of the beam. The Cartesian coordinate 133 

system (x, y, z) is established, in which the (x, y) plane is on the middle surface of the beam and 134 

z is the thickness direction.  135 

In this case, four types of FG porous distributions, namely Type 1 (symmetric porosity 136 

distribution which is stiffer in surface areas)[3, 6, 7, 12, 13, 23, 30], Type 2 (symmetric porosity 137 

distribution which is softer in surface areas), Type 3 (non-symmetric porosity distribution) [31-138 
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35], and Type 4 (uniform porosity distribution) are considered, as shown in Fig.2. The 139 

mathematic models of Young’s modulus E(z), shear modulus G(z) and mass density ρ(z) for the 140 

four different porous distributions can be described by Eq.(1) 141 

 142 

Fig.1 A simply supported Timoshenko beam made of metal foams 143 

  
Type 1 Symmetric porosity distribution 1 

  
Type 2 Symmetric porosity distribution 2 

  

  
Type 3 Non-symmetric porosity distribution Type 4 Uniform porosity distribution  

Fig.2 Cross-section of the FG porous beams with different porosity distributions 144 
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where Emax, Gmax and ρmax are the maximum values of Young’s modulus, shear modulus and 148 

mass density, respectively. h is the thickness of the beam and varies from –h/2 to h/2. N0 is the 149 

porosity coefficient and can be obtained by N0 =1-Emin/Emax=1-Gmin/Gmax. Emin, Gmin and ρmin are 150 

the corresponding minimum values. 151 

For an open-cell metal foam, the relationship between Young’s modulus and mass density 152 

can be expressed [36]  153 
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Consequently, one can obtain the expression between Nm and N0 155 

 01 1mN N= − −  (4) 156 

3. Deterministic analysis of free vibration of FG porous beams 157 

3.1.Equations of motion 158 

Due to the limitation of classic beam theory on estimating the natural frequency and mode 159 

shape of multilayer or sandwich composite structures, several shear deformation theories have 160 

been presented in past decades. To derive the equations of motion or governing equations of FG 161 

porous beams, the Timoshenko beam theory is used in this study to consider the importance of 162 

shear deformation and rotary inertia effects.  163 
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where u and w are the displacements of any point in the beam along axes x and z; u0 and w0 are 165 

the displacement components at the mid-surface of the beam. φ is the section rotation about the 166 

x axis. The strain-displacement relationship derived from above equations can be expressed as: 167 
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where εxx and γxz are the normal strain and shear strain, respectively. Then the corresponding 169 

normal stress σxx and shear stress τxz can be derived as 170 
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According to Hamilton’s principle[10], the equations of motion for vibration analysis of FG 174 

porous beams can be obtained as 175 
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where Nx, Mx and Qx are the stress resultants for axial force, bending moment and shear force, 177 

respectively, which are expressed as  178 
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where κ denotes the shear correction factor and is taken κ=5/6. And A11, B11, D11 and A55 are the 180 

material stiffness components of FG porous beams and are defined as  181 
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And the inertia terms in the Eq.(9) can be written as  183 
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By substituting Eq.(10) into Eq.(9), the governing equation can be rewritten as 185 
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3.2.Solution procedures 187 

There are several analytical and numerical methods for the dynamic analysis of shear 188 

deformation beams, such as the method of differential quadrature (DQ), discrete singular 189 

convolution (DSC), Chebyshev collocation method and FE method. Compared to other 190 

numerical methods, DSC method can obtain not only accurate lower mode frequencies but also 191 

accurate higher mode frequencies[37, 38]. At the same time, DSC is an efficient method for 192 

analysing the challenge problems, like free boundary conditions or discontinuities in geometry 193 

or load. Thus the DSC method is utilized to investigate the dynamic characteristics of FG porous 194 

beams with different boundary conditions. According to the conception of DSC, for a one-195 

dimensional function f(x), the nth-order derivative with respect to x can be approximated as 196 
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where xi is the specific central point and xk are the set of discrete grid points that surround the 198 

point xi. 2M+1 is the effective kernel, or computational bandwidth; and δσ,Δ(xi-xk) is a symbol for 199 

the delta kernels of Dirichlet type.  200 

As Wei et al [39] stated, there are several different approximation kernels, while the use of 201 

the regularized Shannon kernel (RSK) is very efficient due to its small truncation errors. And 202 

the definition of regularized Shannon kernel is given as 203 
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The nth derivative of δσ,Δ(x-xk) can be expressed as  205 
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where Δ is the grid spacing between two grid points and σ is the parameter that influenced by 207 

grid spacing and determine the computational accuracy.  208 
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In order to maintain the readability of the paper by efficiently expressing all formulations, the 209 

following dimensionless quantities are necessarily introduced: 210 
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where I10 and A110 are the values of I0 and A11 of a homogenous beam made from pure materials. 212 

The governing Eq.(13) can be transformed into the following dimensionless forms  213 
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For the vibration analysis of FG porous beams, the displacements can be defined as  215 
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where 1i = −  and ω is the dimensionless natural frequency.  217 

By substituting Eq.(19) into the equation of motions (18), and then applying the DSC-rules of 218 

Eq.(15) and (16), then following relations can be obtained 219 
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where D1(·) and D2(·) are operators of DSC for different displacement components. For 221 

example, the first-order and second-order derivatives of U(ξ) based on RSK can be 222 

approximated as follows 223 
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For FG porous beam with different boundary conditions, the requirements on the boundary 225 

can be given as: 226 
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 (22) 227 

Applying appropriate boundary conditions to Eq.(20), one can obtain the general form of 228 

eigenvalue equation as follows: 229 

      2
D Y Ω M Y=  (23) 230 

where D is the stiffness matrix and M is the associated mass matrix. Y={U0,U1,…,UN-231 

1,W0,W1,…,WN-1,ψ0, ψ1,…,ψN-1}
T, and Ω=diag{ω0, ω1, …,ωN-1}.  232 

3.3.Verification and accuracy of the deterministic analysis 233 

According to the deterministic analysis method discussed above, the accuracy, applicability 234 

of the presented method for vibration analysis of FG porous beams is studied in this section. To 235 

maintain the least truncation error for interpolation and numerical differentiation, a 236 

mathematical estimation for relationship between σ, Δ and M was proposed by Qian and 237 

Wei[40],  as shown below.  238 

 ( ) 2ln10 , 2ln10
M

r B
r

  −       (24) 239 

where r is discretization parameter, which equals to σ/Δ ; Δ is the grid spacing between two grid 240 

points and σ is the parameter that influenced by grid spacing and determine the computational 241 
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accuracy; B is the frequency bound for the function of interest; ε is the desired order of accuracy. 242 

For example, if r=3, the calculation accuracy of the target function approaches to ε=15 when 243 

M=30;  244 

Before calculating the results of natural frequencies of FG beams with different boundary 245 

conditions, the very first step is do a convergence study and find the optimal M and r to maintain 246 

the accuracy and efficiency of the proposed method. Fig.3 shows the convergence curve of the 247 

dimensionless natural frequencies of FG beams. The power law (PL) distribution of FG beams 248 

is considered[41]. The material properties are Ec=380 GPa, ρc=3960kg/m3, vc=0.3 for Al2O3 and 249 

Em=70 GPa, ρm=2702kg/m3, vm=0.3 for Al. The clamped-clamped (C-C) boundary condition is 250 

studied. As an example, in Fig.3, for a given grid points M=30, the results converge to 7.9081 251 

with r from 7 to 12. The authors did the convergence study for all the power law (PL) 252 

distributions with different boundary conditions and found that the figures are almost the same. 253 

Therefore, to keep the readability of the study, the authors just keep one typical example here. 254 

And more convergence study about DSC method can be found in [37, 38]. Meanwhile, a set of 255 

DSC parameters, which satisfies the convergence for different material properties, geometrical 256 

properties and boundary conditions, can be selected by utilizing the convergence curves.  257 

 258 

Fig.3 The convergence study of the dimensionless natural frequencies of FG beams (η=5, n=1 259 

with C-C boundary condition) 260 

After the convergence study of present method, the proposed method is verified with 261 

Wattanasakulpong and Mao [41] by using the Chebyshev collocation method and Şimşek [42] 262 

by using the Lagrange multiplier method. The comparison of the dimensionless fundamental 263 

frequencies from present method and other methods in open literature is shown in table.1. As 264 
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can be seen, the proposed method matches very well for all different aspect ratios η and the 265 

material volume fraction indexes n.  266 

Table. 1 The dimensionless fundamental frequencies ( )2 / /m mL h E =   of FGM-PL beams 267 

from present method, Wattanasakulpong [41] and Şimşek [42] 268 

η Method n=0 n=0.5 n=1.0 n=2.0 n=5.0 

5 

Present 10.0000 8.6724 7.9081 7.1896 6.6445 

Wattanasakulpong [41] 9.9975 8.6705 7.8998 7.1880 6.6428 

Şimşek [42] 10.0344 8.7005 7.9253 7.2113 6.6676 

20 

Present 12.2204 10.4230 9.4294 8.6022 8.1677 

Wattanasakulpong [41] 12.2201 10.4228 9.4292 8.6020 8.1675 

Şimşek [42] 12.2235 10.4263 9.4314 8.6040 8.1698 

30 
Present 12.3355 10.5115 9.5059 8.6733 8.2478 

Wattanasakulpong [41] 12.3354 10.5114 9.5058 8.6733 8.2477 

50 
Present 12.3958 10.5577 9.5458 8.7105 8.2898 

Wattanasakulpong [41] 12.3958 10.5577 9.5458 8.7105 8.2898 

100 
Present 12.4215 10.5774 9.5628 8.7264 8.3078 

Wattanasakulpong [41] 12.4215 10.5774 9.5628 8.7264 8.3077 

 269 

Table. 2 The first three dimensionless frequencies 00 110/L I A =  of FGM-PL beams for 270 

various material models and boundary conditions 271 

 272 

Table.2 shows the results of present method and Wattanasakulpong [41] for the first three 273 

dimensionless frequencies from different mathematical models of functionally graded materials, 274 

like FGM-PL (power law distribution), FGM-EX (exponential distribution) and FGM-MT 275 

(Mori-Tanaka scheme). It is clear that the proposed method has a good agreement with 276 

Wattanasakulpong [41] for all the numerical cases.  277 

Mater

ial 

model  

Mode 

P-P C–C C-P C–F 

Present 

Wattan

asakulp

ong 

[41] 

Present 

Wattan

asakulp

ong 

[41] 

Present 

Wattan

asakulp

ong 

[41] 

Present 

Wattan

asakulp

ong 

[41] 

FGM-

PL 

ω1 0.4460 0.4448 0.9048 0.9048 0.6326 0.6453 0.1493 0.1493 

ω2 1.5876 1.5883 2.3364 2.3360 1.9580 1.9612 0.8987 0.8987 

ω3 3.3975 3.3975 4.2523 4.2510 3.8345 3.8051 2.3744 2.3742 

FGM-

EX 

ω1 0.4206 0.4188 0.8344 0.8343 0.5804 0.5977 0.1379 0.1379 

ω2 1.4608 1.4618 2.1502 2.1498 1.8025 1.8072 0.8289 0.8288 

ω3 3.1314 3.1311 3.9057 3.9045 3.5287 3.4937 2.1839 2.1837 

FGM-

MT 

ω1 0.4106 0.4042 0.8160 0.8062 0.5683 0.5777 0.1351 0.1335 

ω2 1.4293 1.4131 2.0994 2.0739 1.7620 1.7449 0.8111 0.8014 

ω3 3.0587 3.0219 3.8080 3.7610 3.4449 3.3683 2.1328 2.1070 
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Table. 3 The dimensionless natural frequencies from present method, Chen et al.[6] and FEM 278 

for different aspect ratios and boundary conditions 279 

  T1 T3 

L/h Present 

Chen 

et 

al.[6] 

FEM Present 

Chen 

et 

al.[6] 

FEM 

  P-P 

10 0.2798 0.2798 0.2778 0.2599 0.2599 0.2549 

20 0.1422 0.1422 0.1419 0.1320 0.1318 0.1296 

50 0.0571 0.0571 0.0571 0.0569 0.0529 0.0521 

  C-C 

10 0.5945 0.5944 0.6101 0.5475 0.5475 0.5600 

20 0.3166 0.3166 0.3176 0.2888 0.2888 0.2941 

50 0.1291 0.1291 0.1289 0.1174 0.1174 0.1183 

  C-P 

10 0.4246 0.4242 0.4227 0.3875 0.3898 0.3905 

20 0.2205 0.2203 0.2201 0.1995 0.2013 0.2015 

50 0.0892 0.0891 0.0891 0.0793 0.0813 0.0813 

  C-F 

10 0.1008 0.1008 0.1007 0.0917 0.0917 0.0920 

20 0.0508 0.0508 0.0508 0.0462 0.0462 0.0463 

50 0.0204 0.0204 0.0204 0.0185 0.0185 0.0186 

 280 

Furthermore, the proposed method is validated with results of Chen et al. [6] and finite 281 

element method for FG porous beams with different aspect ratios and boundary conditions, as 282 

stated in Table.3. Both T1 and T3 are investigated in present model. In the end, the accuracy of 283 

the present method is thoroughly studied by comparing with cited references and other methods 284 

from different cases. Obviously, excellent agreement can be obtained from present method. 285 

3.4.Parametric study of the deterministic analysis 286 

In this subsection, a detailed parametric study of FG porous beams is carried out based on the 287 

deterministic analysis. Dynamic characteristics of FG porous beams, by considering different 288 

porosity coefficients N0, distribution types, boundary conditions and aspect ratios, are 289 

comprehensively discussed. The material properties of the metal foam are: E=200GPa, v=1/3, 290 

ρ=7850kg/m3. The geometrical parameters of the rectangular beam are h=0.1m, L=1 m.  291 

Fig.4 plots the dimensionless natural frequency of FG porous beams for various porosity 292 

coefficients, boundary conditions and distribution patterns. The following conclusions can be 293 

made from this figure: 1. T1 possesses the maximum frequencies while T2 is the least one; The 294 

differences between T3 and T4 were much less pronounced; 2. C-C boundary has the largest 295 

frequencies, then C-P and P-P, the frequency of C-F boundary conditions is the least; 3. Except 296 

T1, the frequencies of all the other distributions decrease with the increase of void fraction or 297 
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porosity. The reason of this phenomenon is that although both mass and stiffness are linearly 298 

decrease with the increase of porosity coefficients, the pace of mass declines is lower than that 299 

of stiffness[23].  300 

  301 

Fig.4 The influence of porosity coefficient N0 on different types of distributions and boundary 302 

conditions 303 

  304 

Fig.5 The influence of aspect ratios L/h on frequencies of the first three modes for different 305 

types of distributions with P-P boundary condition 306 

The frequencies of the first three modes for different L/h, distribution types with P-P 307 

boundary condition are given in Fig.5. five different η are selected, such as 10, 20, 30, 40 and 50. 308 

The porosity coefficient equals to 0.6 in this figure. For different natural frequencies, the 309 
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frequencies decrease dramatically with the increase of L/h ratios. Similarly, T1 has the largest 310 

frequencies while frequencies of other three patterns are almost the same.  311 

Fig.6 shows the mode shape of T1 along u, w and ϕ0 directions with P-P boundary condition. 312 

The material properties and the geometrical parameters are same as before. The first ten mode 313 

shapes are studied. One interesting finding is that for different FG porous types and boundary 314 

conditions, the mode shape jump phenomena might be different. For example, for T1-P-P, the 4, 315 

7 and 10 mode jumps to longitudinal direction and there is no vibration along transverse and 316 

rotation directions, as shown in Fig.6(1). While for other modes, both transverse and rotation are 317 

concurrence and no axial deformation modes. 318 

 319 

(1) Longitudinal vibration modes 320 

 321 

(2) Transverse vibration mode 322 
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 323 

(3) Rotation vibration mode 324 

Fig.6 The mode shape of T1-P-P along u, w and ϕ0 directions 325 

4. Nondeterministic analysis of FG porous beams with interval material 326 

uncertainties  327 

4.1.Surrogate modelling 328 

As state in the introduction, due to the manufacturing techniques and the inherent complexity 329 

in fabrication process, the material physical properties would not be certain values, especially 330 

Young’s modulus, mass density and porosity coefficient. Furthermore, the uncertainties in 331 

material properties cause the uncertainties of mass and stiffness matrices, which will eventually 332 

lead to the uncontrollable structural responses.  333 

The traditional nondeterministic analysis based on analytical-numerical method is 334 

computationally expensive and inefficient, especially for high-dimensional variables. The 335 

relationship between input and output cannot be directly obtained. Under these circumstances, a 336 

surrogate modelling for the nondeterministic analysis of FG porous beams with interval material 337 

uncertainties is established. Based on this model, the outcome of interest is represented by a 338 

function of uncertainty variables and then optimization and sensitivity analysis can be directly 339 

applied in this performance function. For example, in 2D system, the response surface can be 340 

obtained from the input of a series of α1 and α2, as shown in Fig.7. Then surrogate modelling is 341 

built to represent the relationship of outputs and inputs.  342 
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 343 

Fig.7 Response curve of a 2D model 344 

 345 

Fig.8 The free five Chebyshev polynomials 346 

In this study, the Chebyshev surrogate model is utilized to conduct the interval analysis of 347 

dynamic responses of FG porous beams. According to the definition, the Chebyshev 348 

polynomials of the first kind are given as 349 

 ( ) cos( arccos ) [ 1,1]nC x n x x=  −  (25) 350 

By introducing a series of degree n into Eq.(25), the recursion formula of Chebyshev 351 

polynomials can obtain 352 

 ( , ) 2 ( 1, ) ( 2, )C n x xC n x C n x= − − −  (26) 353 
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Based on Eq.(26), the plot of the first five Chebyshev polynomial is shown in Fig.8. 354 

Chebyshev polynomials are orthogonal on the interval [-1,1] and corresponding weight function 355 

is  356 

 
2

1
( )

1
w x

x
=

−
 (27) 357 

For one dimensional system, f(x) can be approximated by the Chebyshev series gn(x) as follows 358 

 
0

1

1
( ) ( ) ( )

2

n

n k k

k

f x g x f f C x
=

 = +  (28) 359 

where fk are the coefficients of Chebyshev expansion and can be obtained by 360 

 
1

21
1

( ) ( )2 2
(cos )cos

1

m
k

k j j

j

f x C x
f dx f k

mx
 

 −
=

= =
−

  (29) 361 

where m denotes the order of numerical integral formula. To guarantee the best approximation 362 

of the continuous function and decrease the imperative error, the order of m should be large than 363 

n+1[43]. The interpolation points xj are the zeros of Chebyshev polynomials for degree m, which 364 

can be expressed as 365 

 
2 1

cos cos( ), 1,2,...,
2

j j

j
x j m

m
 

−
= = =  (30) 366 

In order to show advantages of Chebyshev surrogate model, a simple function f(x) defined as 367 

below 368 

 
2

1
( )

1 50
f x

x
=

+
 (31) 369 

The Chebyshev interpolation is compared with the following popular interpolations, such as 370 

equally spaced interpolation, Legendre-Gauss interpolation, Legendre-Gauss interpolation and 371 

Legendre-Gauss-Lobatto interpolation, as depicted in Fig.8. As can be seen, although the 372 

equally spaced interpolation matches very well with exact solution in the central areas, the 373 

Rung’s phenomenon is severe on the two boundary conditions. For other interpolations, there is 374 

no Rung’s phenomenon, while when we zoom in the peak areas, the following conclusion can 375 

be made: Chebyshev surrogate model can minimize the problem of Runge's phenomenon and 376 

provides the best approximation to a continuous function with a limited number of interpolation 377 

points.  378 
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 379 

Fig.9 The comparison of different interpolation methods 380 

For higher dimensional issues, the Chebyshev polynomials can be obtained by using the 381 

tensor product of each one-dimensional polynomial. For example:  382 

 
1 2 1 2, ,..., 1 2 1 2( , ,..., ) ( ) ( )... ( ), [ 1,1], ( 1,2,..., )

k kn n n k n n n k iC x x x C x C x C x x i k=  − =  (32) 383 

Then the continuous function f(x) on [ x , x ] can be approximated as  384 

 
1 1

1

,..., ,...,

0 0

1
( ) ( ) 2 1

2 k k

k

n n

i i i i

i i

f g f C



= =

 −  
 = −   

−   
 

x x
x x

x x
 (33) 385 

where x, x  and x are the matrix of interval variables, the upper bounds of different variables 386 

and the lower bounds of the interval variables, which can be expressed as 1[ ,..., ]kx x=x , 387 

1[ ,..., ]kx x=x and 1[ ,..., ]kx x=x , respectively. χ represents the total number of zeros that exists 388 

in the subscripts i1,…,ik. 
1 ,..., ki iC is the k-dimensional Chebyshev polynomials and can be 389 

calculated from Eq.(32). And the coefficients of higher-dimensional polynomials in each 390 

dimension can be determined by 391 
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 (34) 392 

where i is the number of interval variables and m denotes the order of numerical integral 393 

formula. And the interpolation points cosθj in each dimension are the zeros of Chebyshev 394 

polynomials for degree mk and reformulated from Eq.(30) 395 



 

19 

 
2 1

cos cos( ), 1,2,...,
2k

k
j k k

k

j
j m

m
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−
= =  (35) 396 

Once the deterministic analysis from DSC is obtained, the proposed non-inclusive CSM can 397 

be easily implemented to capture the upper and lower bounds of the structural responses.  398 

4.2.The verification and accuracy of nondeterministic analysis 399 

In this subsection, the results of dynamic characteristics analysis of FG porous beams are 400 

proposed based on hybrid CSM-DSC by interval analysis. The uncertain porosity coefficient 401 

(N0
I), Young’s modulus (EI, Pa) and mass density (ρI, kg/m3) with interval ranges adopted in 402 

this study, which is defined as 403 

 

0 0 1
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I mean

I mean

N

E





  

= 
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 (36) 404 

where N0
I ,EI  and  ρI  are the interval range of porosity coefficient, Young’s modulus and mass 405 

density;
0

meanN , 
0

meanE  and 
0

mean  are the mean values of these values, like 
0

meanE =200GPa, 
0

mean406 

=7850kg/m3 , 
0

meanN =0.8; β1, β2 and β3 are the uncertainty degrees of the variables. If we define 407 

β1=β2=β3 =0.2, the interpolation points of uncertain variables can be expressed as 408 
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 (37) 409 

where k1, k2 and k3 are the dimensional number in Chebyshev polynomials while n1, n2 and n3 410 

denote the interpolation points in each dimension, respectively.  411 

To demonstrate the effectiveness and efficiency of the proposed method for nondeterministic 412 

dynamic characteristics of FG porous beams, four different boundary conditions are considered, 413 

such as pinned-pinned (P-P), clamped-clamped (C-C), clamped-pinned (C-P), clamped-free (C-414 

F). Firstly, the proposed nondeterministic method is validated with QMCS method, which 415 

adopts low-discrepancy Sobol sequence by skipping the first 1000 values and retaining every 416 

101st points for generating all the interval samplings. Table.4 shows the results of proposed 417 

method and QMCS method for different boundary conditions. For QMCS, 10,000 simulations 418 

have been implemented for interval analysis. Here the results of upper bounds of natural 419 

frequencies are just considered as example to show the accuracy and efficiency of the present 420 

method. As shown in this table, the present method matches very good with the traditional 421 
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sampling method QMCS for the cases. With the same accuracy, the present method greatly 422 

improves the computing speed.  423 

Table.4 Comparison of the upper bounds of natural frequencies and computational time of 424 

various boundary conditions for proposed method and QMCS method (T1) 425 

Type 

P-P C-C C-P C-F 

Natural 

frequency 

Computational 

time 

Natural 

frequency 

Computational 

time 

Natural 

frequency 

Computational 

time 

Natural 

frequency 

Computational 

time 

Proposed 

method 
1707.2254 115.9 s 3550.979 118.7 s 2570.848 101.9 s 617.6347 102.7 s 

QMCS 1707.2223 0.93 h 3550.973 0.92 h 2570.843 0.94 h 617.6335 0.93 h 

 426 

Table.5 The first ten frequencies of proposed method, deterministic results and QMCS method 427 

with P-P boundary condition for T1 428 

Mo

de 

Nu

mb

er 

Upper bounds 
Determini

stic 

results  

Lower bounds 

Proposed  QMCS 
Relative 

error(%) 
Proposed  QMCS 

Relative 

error(%) 

1 1707.23 1707.22 1.81E-06 1556.75 1513.34 1513.35 4.89E-06 

2 6320.18 6320.17 1.86E-06 5816.73 5687.76 5687.79 4.88E-06 

3 12825.39 12825.36 1.91E-06 11925.18 11740.32 11740.38 4.86E-06 

4 14995.36 14995.44 -4.84E-06 14635.25 14587.22 14587.15 -4.49E-06 

5 20380.55 20380.51 1.94E-06 19121.66 18943.91 18944.01 4.86E-06 

6 28469.34 28469.28 1.95E-06 26907.22 26785.84 26785.74 -3.72E-06 

7 29990.73 29990.87 -4.84E-06 29270.50 29174.44 29174.31 -4.49E-06 

8 36808.95 36808.87 1.95E-06 34991.93 34923.80 34923.94 4.18E-06 

9 44905.71 44907.03 -2.94E-05 43214.75 43183.19 43185.05 4.31E-05 

10 45251.83 45250.33 3.30E-05 43905.75 43761.89 43761.46 -9.87E-06 

 429 

Table.6 The first ten frequencies of proposed method, deterministic results and QMCS method 430 

with C-C boundary condition for T1 431 

Mode 

Numb

er 

Upper bounds Determini

stic 

results 

Lower bounds 

Proposed QMCS 
Relative 

error(%) 
Proposed QMCS 

Relative 

error(%) 

1 3550.98 3550.97 1.82E-06 3271.69 3202.88 3202.90 4.88E-06 

2 8719.97 8719.95 1.87E-06 8127.61 8018.87 8018.91 4.87E-06 

3 15031.01 15030.47 3.59E-05 14307.36 14204.85 14205.04 1.35E-05 

4 15212.35 15212.83 -3.18E-05 14695.34 14647.21 14647.05 -1.09E-05 

5 22453.49 22453.44 1.93E-06 21262.56 21191.89 21191.90 6.71E-07 

6 30058.74 30060.95 -7.35E-05 28705.08 28663.55 28663.62 2.50E-06 

7 30159.46 30157.13 7.71E-05 29390.69 29294.14 29294.10 -1.34E-06 

8 38142.01 38141.94 1.95E-06 36451.48 36431.91 36432.04 3.42E-06 



 

21 

9 45089.74 45091.45 -3.79E-05 44086.05 43941.75 43941.17 -1.31E-05 

10 46295.48 46293.60 4.07E-05 44385.04 44377.57 44379.34 3.98E-05 

 432 

Table.7 The first ten frequencies of proposed method, deterministic results and QMCS method 433 

with C-P boundary condition for T1 434 

Mode 

Numb

er 

Upper bounds 
Determinist

ic results 

Lower bounds 

Proposed QMCS 
Relative 

error(%) 
Proposed QMCS 

Relative 

error(%) 

1 2570.85 2570.84 1.82E-06 2356.30 2298.46 2298.47 4.88E-06 

2 7546.42 7546.41 1.87E-06 6991.59 6868.48 6868.51 4.87E-06 

3 14057.80 14057.77 1.90E-06 13153.67 13009.96 13010.02 4.86E-06 

4 14995.36 14995.44 -4.84E-06 14635.25 14587.22 14587.15 -4.49E-06 

5 21435.39 21435.35 1.93E-06 20216.06 20103.90 20103.81 -4.76E-06 

6 29294.89 29294.84 1.94E-06 27797.96 27727.01 27727.10 3.15E-06 

7 29990.73 29990.87 -4.84E-06 29270.50 29174.44 29174.31 -4.49E-06 

8 37419.34 37419.26 1.95E-06 35677.08 35639.97 35640.11 4.07E-06 

9 44905.66 44907.03 -3.05E-05 43720.57 43702.50 43706.51 9.19E-05 

10 45683.01 45681.47 3.38E-05 43905.75 43821.07 43793.58 -6.28E-04 

 435 

Table.8 The first ten frequencies of proposed method, deterministic results and QMCS method 436 

with C-F boundary condition for T1 437 

Mode 

Numb

er 

Upper bounds Determini

stic 

results 

Lower bounds 

Proposed QMCS 
Relative 

error(%) 
Proposed QMCS 

Relative 

error(%) 

1 617.63 617.63 1.80E-06 562.05 545.70 545.70 4.89E-06 

2 3583.74 3583.73 1.86E-06 3293.10 3216.63 3216.65 4.88E-06 

3 7497.68 7497.72 -4.84E-06 7317.62 7293.61 7293.58 -4.49E-06 

4 9087.76 9087.74 1.92E-06 8436.76 8296.18 8296.22 4.86E-06 

5 15900.70 15900.67 1.96E-06 14902.97 14749.97 14750.04 4.85E-06 

6 22452.92 22453.52 -2.66E-05 21952.87 21881.00 21880.73 -1.23E-05 

7 23479.96 23479.28 2.92E-05 22173.11 22109.08 22091.47 -7.97E-04 

8 31462.51 31462.44 2.00E-06 29892.04 29820.60 29820.70 3.47E-06 

9 37488.41 37488.59 -4.84E-06 36588.12 36468.05 36467.88 -4.49E-06 

10 39646.61 39646.53 2.02E-06 37852.63 37817.53 37817.68 3.99E-06 

 438 

Table 5-8 show the first ten frequencies of proposed method, deterministic results and QMCS 439 

method for various boundary conditions with T1 distribution pattern. As can be seen, the 440 

proposed method has a good agreement with the QMCS for both upper bounds and lower 441 

bounds. The deterministic results are well embraced by the nondeterministic method. Due to the 442 

material uncertainties involving in the system, the original dimensionless definition in Eq.(17) 443 

no longer apply.  444 
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If we draw these tables into figures, as depicted in Fig.10, three findings can be witnessed: 445 

Firstly, the proposed method has a good agreement with QMCS for both lower and upper 446 

bounds; Secondly, the influence of uncertainties is not linear because the deterministic results 447 

lean to the lower bounds. Lately, the curve of frequency increase is not linear and there is some 448 

zig-zag phenomenon. This is because, in general, the researchers just considered transverse 449 

vibration in the systems. While in present study, 3D vibration is included, as shown in Fig.6. For 450 

example, for P-P boundary condition, the frequency of mode 4, 7 and 9 is due to longitudinal 451 

vibration. The turning points are marked in green circle in the figures. We also found that for 452 

different FG porous types and boundary conditions, the mode shape jump phenomena might be 453 

different. 454 

 455 

(a) P-P 456 

 457 

(b) P-P 458 
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 459 

(c) C-P 460 

 461 

(d) C-F 462 

Fig.10 The upper bounds, deterministic results and low bounds of natural frequency obtained 463 

from proposed methods, deterministic analysis and QMCS for different mode numbers and 464 

boundary conditions 465 

Then, the uncertain mode shape is also examined by the QMCS method in Fig.11. The first 466 

mode shapes of different boundary conditions are investigated. As clearly indicated in Fig.11, 467 

the mode shapes predicted by the proposed method are in good agreement with QMCS sampling. 468 

The results of QMCS sampling are well embraced by areas that form between the upper bounds 469 

and lower bounds of the proposed method.   470 
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 471 

(a) P-P 472 

 473 

(b) C-C 474 

4.3.The influence of distribution patterns, boundary conditions, aspect ratios and midpoint of 475 

porosity coefficients on bounds of natural frequencies 476 

From last section, the validity and accuracy of the proposed method are comprehensively 477 

investigated by comparing the results of frequencies and the mode shapes of different boundary 478 

conditions with QMCS method and deterministic analysis. In this section, the influence of 479 

distribution patterns, boundary conditions, aspect ratios and midpoint of porosity coefficients on 480 

the bounds of natural frequencies are studied.  481 
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 482 

(c) C-P 483 

 484 

(d) C-F 485 

Fig.11 The first mode shape of the upper bounds, low bounds and results of QMCS with 10,000 486 

samplings for different boundary conditions of T1 487 

Fig.12 depicts the change of midpoint of porosity coefficients on the bounds of different 488 

distribution patterns, such as 0

meanN =0.2, 0.4, 0.6 and 0.8. 0

meanE =200GPa, 0

mean =7850kg/m3 are 489 

the same as before. β1=β2=β3 =0.1, which means 10% uncertainty degree for all variables. P-P 490 

boundary condition is considered as an example here. With the increase of the midpoint of 491 

porosity coefficients, the width between upper and lower bounds magnifies, while T2 and T4 are 492 

sensitive to the uncertainty degrees.  493 
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Then the influence of uncertainty variables on L/h is plot in Fig.13. 
0

meanN =0.6 and other 494 

parameters remain unchanged. Four different L/h are considered, like 20, 40, 60 and 80. As can 495 

be seen, the L/h has little effect on the frequency bounds of different distribution patterns. Fig.14 496 

demonstrates the uncertainty bounds for various distribution patterns and boundary conditions. 497 

Clearly, T1 has the largest natural frequency, and the boundary conditions of C-C and C-P are 498 

sensitive to the uncertain variables.  499 

 500 

Fig.12 The uncertain bounds for different distribution patterns and midpoint of porosity 501 

coefficients 502 

 503 

Fig.13 The uncertainty bounds for different distribution patterns and L/h 504 
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 505 

Fig.14 The uncertainty bounds for different distribution patterns and boundary conditions 506 

4.4.The influence of uncertainty of interval variables on the bounds of natural frequencies 507 

To further investigate the influence of fluctuations of uncertain porosity coefficients, 508 

Young’s modulus and mass density on frequencies of FG porous beams, the combination of 509 

different uncertain degrees of the three pivotal material properties, including 4%, 8%,12%,16% 510 

and 20% of uncertain degrees of Young’s modulus, porosity coefficient and mass density, are 511 

studied, respectively. By utilizing the proposed method, the response surfaces of natural 512 

frequency for different change ranges of Young’s modulus, mass density and porosity 513 

coefficient of T1 with P-P boundary condition are shown in Fig.15-Fig.17. 
0

meanN =0.6, 
0

meanE514 

=200GPa and 
0

mean =7850kg/m3.  515 

Fig.15 depicts the bounds of frequencies for change ranges of Young’s modulus and porosity 516 

coefficient. In this case, β1=0.1, and β2= β3=0.04,0.08,0.12,0.16 and 0.2, respectively. It is 517 

clearly that uncertainty degree of natural frequency was proportional to change range of porosity 518 

coefficient. While for Young’s modulus, the natural frequencies firstly decrease and then 519 

increase when the uncertainty degree of β2 increases from 4% to 20%. The upper bounds and 520 

lower bounds are anti-symmetry for different natural frequencies.  521 

The bounds of frequencies for various change ranges of mass density and porosity coefficient 522 

is shown in Fig.16. In this case, β2=0.1, and β1= β3=0.04,0.08,0.12,0.16 and 0.2, respectively. 523 

From the results, when the uncertainty degree of mass density at 4%, the natural frequencies 524 

increase with the increase of change range of porosity coefficient. However, the natural 525 

frequencies linearly decrease when β3 equals 20%. The one DOF (degree-of-freedom) system is 526 



 

28 

taken as an example to explain this phenomenon. This following equation gives the relationship 527 

between frequency, stiffness and mass: 528 

 
1

;
2

K K
f

M M



= =  (38) 529 

 530 

Fig.15 Bounds of frequencies for Young’s modulus and porosity coefficient with different 531 

change ranges 532 

 533 

Fig.16 Bounds of frequencies for mass density and porosity coefficient with different change 534 

ranges 535 

For 1D system, the increasing mass will lead to the decrease of frequencies if the stiffness is 536 

a constant. While in present study, the FG porous beam was discrete to a series of nodes, then 537 
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the stiffness and mass matrices are obtained by using the DSC method. When the change ranges 538 

of mass density are small, like 4% in this case, the relationship between stiffness and mass 539 

matrices will lead to the increase of natural frequency. Similarly, if the uncertainty degree of 540 

mass density become larger, like 20% in this case, the natural frequencies decrease due to wax 541 

and wane of the two factors. Such phenomenon is quite clear in Fig.17, which indicts bounds of 542 

frequencies due to different uncertainty degrees of mass density and Young’s modulus directly. 543 

The further explanation is omitted here. From these three figures, we can also conclude that the 544 

uncertain of Young’s modulus has a significant effect on frequencies, then mass density; while 545 

the influence of the uncertain of porosity coefficient is less pronounced.  546 

 547 

Fig.17 Bounds of frequencies for Young’s modulus and mass density with different change 548 

ranges 549 

5. Conclusions 550 

This article presents a novel computational approach, named hybrid CSM-DSC method, for 551 

nondeterministic dynamic analysis of FG porous beams with material uncertainties. Based on 552 

this computational framework, the upper bounds and low bounds of the dynamic responses of 553 

FG porous beams with various boundary conditions is obtained by using interval analysis 554 

directly. This hybrid method shares the advantages of Chebyshev surrogate model and discrete 555 

singular convolution method in both accuracy and effectiveness, which means CSM can 556 

dramatically reduce the cost of interval analysis and remain the correctness through the DSC 557 

method by the analytical-numerical solutions.  558 

From the two steps examination, deterministic analysis and nondeterministic analysis, the 559 

accuracy and validity of the proposed method are justified by comparing the results of other 560 
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authors, FEM and the QMCS method. Finally, the influence of porosity distribution patterns, 561 

porosity coefficient, boundary conditions, aspect ratio on the bounds of frequencies and the 562 

influence of material parameters with various uncertainty degrees are comprehensively studied 563 

and some of the conclusions can be summarized as follows: 564 

1. T1 possesses the maximum frequencies while T2 is the least one; The differences 565 

between T3 and T4 were much less pronounced; 566 

2. The increase of porosity coefficients would lead to the linearly decrease of both mass 567 

density and stiffness of the structures while the frequencies not necessarily decrease. For 568 

FG porous structures with multiple uncertainties, the responses of the systems are 569 

different, even opposite.  570 

3. For different FG porous types and boundary conditions, the mode shape jump phenomena 571 

might be different.  572 

4. The uncertain of Young’s modulus has a significant effect on dynamic responses, then 573 

mass density; while the influence of the uncertain of porosity coefficient is the least. 574 

5. The nondeterministic dynamic characteristics can help design of FG porous structures 575 

working dynamical environment, especially for nano/micro-sized devices and systems.  576 

The developed method offers a superior way for dynamic characteristics with insufficient 577 

experimental data more fast, efficient and flexible, which provide references for engineers in the 578 

design of porous structures. 579 
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