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ABSTRACT 

This paper demonstrates a counter-intuitive phenomenon that “paradox links” (i.e. marginally 
improving or adding these links will increase a system’s cost) can sometimes decrease a system’s 
cost. It can be expressed that simultaneously improving the paradox link to a certain threshold 
(rather than only marginal improvement) or adding more paradox links may counter-intuitively 
avoid the paradox. Here we refer this phenomenon as the “non-monotonicity” of the paradox 
with regard to the degree of link improvement and the number of additional paradox links. Firstly, 
a formal definition of "non-monotonicity" property of paradox in a rigorous mathematical 
manner is proposed. Then this non-monotonicity property is demonstrated to widely exist in the 
user equilibrium (UE), the stochastic assignment, and the stochastic user equilibrium (SUE) 
models by two simple networks, where the underlying reasons for this phenomenon in different 
scenarios are analyzed and compared. Finally, the non-monotonicity of the traffic paradox is 
corroborated in a road sub-network of Harbin. The conclusions of this study provide new insights 
into features of traffic paradoxes and new ideas to eliminate them. 
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1. Introduction  

A common traffic paradox is evaluated by determining whether improving an existing link or 
adding a new link increases the total/average travel costs. The famous Braess paradox has drawn 
great attention since being proposed in 1968 (Braess, 1968; Braess et al., 2005), and it has been 
widely investigated from both analytical and empirical aspects. First, the conditions for the 
occurrence of Braess’ paradox were explored in some general networks (Frank, 1981; Steinberg 
and Zangwill, 1983; Pas and Principio, 1997; Prashker and Bekhor, 2000). Then, studies 
regarding how to eliminate Braess’ paradox and improve a system’s efficiency were further 
conducted (Bazzan and Klvgl, 2005; Bagloee and Ceder, 2014; Sun et al., 2015). During recent 
years, the characteristics of Braess’ paradox under special cases have also been extensively 
studied (Xia and Hill, 2013; Zverovich and Avineri, 2015; Di and He, 2014; Jansuwan and Chen, 
2015).  
 
As the paradoxical phenomenon was receiving increasingly more attention, other types of traffic 
paradoxes were proposed, such as stochastic assignment paradox (Sheffi and Daganzo,1978; 
Sheffi,Y., 1985; Yao and Chen, 2014; Zhao et al., 2014; Yao et al., 2018), capacity paradox (Yang 
and Bell, 1998; Jiang and Szeto, 2016), emissions paradox (Nagurey, 2000; Szeto et al. ,2008), 
reliability paradox (Yin and Ieda, 2002; Szeto, 2011), transit assignment paradox (Szeto and 
Jiang, 2014), informational Braess’ paradox (Acemoglu et al., 2017) and exclusive bus lanes’ 
setting paradox (Yao et al., 2015). From a practical perspective, several studies have investigated 
how to detect paradox link(s) in a real network (Bagloee and Ceder, 2014; Sun et al., 2015). 
 
Most of the aforementioned traffic paradoxes are caused by the discrepancy between the user 
equilibrium (UE) and the system optimum (SO), which only exist in a flow-dependent 
(congested) network. Although travelers unilaterally improve their own travel time, this does not 
guarantee the system will acquire the minimal travel costs. Unlike the other paradoxes, the 
stochastic assignment paradox proposed by Sheffi and Daganzo (1978) can occur in a flow-
independent network. The cause of the stochastic paradox is a travelers’ perceived error as the 
objective of the stochastic traffic assignment is to minimize travelers’ perceived travel costs 
rather than the total actual travel costs.  
 
There has been a plethora of studies showing that congestion and perceived error could result in 
traffic paradox (i.e. improving/adding a link in such cases could rather increase the total travel 
costs). Based on these studies, this study further demonstrates the “non-monotonicity” of the 
paradox with regard to the amount of link improvement and the number of additional paradox 
links under the UE, the stochastic assignment, and the SUE principles, respectively. For one 
thing, the paradox caused by improving a link could disappear when continuously improving 
that link to a certain threshold. For another, if there are several “paradox links” that will incur a 
paradox when independently added to a network, simultaneously adding these “paradox links” 
to the network may counter-intuitively avoid the paradox. In this paper, we adopted the 
Multinomial Logit (MNL) model to represent travelers’ stochastic route choice behavior. Due to 
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the identical independent distribution (IID) assumption of the MNL model, we further used the 
Multinomial Probit (MNP) model to address the inability of the MNL model to consider route 
overlapping in the real road network.  
 
The contribution of this study is twofold. From a theoretical perspective, to the best of our 
knowledge, it is the first time in the literature to note the “non-monotonicity” of a traffic paradox, 
and provide the some insights about the reason for the non-monotonic property in different 
scenarios. From a practical perspective, the common method to address existing paradox links 
is to close them (Bagloee and Ceder, 2014; Sun et al., 2015); the finding of this study provides 
an alternative solution—properly adding new links—to transfer the inefficiency of the existing 
links to efficiency. 
 
The main body of this paper starts with a formal definition of the "non-monotonicity" property 
of paradox. Then in section 3, the “non-monotonicity” of the paradox is demonstrated in UE, 
stochastic assignment and SUE based on two designed networks. Section 4 further corroborates 
this phenomenon in a real road sub-network of Harbin. Conclusions and further analyses are 
summarized in Section 5. 
 

2. Definition of the "non-monotonicity" of paradox 

In the paper, the total travel cost of the whole road network is used to measure the traffic 
assignment paradox, if the road network is improved in terms of improving an existing link or 
adding new links, the total travel cost is increased, then the “so called” paradox emerges; 
otherwise, there will be no paradox. 
 
Before introducing the definition of paradox’s "non-monotonicity", some notations should be 
clarified. Considering a road transportation network 𝑁ሺ𝑉, 𝐴ሻ, where 𝑉 is the link set, 𝐴 is the 
node set, and let the number of links and nodes be ‖𝑉‖ and ‖𝐴‖, respectively. Let 𝑐௜ represent 
the free flow travel cost of link 𝑖, and 𝒄 ൌ ሾ𝑐ଵ, 𝑐ଶ, … , 𝑐௡  ሿ் be the cost vector.  
- We define that cost vector 𝒄ଵ ൑ 𝒄ଶ if and only if 𝑐௜

ଵ ൑ 𝑐௜
ଶ for all 𝑖 ∈ ሼ1, … , 𝑛ሽ.  

- We define that 𝑉ଵ ൑ 𝑉ଶ if and only if 𝑉ଵ ⊆ 𝑉ଶ. 
Define 𝑇𝐶ሺ𝑁ሺ𝑉, 𝐴ሻ, 𝑄, 𝑀ሻ to be the total travel cost of network N under the O-D demand Q and 
the traffic assignment model M. 
- If for all 𝒄ଵ ൑ 𝒄ଶ , there is always 𝑇𝐶ଵ ൑ 𝑇𝐶ଶ , then the total network travel cost is 

monotonically increasing to the travel cost of links. 
- If for all 𝑉ଵ ൑ 𝑉ଶ , there is always 𝑇𝐶ଵ ൒ 𝑇𝐶ଶ , then the total network travel cost is 

monotonically decreasing to the number of links. 
Obviously，the appearance of paradox can  ascribe the non-monotonically increasing to the link’s 
travel cost or the non-monotonically decreasing to the link numbers. In other words, ∃𝑖 ∈
ሼ1, … , 𝑛ሽ satisfies 𝑐௜

ଵ ൑ 𝑐௜
ଶ, but there is not always 𝑇𝐶ଵ ൑ 𝑇𝐶ଶ; or ∃𝑉ଵ ൑ 𝑉ଶ, but there is not 

always 𝑇𝐶ଵ ൒ 𝑇𝐶ଶ. The focus of this paper is on the non-monotonicity feature of the above 
paradox, which implies that the paradox will not always exit but only can appear in some local 
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processes when the road network is improved, and the definition of "non-monotonicity" property 
of paradox can be expressed as follows: 
 
Proposition 1: The paradox may not always occur with the increase of link improvement when 
this link is paradoxical for marginal improvement, that is ∃𝑖 ∈ ሼ1, … , 𝑛ሽ satisfies 𝑐௜

ଵ ൐ 𝑐௜
ଶ ൐ 𝑐௜

ଷ, , 
there is 𝑇𝐶ଵ ൏ 𝑇𝐶ଶ, but there is not  𝑇𝐶ଵ ൏  𝑇𝐶ଷ. 
 
Proposition 2: The paradox may not always occur with the increase in the number of paradox 
links, that is existing such additional paradox links, when added any one individually, there will 
be 𝑉ଵ ൏ 𝑉ଶ, and  𝑇𝐶ଵ ൏ 𝑇𝐶ଶ; when added more simultaneous, there will be  𝑉ଵ ൏ 𝑉ଶ ൏ 𝑉ଷ but 
there is not always 𝑇𝐶ଵ ൏ 𝑇𝐶ଷ. 
 
According to the above propositions, the "non-monotonicity" of paradox should be well 
understood. Next, we will conduct the demonstration of the paradox’s non-monotonicity in three 
classical traffic assignment principles: (1) the UE case, (2) the stochastic assignment case, and 
(3) the SUE case. Further, the causes of this phenomenon under different scenarios should be 
different, therefore the underlying reasons behind this non-monotonic phenomenon are also 
analyzed and compared in each subsection. 

3. Demonstrations for the non-monotonicity of traffic paradoxes 

To illustrate this “non-monotonicity” widely exists in traffic assignment paradox, this section 
provides three different cases (based on UE, stochastic assignment, and SUE respectively) to 
show the counter-intuitive phenomenon—increasing the improvement amount of paradox link 
or simultaneously adding more “paradox links” to a network can sometimes improve a system’s 
efficiency. In each case, the demonstrations of the “non-monotonicity” will be conducted from 
two perspectives: 1) improving an existing link; 2) adding new links. 

3.1 Analysis in a user equilibrium 

As one of the most classical assignment principle, the user equilibrium should be first applied to 
illustrate the non-monotonicity of paradox. Note that only the congestion effect is considered 
during the process. The UE assignment results can be readily obtained by using the F-W 
algorithm (LeBlanc et al., 1975), and the total travel cost of the whole network can also be 
accordingly calculated. 

3.1.1 Illustration by improving an existing link 

The classical Braess network shown in Fig.1 is used to show the paradox’s non-monotonicity 
with regard to the amount of link improvement. Let 𝑐௞ be the travel cost of link 𝑘, then 𝑐ଵ ൌ
0.01𝑥ଵ, 𝑐ଶ ൌ 15, 𝑐ଷ ൌ 15, 𝑐ସ ൌ 0.01𝑥ସ, 𝑐ହ ൌ 10. Here Link 5 is taken as the improved link1 to 
demonstrate the non-monotonicity feature of paradox. 

                                                 
1 Here improving the link means decreasing the link’s travel cost/free flow travel cost. 
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Fig. 1 The Braess network 

To illustrate the non-monotonicity of paradox when improving an existing link, we should get 
that marginally improving a link can result in paradox, but continuously increasing the 
improvement degree can eliminate the paradox. Therefore, we need get the change of the total 
travel cost (TC) when decreasing the travel cost of link 5 (𝑐ହ). In the UE case, once the total 
travel demand is fixed, how the total travel cost (TC) changes with respect to 𝑐ହcan be depicted, 
as shown in Fig.2. 

 
Fig. 2 Evaluation of 𝑇𝐶 with respect to 𝑐ହ under different travel demand level 

 
According to Fig.2, it’s clear that in a certain road network, the congestion level has a great 
influence on the paradox and its non-monotonicity. When Q=50, as shown in Fig.2 (a), 
improving link 5 will never cause the occurrence of paradox (with the decreasing of 𝑐ହ, the total 
travel cost TC is also decreased), thus no non-monotonicity feature of paradox exists. When 
Q=2500, shown in Fig.2 (c), with the decreasing of 𝑐5, TC will never lower than that of the 
original network (𝑇𝐶଴), which means improving link 5 always causes paradox, and the non-
monotonicity of paradox does not exist either. But when Q=750, shown as Fig.2 (b), TC will 
increase first and then decrease to a value lower than 𝑇𝐶଴. It implies marginally (or slightly) 
improving link 5 can bring paradox, while further increasing the improvement degree will 
eliminate the paradox and improve system’s efficiency, which can be called the non-
monotonicity of paradox with regard to the amount of link improvement. 
 
In fact, the appearance of the above results is related to the nature of the UE principle. At a lower 
demand level, the less impact of congestion often results in the positive correlation between the 
system’s total travel cost and link’s travel cost, and improving an existing link cannot cause 
paradox. But as the level of congestion increases, due to the selfish behavior of travelers, the 
total travel cost of the system is no longer positively related to the link’s travel cost, so decreasing 

                (a) Q=50                                      (b) Q=750                               (c) Q=2500 
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link’s travel cost may increase the total travel cost and result in the paradox. Especially, when 
some certain conditions (e.g., demand levels, the network structure) are met, the paradox can be 
eliminated by increasing the improvement degree. Moreover, the above analyses also indicate 
that in the UE assignment, sometimes marginally improving link can also result in paradox, 
similar as the stochastic assignment paradox (Sheffi and Daganzo, 1978). 

3.1.2 Illustration by adding new links  

For the illustrations of paradox’s non-monotonicity with respect to the additions of paradox links, 
what we should do is to illustrate that in the UE assignment, simultaneously adding multiple 
similar paradox links (all of which can bring paradox when separately added to the network) can 
counter-intuitively avoid the paradox. The networks shown in Fig.3 will be applied to 
demonstrate it. 
 
As shown in Fig. 3, the original road network has two O-D pairs (A, D) and (B, E), and the link 
cost functions are as follows: 𝑐ଵ ൌ 0.1𝑥ଵ ,  𝑐ଶ ൌ 0.05𝑥ଶ , 𝑐ଷ ൌ 50 , 𝑐ସ ൌ 5 ൅ 0.1𝑥ସ , 𝑐ହ ൌ 25 , 
𝑐଺ ൌ 0.05𝑥଺ and 𝑐௔ ൌ 0.1𝑥௔, 𝑐௕ ൌ 0.01𝑥௕. Networks I and II are obtained by adding link 𝑎 and 
link 𝑏, respectively; Network III is obtained by simultaneously adding the two links. Then under 
the fixed travel demands, the total travel cost of each network ( 𝐶௜, 𝑖 ∈ ሼ0,1,2,3ሽ ) will be 
calculated. 

A B

C DE

A B

C DE

A B

C DE

A B

C DE

 

                  

            Fig. 3 Demonstration of adding new links to the original network with two O-D pairs 

 
Denote ∆𝐶௜ ൌ 𝐶௜ െ 𝐶଴ 𝑖 ∈ ሼ1,2,3ሽ to be the difference between the total travel costs of Network 
𝑖 and the original network, where ∆𝐶௜ ൐ 0 indicates that adding new link/links causes a paradox, 
otherwise no paradox. How ∆𝐶௜ changes with the different total travel demands of the two O-D 
pairs is shown in Fig. 4 (a). To more intuitively show the differences in the paradox areas, Fig. 4 
(b) depicts the demand ranges in which paradoxes occur under different conditions. 
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(a) ∆𝐶௜ with the different travel demands of two O-D pairs 
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(b) paradox area for different conditions 

Fig. 4 Paradox of different conditions under the UE principle 

 
As shown in Fig.4, it is conspicuous that there exist certain ranges of travel demands under which 
∆𝐶ଵ ൐ 0 and ∆𝐶ଶ ൐ 0, but ∆𝐶ଷ ൏ 0. This implies that adding either link 𝑎 or link 𝑏 results in the 
classic Braess paradox, but the paradox disappears when simultaneously adding them. Therefore, 
it can be said that, under the UE assignment, the traditional Braess paradox is non-monotonic 
with respect to the number of paradox links. 
 
In this case of adding new links, it is still the discrepancy between the individuals’ unilateral 
optimum and the system’s optimum that causes the paradox and its “non-monotonicity”. Because 
of the uncooperative selfish route choice, the total travel cost of UE assignment can be higher 
than that of the system optimum, and they are not monotonic with regard to the number of link 
additions, which results in the traffic paradox and its “non-monotonicity” feature. However, it 
should be noted that the total travel cost under a system optimal assignment will never increase 
with an increase in the link number. Therefore, there is no paradox in the system optimal 
assignment, not to mention its “non-monotonicity.” 

3.2 Analysis in the stochastic assignment 

As we all know, under the UE principle, the paradox and its non-monotonicity feature will be 
affected significantly by the congestion effect. In this section, to further explore under other 
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assignment principles, whether the paradox still has the similar non-monotonic feature, the 
stochastic assignment principle is applied to do some related demonstrations. Unlike the Braess 
paradox, the stochastic assignment paradox can occur in uncongested networks. Therefore, here 
the demonstrations will be conducted in a fixed cost case. 

3.2.1 Illustration by improving an existing link  

In this case, we still take the network shown in Fig.1 as an example network. Since the congestion 
effect is not considered, we reset links’ travel costs: 𝑐ଵ ൌ 𝑐ସ ൌ 𝐶ଵ, 𝑐ଶ ൌ  𝑐ଷ ൌ 𝐶ଶ, and 𝑐ହ ൌ 𝐶௫; 
Here the MNL model is used to calculate the route choice probability, and link 5 is still as an 
improved link to do illustration. 
 
For the network shown in Fig1, the choice probability of route 𝑖 can be expressed as follows: 

 𝑃௜ ൌ ௘షഇ೎೔

෍ ௘షഇ೎೔
೔∈಺

.                                                          (1) 

where 𝑐௜  is the travel cost of route 𝑖 , 𝜃  is the positive dispersion parameter related to the 
perception variance, and 𝐼 is the route set.  If 𝑄 ൌ 1, then the total travel cost is as follows: 

𝑇𝐶 ൌ 𝑄 ௖೔௘షഇ೎೔

෍ ௘షഇ೎೔
೔∈಺

ൌ ଶሺ஼భା஼మሻ௘షഇሺ಴భశ಴మሻାሺଶ஼భା஼ೣሻ௘షഇሺమ಴భశ಴ೣሻ

ଶ௘షഇሺ಴భశ಴మሻା௘షഇሺమ಴భశ಴ೣሻ .                               (2) 

To evaluate how the change in the cost of link 5 affects the total travel costs, the partial derivative 
of 𝑇𝐶 with respect to 𝐶௫ is derived as follows: 

డ்஼

డ஼ೣ
ൌ ௘షഇሺమ಴భశ಴ೣሻሾሺଵିఏ஼భାఏ஼మିఏ஼ೣሻ௘షഇሺ಴భశ಴మሻା௘షഇሺమ಴భశ಴ೣሻሿ

൫ଶ௘షഇሺ಴భశ಴మሻା௘షഇሺమ಴భశ಴ೣሻ൯
మ .                                  (3) 

The sign of Eq. (3) represents whether the total travel cost will increase (
డ்஼

డ஼ೣ
൏ 0) or decrease 

(
డ்஼

డ஼ೣ
൐ 0) when marginally improving link 5. To evaluate the sign of Eq. (3), let𝑓ሺ𝐶௫ሻ ൌ 1 െ

𝜃𝐶ଵ ൅ 𝜃𝐶ଶ െ 𝜃𝐶௫ሻ𝑒ିఏሺ஼భା஼మሻ ൅ 𝑒ିఏሺଶ஼భା஼ೣሻ. Note that 

 డ௙ሺ஼ೣሻ

డ஼ೣ
ൌ െ𝜃൫𝑒ିఏሺ஼భା஼మሻ ൅ 𝑒ିఏሺଶ஼భା஼ೣሻ൯ ൏ 0.                                                (4) 

Therefore, 𝑓ሺ𝐶௫ሻ is a decreasing function. It is not difficult to find that when 𝐶௫ → 0, if 𝑓ሺ𝐶௫ሻ ൏

0, then డ்஼

డ஼ೣ
൏ 0 will always hold, and 𝑇𝐶 should be an decreasing function with respect to  𝐶௫, 

therefore, there will never be the non-monotonicity feature of paradox. However, when 𝐶௫ → 0, 
if 𝑓ሺ𝐶௫ሻ ൐ 0 (this condition can be satisfied as long as 𝐶ଶ ൒ 𝐶ଵ), due to  𝐶௫ → ൅∞, 𝑓ሺ𝐶௫ሻ ൏ 0, 
there must exists  𝐶௫଴  to satisfy  𝑓ሺ𝐶௫଴ሻ =0. Therefore, we can get that when  𝐶௫ ൏ 𝐶௫଴ , 

then  𝑓ሺ𝐶௫ሻ ൐ 0 ⟹ డ்஼

డ஼ೣ
൐ 0 ; when  𝐶௫ ൐ 𝐶௫଴ , then  𝑓ሺ𝐶௫ሻ ൏ 0 ⟹ డ்஼

డ஼ೣ
൏ 0 . Based on the 

aforementioned analysis, under the condition that 𝐶ଶ ൒ 𝐶ଵ, how 𝑇𝐶 changes with 𝐶௫ is shown in 



  

9 
 

Fig. 5. 
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Fig. 5 Evaluation of 𝑇𝐶 with respect to 𝐶௫, 𝑡 ൌ
ଶ௘షഇሺ಴భశ಴మሻା

಴భ
಴మ

௘షమഇ಴భ

ଶ௘షഇሺ಴భశ಴మሻା௘షమഇ಴భ
൏ 1 

 
Similar as Fig.2 (b) of the UE case, TC is also non-monotonic with respect to 𝐶௫. When 𝐶௫ ൐
 𝐶𝑥0 , marginally improving link 5 will increase the total travel cost because 𝜕𝑇𝐶 𝜕𝐶௫⁄ ൏ 0 . 
However, if enlarging the improvement degree (e.g., decreasing 𝐶௫  from point C to point 
E, ∆C ൐ 𝐶௫ଵ െ 𝐶௫ଶ), 𝑇𝐶 can be less than the original cost 𝑇𝐶௫. Moreover, when continuously 
improving 𝐶௫, 𝑇𝐶 could reach a value that is less than 𝐶ଵ ൅ 𝐶ଶ, which could never be reached 
if the decision to improve link 5 was denied by the paradox evaluation of marginally improving 
link 5. 
 
Clearly, in an uncongested network, the non-monotonicity of paradox under stochastic 
assignment still exists, and the reason for the above phenomenon can be attributed to the 
existence of stochastic perceived error. Because of the stochastic perceived error, marginally 
improving an inferior route can result in that more travelers shift to the improved route (it is 
still an inferior route), and accordingly cause the paradox (Sheffi and Daganzo, 1978). However, 
when increasing the improvement degree, the inferior route should change into a superior one, 
and now more travelers will use the superior route, then the total travel cost will decrease and 
the paradox will naturally disappear. 

3.2.2 Illustration by adding new links 

For the stochastic assignment case, the non-monotonicity of the stochastic paradox with regard 
to the number of additional paradox links is illustrated by the networks shown in Fig.3. Because 
of no congestion effect, the links’ costs should be fixed, which is set as: 𝑐ଵ ൌ 10, 𝑐ଶ ൌ 10, 𝑐ଷ ൌ
15, 𝑐ସ ൌ 15, 𝑐ହ ൌ 15, 𝑐଺ ൌ 10, and the travel costs of additional links 𝑎 and 𝑏 are set as 𝑐௔ and 
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𝑐௕ respectively. Here we set the travel demand of each OD pair is 𝑄஺ି஽ ൌ 1000, and 𝑄஻ିா ൌ
1000 , 𝜃 ൌ 0.1 , then how the total travel cost of each network (𝐶௜, 𝑖 ∈ ሼ0,1,2,3ሽ ) changes 
with 𝑐௔and 𝑐௕is given in Fig.6. 

  
(a) adding link 𝑎 and b separately               (b) adding link 𝑎 and b simultaneously      

Fig.6 The total travel cost of each network 
 
Fig. 6 (a) shows how the total travel costs of network I ( 𝐶ଵ) and network II ( 𝐶ଶ) change with 
respect to the cost of their new links (𝑎 and b). Then we can get that when 𝑐௔ ൐ 7.23, there 
is 𝐶ଵ ൐  𝐶଴, and now the additional link 𝑎 is a paradox link. Similarly, when adding link b, there 
is always 𝐶ଶ ൐  𝐶଴, and the new link b is also a paradox link. Then, how the total travel cost of 
network III changes when adding both paradox links simultaneously is depicted in Fig.6 (b). 
Note that these two additional links should be both paradox links now, because only in this way, 
the impact of adding two paradox links simultaneously on system’s efficiency can be accurately 
reflected. From Fig. 6 (b), it can be found that in the area of the black part, 𝐶ଷ ൏  𝐶଴, which 
means that paradox cannot occur when adding two paradox links simultaneously. 
 
In fact, the “non-monotonicity” of the paradox can also be explained by the perceived error. 
When adding a new link to the original network brings inferior alternative route(s), there will 
always be a portion of travelers who choose the inferior route(s) because of the perceived error, 
which results in the increase in the total travel cost. After adding more links (these links result 
in a paradox when separately added), some superior routes are formed, which do not exist when 
adding theses links independently. When the travel-cost decreased in the superior routes 
outweighs the travel-costs increased in the inferior routes, the total travel cost will be decreased 
and the paradox should disappear.  
 

3.3 Analysis in a stochastic user equilibrium 

The above analyses separately consider the congestion effect and the stochastic effect. To 
generalize the aforementioned findings, this section demonstrates the non-monotonicity of 
paradox based on the SUE model, in which both stochastic perceived error and congestion effects 
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are considered.  

3.3.1 Illustration by improving an existing link 

Similar as section 3.1.1, the same network shown in Fig.1 is still applied to conduct the 
illustrations for the non-monotonicity of paradox when improving link 5, where 𝑐ଵ ൌ
0.01𝑥ଵ, 𝑐ଶ ൌ 15, 𝑐ଷ ൌ 15, 𝑐ସ ൌ 0.01𝑥ସ, 𝑐ହ ൌ 50. Once the travel demand Q and 𝜃 are fixed, the 
result of logit-based SUE assignment can be obtained by the method of successive average 
(MSA), then the total travel cost of the whole network can be calculated. Under different travel 
demand levels and different 𝜃, how the total travel cost changes with respect to 𝑐ହ are given in 
Fig. 7  

 
Fig. 7 Evaluation of T𝐶 with respect to 𝑐ହ under different conditions 

For a lower 𝜃 ሺ𝜃ൌ0.1ሻ, when the demand level is relatively low, shown as Fig.7 (a) and (b), 
improving link 5 can result in the paradox and its non-monotonicity, because of less impact of 
congestion effect but more impact of stochastic effect, the reason is similar as that of the above 
stochastic assignment case without considering congestion. However, under the higher demand 
level, as shown in Fig.7 (c), even the travel cost of link 5 closes to zero, the route passing that 
link is still an inferior one, and improving this link certainly cannot eliminate the paradox, it is 
why only paradox occurs but no non-monotonicity feature during the decreasing of 𝑐ହ. As we all 
know, the larger the value of  𝜃, the weaker the randomness, the results will be closer to that 
under the UE case. Therefore, by comparing Fig. 7 with Fig.2, it can be found that the total travel 
cost of the SUE for a larger 𝜃 can be more similar to that of the UE.  
 
According to analyses above, it can be clearly to find that under the SUE case, sometimes the 
occurrence of paradox can still be non-monotonic with respect to link’s improvement degree. 
Both the travel demand level and the value of 𝜃 have great impacts on the occurrence of paradox 
and its non-monotonicity,  
 

3.3.2 Illustration by adding new links 

For the analyses of paradox’s non-monotonicity with respect to the addition of paradox links, 
here we still use the networks shown in Fig. 3 and the MNL model to do demonstrations. Let 
𝜃 ൌ 0.1, similar analysis process as the UE case, the changes in ∆𝐶௜ with different total travel 
demands of the two O-D pairs are depicted in Fig. 8. It is obvious that under certain ranges of 

                (a) Q=50                                      (b) Q=750                               (c) Q=2500 
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travel demands ∆𝐶ଵ ൐ 0 and ∆𝐶ଶ ൐ 0, but ∆𝐶ଷ ൏ 0. That is to say, the non-monotonicity of the 
paradox with regard to the number of additional links still exists when considering both the 
stochastic and the congestion factors.  

 
(a) ∆𝐶௜ with different travel demands of the two OD pairs 
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(b) paradox area for different conditions 

Fig. 8 Paradox of different conditions under the SUE principle when 𝜃=0.1 

 

In summary, the non-monotonicity of the traffic paradox can not only exist in UE assignment 
and the stochastic assignment, it can also occur in SUE assignment. However, the underlying 
reasons for this phenomenon in the three assignment models are different. As mentioned in 
section 3.1 and 3.2, the factors that cause this phenomenon in UE assignment is uncooperative 
selfish route choice; for stochastic assignment, it lies in the perceived error; while for the SUE 
assignment, this phenomenon can be explained as the mixture of perceived error and 
uncooperative selfish route choice. 
 

Furthermore, with the same networks shown in Fig.3, we will analyze paradox links’ different 
effects on the travel costs of the two O-D pairs. As shown in Fig. 9, we compare the paradox 
areas of each O-D pair under the three situations (only adding link 𝑎, only adding link 𝑏, and 
adding both links). It is obvious that the addition of link 𝑎 only affects the travel cost of the O-
D pair (A, D), but adding link b can affect that of both O-D pairs. When simultaneously adding 
the two links , as shown in Fig. 9 (c), there is no paradox area for O-D pair (B, E), and the 
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paradox area of the whole system is much smaller than that of the O-D pair (A, D). This can be 
explained by the fact that simultaneously adding the two links will increase the travel cost of O-
D pair (A, D) but will decrease that of O-D pair (B, E). 
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(a) Only adding link 𝑎           (b) Only adding link 𝑏             (c)Adding link 𝑎 and 𝑏 

Fig.9 Paradox area under different travel demands of the two O-D pairs 

 
It is understandable that the newly added link has different effects on different O-D pairs. The 
overall change in total travel cost is the combination of the cost-change in each O-D pair, such 
as the traffic paradox. Inspired by this, we can design a differentiated link usage strategy to avoid 
the negative impact of a link to certain O-D pairs. For example, simultaneously adding link 𝑎 
and link b decreases the travel cost of O-D pair (B, E) but increases the travel cost of O-D pair 
(A, D). We can forbid travelers of O-D pair (A, D) to use link 𝑎 and link 𝑏 to avoid the increase 
in the travel cost of O-D pair (A, D) and the new links can only be opened for travelers between 
O-D pair (B, E). In this particular example, we have tested that this differentiated link usage 
strategy can reduce a system’s total travel cost. However, note that the flow re-distribution of 
one O-D pair can affect the flow distribution of other O-D pairs in a congested network; whether 
a link should be closed for some O-D pairs should be integrally evaluated with other O-D pairs. 

4. Application in a generalized traffic network 

As described in this section, to verify the previous arguments, the “non-monotonicity” of the 
traffic paradox was demonstrated in a real road sub-network of Harbin (the capital city of 
Heilongjiang Province in China) under the SUE assignment. For the SUE principle, the route set 
was obtained using the link penalty method (De La Barra et al., 1993).2 The MNL model was 
still used in the route choice process. Considering the unrealistic IID assumption in the MNL 
model, we further used the MNP model to verify our findings. To solve the SUE assignment, we 
used a route-based algorithm and the method of successive average (MSA). 
 
As shown in Fig. 10, the road sub-network of Harbin consists of 20 intersections and 30 road 
segments. Each segment is bidirectional and has the same cost function in both directions. Here 

                                                 
2 Note that the choice of route set can affect the traffic distribution results to a certain extent, and accordingly may 

have impact on the judgment of traffic assignment paradox, especially in a generalized larger road network. 
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we applied BPR function 𝑐௔ ൌ 𝑐଴௔ሺ1 ൅ 0.15 ൈ ቀ
௫ೌ

ଵ଴଴଴
ቁ

ସ
ሻ as the links’ travel cost function, where 

𝑐଴௔is the travel cost with free flow, 𝑥௔ is the flow volume of the segment 𝑎. We assumed this 
road network had five O-D pairs: (A, T), (B, T), (C, S), (D, M), and (E, S). The travel demand 
of each O-D pair is set as 100𝜂, and 𝜂 can be used to measure the congestion level. Then we still 
conducted the analyses from the following two aspects: (1) improving an existing link; (2) adding 
paradox links. 
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(a)                                                                                     (b) 

Fig. 10 Road sub-network of Harbin 

4.1 Improving an existing link 

Here we chose link F-J as a target link to illustrate that the traffic paradox is not monotonic with 
regard to the amount of link improvement, and the free flow travel cost of each link 𝑐଴௔ is shown 
in Table.1. Then set 𝜃 ൌ 0.1, 𝜂 ൌ 5, when improving link F-J (decreasing 𝑐଴ி௃), how the total 

system cost 𝑇𝐶 changes is shown in Fig. 11. 
Tab.1 Free flow travel costs of links (𝑐଴௔)                                           

Link  𝑐଴௔(s) Link  𝑐଴௔ (s) Link  𝑐଴௔ (s) 

1 50 11 17 21 41 

2 39 12 25 22 60 

3 50 13 𝑐଴ி௃ 23 60 

4 55 14 39 24 30 

5 20 15 20 25 27 

6 20 16 40 26 30 

7 30 17 18 27 30 

8 40 18 18 28 55 

9 18 19 24 29 42 

10 17 20 32 30 30 
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Fig. 11 Evaluation of TC with respect to 𝑐଴ி௃ 

 
Fig.11 shows that, 𝑇𝐶 is not monotonic with regard to 𝑐଴ி௃, with the increasing of 𝑐଴ி௃, the total 
travel cost 𝑇𝐶 increases first and then decreases. When 𝑐଴ி௃ ൐ 46, marginally decreasing 𝑐଴ி௃ 

can result in the increasing of 𝑇𝐶 and cause paradox; while if we enlarge the improvement degree, 
𝑇𝐶 can be reduced to a value less than the original one before improving the link. That is to say, 
in the real road network, the marginal-improvement paradox does not mean that a sufficient 
amount of improvement also can result in a paradox, and sometimes the occurrence of paradox 
is still non- monotonic with respect to the degree of link improvement.  

4.2 Adding new links 

This section further illustrates that the impact of  the traffic paradox is not monotonic with regard 
to the number of additional paradox links. Assuming we plan to add new link(s) to the network 
shown in Fig 10. Three link-addition plans are shown in Fig. 12. The travel cost functions of the 

existing links are remained unchanged, where 𝑐଴ி௃ ൌ 30,  and  𝑐ி௃ ൌ 30ሺ1 ൅ 0.15ሺ
௫ಷ಻

ଵ଴଴଴
ሻସሻ  . 

Then we set the travel cost functions of the new additional links as: 𝑐஼௅ ൌ 10ሺ1 ൅

0.15ሺ௫಴ಽ

ଵଶହ
ሻସሻand 𝑐௄ோ ൌ 10ሺ1 ൅ 0.15ሺ௫಼ೃ

ଵ଴଴
ሻସሻ, and 𝜃 is still fixed to 0.1 in the following analyses.  
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               (a) Network I                                  (b) Network II                   (c) Network III 

Fig. 12 Demonstration of adding new links to the original road network 

 
Fig. 13 shows how ∆𝑇𝐶௜ (the difference in the total travel costs of Network i and the original 
network) changes with respect to 𝜂. It is clear that when 𝜂 ∈ ሺ3.6, 4.1ሻ (approximately), there 
are ∆𝑇𝐶ଵ ൐ 0 and ∆𝑇𝐶ଶ ൐ 0, but ∆𝑇𝐶ଷ ൏ 0. Under this condition, new links C-L and Q-R are 
both paradox links, and adding any of them will increase the total travel cost, but simultaneously 
adding the two links can reduce the total travel cost. Therefore, the occurrence of the paradox is 
non-monotonic with respect to the increase in the number of paradox links.  

 

Fig. 13 Evaluation of ∆𝑇𝐶 with respect to  𝜂 

4.3 Verification using the MNP model 

Route overlapping widely exists in real networks and it can still affect travelers’ route choice. 
Because of the IID assumption, the MNL model cannot address the route overlapping effect. To 
compensate for this, we further verified the existence of the aforementioned phenomenon when 
considering the route overlapping effect.  Although there are numerous closed-form alternatives 
(such as C-Logit, Path-Size Logit, etc.) for the MNL model that can address overlapping, most 
have some other defects. Therefore, here only the MNP model was used as a standard to further 
verify the previous findings. For a link with travel cost 𝑐, the MNP model assumes the perceived 
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cost of the link satisfies normal distribution 𝑁ሺ𝑐, ሺ𝑐 ൈ 𝜎ሻଶሻ, where 𝜎 is a factor that controls the 
magnitude of the perceived error, and the MNP model was conducted using a Monte Carlo 
simulation (Sheffi,Y., 1985). Both improving a link and adding a new link(s) were evaluated. 
 
For the link improvement, we re-performed the case described in section 4.1 by the MNP model, 
and here 𝜎 was set to 0.2. How the total travel cost of the network changes with respect to 𝑐଴ி௃ 

is depicted in Fig.14. Apparently, according to the MNP model, we can obtain the same 
conclusions as using the MNL model, and the “non-monotonicity” of the traffic paradox with 
respect to link improvement still exists in this network when considering the overlapping route 
effect. 

 

Fig. 14 Evaluation of TC with respect to 𝑐଴ி௃ 

 

For the link addition, we apply the case described in section 4.2 using the MNP model. As 
analyses above, under the MNL model, when 𝜂 ∈ ሺ3.6, 4.1ሻ, the non-monotonicity feature can 
exist. Therefore, the traffic demand level 𝜂 is fixed to 4, and we evaluated total travel cost under 
different perceived error 𝜎. Fig. 15 shows how the total travel costs of the different link-addition 
plans change with the different 𝜎. It is found that when 𝜎 ∈ ሺ0, 𝜎ଵሻ, 𝑇𝐶ଵ ൐ 𝑇𝐶଴, 𝑇𝐶ଶ ൐ 𝑇𝐶଴, but 
𝑇𝐶ଷ ൏ 𝑇𝐶଴, thus even considering the route overlapping effect, sometimes adding more paradox 
links counter-intuitively can eliminate the paradox. 
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Fig. 15 Evaluation of TC in different networks with respect to 𝜎 

 
Fig. 15 further shows that the variance in the perceived error can also affect this feature. The 
perceived error increases with the increase in 𝜎, and travelers randomly choose routes when 𝜎 →
൅∞. In this particular case, it is found that the non-monotonicity phenomenon disappears when 
𝜎 increases. When 𝜎 ൌ 0, the MNP model is equivalent to UE, and Fig. 15 shows that during the 
process of adding new links, the non-monotonicity of the paradox also exists in the UE 
assignment. 

 

5. Conclusions 

This paper illustrated the “non-monotonicity” of the traffic assignment paradox and presented a 
counter-institutive phenomenon that paradox links can sometimes improve system efficiency. 
Based on the UE, stochastic assignment and SUE principles, we demonstrated that (1) a paradox 
caused by marginally improving a link can disappear when continuously improving that link to 
a certain threshold and (2) simultaneously adding several paradox links (which results in a 
paradox when separately added to a network) to a network may counter-intuitively avoid the 
paradox. Certainly, the reasons for the non-monotonicity of the traffic paradox under different 
scenarios were also explained. Because of the perceived error and uncooperative selfish route 
choice, the total travel costs can’t be monotonic with regard to the degree of link improvement 
and the number of link additions, which usually results in the traffic paradox and its “non-
monotonicity” feature. In addition, we further conducted the relevant demonstrations in a real 
road network basing on both the MNL model and the MNP model, and the results show that 
under some certain conditions, the “non-monotonicity” property of paradox can indeed appear 
in some real road networks. 
 
Our research has important implications in transportation planning and operations. On the one 
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hand, our findings reflect some limitations of the current sensitivity analysis in designing traffic 
infrastructure. Sensitivity analysis is usually conducted by evaluating marginal improvement, 
but this may result in a confined judgment and a local optimum in network optimization and 
evaluation. On the other hand, our findings provide new visions for the design of traffic networks. 
In current practice, link construction plans are often independently evaluated one-by-one. Our 
results show that the functions of different links in a network are related (adding several paradox 
links can counter-intuitively eliminate the paradox), and the combination of several paradox 
links can also bring benefits to the network. In addition, section 3.2 shows that creative policies 
(e.g., differentiated restrictions for travelers from different O-D pairs) for some paradox links 
may also help these links play a positive role in the network. 
 
Further researches can be conducted from the following aspects. First, the findings of this study 
can further be verified and compared to those of other route choice models such as the C-logit 
(Cascetta et al.,1996; Zhou et al., 2012), path-size Logit (PSL) (Ben-Akiva and Bierlaire,1999; 
Bovy et al., 2009; Chen et al., 2012), Paired Combinatorial Logit (PCL) (Chen et al., 2014), 
cross nested Logit (Bekhor et al., 2007), and generalized nested Logit (GNL) models (Bekhor 
and Prashker, 2001). Second, it is interesting to evaluate whether a similar phenomenon exists 
in other equilibrium models, for instance, bi-objective user equilibrium (Wang et al., 2013), 
boundedly rational user equilibrium (Mahmassani and Chang, 1987; Di and He, 2014),  dynamic 
user equilibrium (Friesz et al., 1993 ; Lu et al. 2008), traffic assignment with capacity constraints 
(Correa et al., 2004),  or whether other paradoxes can also have the similar non-monotonicity 
feature, such as the capacity paradox (Yang and Bell, 1998; Jiang and Szeto, 2016), emission 
paradox (Nagurey, 2000; Szeto et al., 2008), and noise paradox (Wang and Szeto, 2017). Lastly, 
this study only demonstrates the effect of combining two paradox links. More general researches 
should be conducted to evaluate the combination of more paradox links, and algorithms to 
identify the related paradox links in real road networks are worth exploring. 
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