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1 Introduction 

Marine risers are used to connect the offshore platforms on the water surface to the well head at 

the sea floor, ensuring the safe operations of offshore platforms in the oil and gas industry. Excess 

vibration of risers is considered as the main cause of the fatigue induced degradation and failure [1], 

which could lead to catastrophic infrastructure damage and environmental consequence. Significant 

attention has been drawn to investigate the dynamic vibration analysis of marine risers. Lei et al. [2] 

proposed a frequency domain method to investigate the effect of time-dependent tension force on the 

lateral deflection of marine risers. Tsukada and Morooka [3] developed a numerical method to estimate 

the vortex-induced vibration forces of a catenary riser. Han et al. [4] carried out experimental tests to 

investigate the dynamic characteristics of vortex-induced vibrations of a riser. The dynamic response 

characteristics were obtained from the analysis of strain responses, displacement amplitudes, dominant 

modes, response frequencies and drag force coefficients. Rivero-Angeles et al. [5] presented a 

comparison study on the modal identification of offshore risers by using two methods, namely, the 

Frequency Domain Decomposition Method and the Conventional Spectral Analysis Method, with 

numerical simulation data. Gao et al. [6] proposed a method to study riser’s fatigue damage induced 

by the vortex-induced vibrations. The riser was defined as a pinned-pinned cable model and the fatigue 

damage of the riser can be predicted by applying the modal superposition method combined with the 

S - N curve. 

 In the above-reviewed studies on the dynamic analysis, modal identification and damage detection 

of marine risers, deterministic analyses are conducted by assuming the system parameters with specific 

constant values. However, in reality, the inevitable random fluctuations in the structural system, i.e., 

random variations of the material properties including mass and stiffness, affect the structural 

responses, which have not been well considered. For example, the growing marine organisms have a 

number of adverse effects on offshore structures, one of which is that it may change the mass density 

of the risers significantly. Moreover, the long term corrosion in aggressive sea environment may also 

significantly affect the stiffness of risers. These effects should be properly considered for a better 

understanding of the lifetime performance of marine structures.   
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Stochastic Finite Element Method (SFEM) [7] has been successfully applied in many engineering 

areas, for example, structural analysis with uncertain system parameters [8], bridge–vehicle interaction 

analysis [9], elasto-plastic response analysis [10], etc. Some studies have been conducted to perform 

the stochastic dynamic analysis of offshore structures. Bi et al. [11] carried out the stochastic seismic 

response analysis of offshore pipelines subjected to spatially varying ground motions. The mean peak 

seismic responses of pipelines in the axial and lateral directions were stochastically formulated in the 

frequency domain. Foo et al. [12] performed the stochastic simulations of riser sections. Three-

dimensional riser-sections undergoing elastic deformations due to random pressure loads were 

considered. The riser’s deformations with the stochastic elastic modulus and deterministic loading 

were also studied. He and Low [13] predicted the probability of riser collision under stochastic 

excitations and various uncertainties. The considered random variables included the current, drag 

coefficient, vessel motions and riser mass, and the likelihood of collision was obtained. Mousavi et al. 

[14] estimated the probability of fatigue or strength failure of steel catenary risers. The uncertainties 

in the yield strength and fatigue capacities, as well as the environmental conditions, were considered. 

The proposed method was combined with the integrity based optimal design to improve the safety of 

steel catenary risers. Qiu et al. [15] discussed the uncertainties related to the prediction of loads and 

responses of ocean and offshore structures, particularly in the model tests. Uncertain parameters 

included the physical properties of the fluid, initial conditions, model definition, environment, scaling, 

instrumentation and human factors. Uncertainty effect on the dynamic response of offshore structural 

risers have not been well investigated yet. 

This paper investigates the effect of uncertainties in the structural parameters, i.e. mass density 

and elastic modulus, on the dynamic responses of the marine risers under sea wave loads. The 

stochastic mass density and elastic modulus are represented by using Karhunen–Loeve (KL) expansion. 

The mean value and standard deviation are assumed based on design and available information, and 

the probability function of random parameters is assumed to follow the Gaussian distribution. 

Polynomial Chaos (PC) expansion is adopted to represent the stochastic output response, in which the 

covariance matrix of the output response is unknown. Two numerical examples are studied in this paper. 

In the first example, the marine riser is simulated as a beam structure. Then a more complicated 
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cylinder model with shell elements is studied in the second example. Model reduction based on the 

Iterated Improved Reduced System (IIRS) technique is applied to reduce the dimensions of stochastci 

system matrices and improve the computational efficiency. The response statistics of the modelled riser 

with and without using the model reduction technique are compared with those from Monte Carlo 

Simulation (MCS). Results demonstrate the accuracy and efficiency of the proposed approach. It 

should be noted that in reality the offshore environmental and loading conditions usually experience, 

if not more significant, the same random fluctuations as the structural parameters. They are, however, 

not considered in the present study because the primary objective of the present study is to introduce 

and demonstrate the accuracy and efficiency of the reduction method in stochastic analysis of dynamic 

structural responses. Without loss of generality, only the random variations of structural parameters 

are considered.   

This paper is organized as follows. In Section 2, the theoretical background of KL expansion and 

PC expansion for representing the random processes is briefly reviewed. KL expansion can be used to 

represent the known stochastic fields ( i.e., the stochastic inputs) efficiently. PC expansion is adopted 

to represent the stochastic outputs since the covariance matrix of the random output is unknown. In 

Section 3, the deterministic equation of motion of an offshore riser is introduced first. The random 

fields of the mass density and elastic modulus are generated by using KL expansions, and random 

output responses are represented with PC expansions. The stochastic dynamic system is formulated in 

Section 3.3. Model reduction technique is then used to reduce the dimensions of the stochastic dynamic 

system in the response analysis by eliminating the unfavorable degrees-of-freedom (DOFs). Numerical 

examples and simulation results are described and discussed in Section 4, and then the conclusions are 

given in Section 5. 

 

2 Representation of stochastic processes 

2.1 KL expansion 

The theoretical background of KL expansion [16] will be briefly reviewed herein for the 

completeness of this paper. Let ( ),H θχ  be a second-order random process, which is a function of 
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the position vector defined over the domain V , belonging to the space of random events Ω . ( )H χ  

is denoted as the mathematical expectation of ( ),H θχ  over all possible realizations of the process, 

and ( )cov 1 2,C χ χ  as its covariance function which is bounded, symmetric and positive definite with 

the following spectral decomposition 

 ( ) ( ) ( )cov 1 2 1 2
0

, n n n
n

C λ ϕ ϕ
∞

=

=∑χ χ χ χ   (1) 

where nλ  and ( )nϕ χ  are the eigenvalues and eigenvectors of the covariance kernel, respectively. 

The eigenvectors are orthogonal, and can be normalized according to 

 ( ) ( )q n qnV
dϕ ϕ δ=∫ χ χ χ   (2) 

where qnδ  is the Kronecker delta function. The eigenpairs ( )( ),  n nλ ϕ χ  can be obtained through 

solving the homogeneous Fredholm integral equation 

 ( ) ( ) ( )cov 1 2 2 2 1, n n nV
C dϕ λ ϕ=∫ χ χ χ χ χ   (3) 

The random process can then be written as 

 ( ) ( ) ( ) ( )
( )

1

,

, n n n
n

H

H H

σ θ

θ λ ϕ ξ θ
∞

=

= +∑
χ

χ χ χ


  (4) 

where ( )nξ θ  is a set of uncorrelated random variables with a zero mean and a unit variance. Moreover, 

an explicit expression for ( )nξ θ   can be deduced by multiplying ( ),Hσ θχ   by ( )nϕ χ  and 

integrating through the domain V 

 ( ) ( ) ( )1 ,n nV
n

H dσξ θ θ ϕ
λ

= ∫ χ χ χ   (5) 

In practice, the random field ( ),H θχ   is approximated by ( ),H θχ  after truncating the 

expansion at the M-th term, i.e., 

 ( ) ( ) ( ) ( ) ( )
1

, ,
M

n n n
n

H H Hθ θ λ ϕ ξ θ
=

= = +∑χ χ χ χ   (6) 
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2.2 PC expansion 

PC expansion is built upon the theory of the homogeneous chaos [17], which is defined as elements 

of the space spanned by Hermite polynomials of Gaussian random variables. For general non-Gaussian 

random inputs, the optimal exponential convergence rate will not be realized. Xiu and Karniadakis [18] 

introduced the Wiener–Askey polynomial chaos expansion to the representation of random processes 

with different probability distributions. The utilization of different type orthogonal polynomials from 

the Askey scheme also provides a more efficient way to represent general non-Gaussian processes 

compared with the original Wiener–Hermite expansions. PC expansion is an efficient non-sampling-

based method for representing the stochastic processes/fields as an orthogonal polynomial series 

expansion of a sequence of random variables with deterministic coefficients [18]. A general random 

process ( )α θ , considered as a function of the random variable θ, can be represented in the following 

form 

 

( ) ( )( )

( ) ( )( )

( ) ( ) ( )( )

1

0 0 1 1 1
1 1

1, 2 2 1 2
1 1 2 1

1 2

1, 2, 3 3 1 2 3
1 1 2 1 3 1

,

, , ...

j j
j

i

j j j j
j j

j j

j j j j j j
j j j

a a

                    a

                   a

α θ ψ ψ ξ θ

ψ ξ θ ξ θ

ψ ξ θ ξ θ ξ θ

∞

=

∞

= =

∞

= = =

= +

+

+ +

∑

∑∑

∑∑∑

  (7) 

where pψ  are the terms of order p in the PC expansion, and 1, 2, 3j j ja  are deterministic coefficients. 

 For instance, when the expansion in Eq. (7) is truncated for the two-dimensional case, the PC 

approximation can be expressed as 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

0 0 1 1 1 2 1 2

11 2 1 1 21 2 1 2 22 2 2 2

111 3 1 1 1 211 3 2 1 1 221 3 2 2 1 222 3 2 2 2

, , ,

, , , , , , , , ...

a a a

                    a a a

                   a a a a

α θ ψ ψ ξ ψ ξ

ψ ξ ξ ψ ξ ξ ψ ξ ξ

ψ ξ ξ ξ ψ ξ ξ ξ ψ ξ ξ ξ ψ ξ ξ ξ

= + +

+ + +

+ + + + +

  (8) 

 For notational convenience, a one-to-one correspondence can be established between the 

polynomials ( )kψ  and new polynomial functions ( )kΨ , such that Eq. (8) can be rewritten as a 

more compact expression 
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 ( ) ( )( )
0

ˆk k
k

a Ψα θ ξ θ
∞

=

=∑   (9) 

where ˆka  are the deterministic PC coefficients. The two-dimensional expansion as shown in Eq. (8), 

in this case, can be expressed as, 

 

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

0 0 1 1 1 2 1 2

11 2 1 21 1 2 1 1 22 2 2

111 3 1 211 1 2 2 1 221 2 2 1 1 222 3 2

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ...

a Ψ aΨ a Ψ

                    a Ψ a Ψ Ψ a Ψ

                   a Ψ a Ψ Ψ a Ψ Ψ a Ψ

α θ ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

= + +

+ + +

+ + + + +

  (10) 

It is worth to note that the polynomials ( )( )kΨ ξ θ  are orthogonal satisfying the relationship 

 ( ) ( ) ( )2,k l k klΨ Ψ Ψξ θ ξ θ ξ θ δ=   (11) 

where klδ  is the Kronecker delta. The symbol •  denotes the inner product, and the value of 2
kΨ  

can be calculated analytically [7]. 

 

3 Stochastic dynamic system with uncertainties 

3.1 Equation of motion of an offshore riser under sea wave loads  

The deterministic equation of motion of an offshore riser as shown in Figure 1 subjected to the sea 

wave loads can be written as  

 ( ) ( ) ( ) ( )t t t t+ + =mx cx kx f    (12) 

where m , c  and k  are the mass, damping and stiffness matrices of the structure, respectively; x , 

x  and x  are the displacement, velocity and acceleration response vectors, respectively. ( )tf  is 

the sea wave load on the riser. The global mass and stiffness matrices can be obtained by assembling 

the elemental matrices as 

 
1

ne
e
i

i=
=∑m m    (13) 

 
1

ne
e
i

i=
=∑k k                (14) 
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where ( )e T
i A dlρ= ∫m N N   and ( )e T

i EI dl= ∫k B B   are respectively the mass and stiffness 

matrices of the i-th element, and ne is the number of the elements. N and B are the shape function and 

strain-displacement matrix for each element; ρ, A, E, I, and l are the mass density, cross-sectional area, 

Elastic modulus, moment of inertia and the length of each element, respectively. In this study, only the 

vibration of the risers along the direction of the applied loading is considered. Therefore the distributed 

drag force along the longitudinal direction can be expressed as [19] 

 ( ) ( ) ( ) ( )21, , , cos 4
2 water D current D vf z t C z t U z t D A fρ π β= + +   (15) 

where z and ( ),DC z t  are the distance to the seabed and the time and spatially varying drag coefficient, 

respectively, vf  , waterρ  and β   are the non-dimensional vortex shedding frequency, the sea water 

density and the phase angle respectively; DA  and ( ),currentU z t  are the amplitude of the oscillatory 

part of the drag force and a function which relates the depth to the ocean surface current velocity.  

 

3.2 Representation of the system parameters 

KL expansion can be used to represent the uncertain system parameters. In this study, the uncertain 

mass density and elastic modulus of the system are considered as independent Gaussian random fields. 

Taking the mass density as an example, the mass density ( ),ρ θχ   of the structure is assumed to 

satisfy Gaussian distribution with the mean value ρ  and a standard deviation ρσ . KL expansion is 

employed to represent the uncertain mass density as 

 ( ) ( ) ( )1 1 1
1 1

,
K

i i i
i

ρ

ρ χ θ ρ ρ ρ ξ θ λ ϕ
=

= + = +∑ χ   (16) 

where ρ  denotes the random component.   

Substituting Eq. (16) into Eq. (13), the stochastic mass matrix of the system can be expressed as 

two parts: 

 ( )θ = +M M M   (17) 

where 
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 ( )( )
1 1

ne ne
e T
i

i i
A dlρ

= =

= =∑ ∑ ∫M M N N   (18) 

 ( ) ( )1 1 1
1 1 1 1

Kne ne
e T
i i i i

i i i
A dl

ρ

ξ θ λ ϕ
= = =

  
= =      
∑ ∑ ∑∫M M N χ N    (19) 

Let ( )( )1 1 1
e T
i i i A dlλ ϕ= ∫M N χ N  and 1 1

1 1

ne
e

i i
i =

=∑M M , Eq. (19) can be written as 

 ( )1 1
1 1

K

i i
i

ρ

ξ θ
=

=∑M M   (20) 

Defining 1 0i = =M M  and ( )1 0 1iξ θ= = , the stochastic mass matrix can be expressed as 

 ( ) ( )1 1
1 0

K

i i
i

ρ

θ ξ θ
=

=∑M M   (21) 

Similarly, the stiffness matrix can be obtained as 

 ( ) ( )2 2
2 0

EK

i i
i

θ ξ θ
=

= ∑K K   (22) 

Substituting Eqs. (21) and (22) into Eq. (12), the equation of motion of the stochastic system 

can be obtained as 

 ( ) ( ) ( ) ( ) ( ) ( )t t t tθ θ+ + =M x Cx K x f    (23) 

where C   is the damping matrix. When the uncertainty in the damping matrix is considered, the 

damping matrix can be expressed as 

 ( ) ( ) ( ) ( )1 2 2 2
1 0 2 0

EK K

i i i i
i i

ρ

α θ β θ α ξ ω β ξ ω
= =

   
= + = +   

  
∑ ∑C M K M K   (24) 

 

3.3 Representation of responses
 

The output stochastic displacement, velocity and acceleration responses may not follow the 

Gaussian distributions [20]. A random dimension, denoted as the parameter θ  , is introduced in 

addition to the spatial–temporal dimension. The response vectors of the system can be represented as  

 ( ) ( ) ( ) ( )1 2, , , , , , ,
T

doft x t x t x tθ θ θ θ =  x    (25) 
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 ( ) ( ) ( ) ( )1 2, , , , , , ,
T

doft x t x t x tθ θ θ θ =  x      (26) 

 ( ) ( ) ( ) ( )1 2, , , , , , ,
T

doft x t x t x tθ θ θ θ =  x      (27) 

in which the subscript represents the DOF number of the physical structure. 

Since the covariance matrix of nodal acceleration ( ),t θx , velocity ( ),t θx  and displacement 

( ),t θx   are not known a priori, the output responses can be expanded by using PC expansion 

according to Eq. (9) with truncations [18] 

 ( ) ( ) ( )
0

,
m

j
j

j
t Ψ tθ θ

=

=∑x U   (28) 

 ( ) ( ) ( )
0

,
m

j
j

j
t Ψ tθ θ

=

=∑x U   (29) 

 ( ) ( ) ( )
0

,
m

j
j

j
t Ψ tθ θ

=

=∑x U   (30) 

where ( )j tU  is the vector of the coefficients in the PC expansion of ( ),t θx ; ( )j tU  and ( )j tU  

are the first and second derivatives of the coefficient vector ( )j tU , respectively. m is the dimension 

of PC expansion, which can be calculated as [21] 

 ( )
( )

!
1

! !
E

E

K K p
m

K K p
ρ

ρ

+ +
+ =

+
  (31) 

where p is the order of the PC expansion. 

Substituting Eqs. (21), (22) and (28-30) into Eq. (23) without considering the uncertainty in the 

damping matrix, we have 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1
1 0 0 0

2 2
2 0 0

E

K m m
j j

i i j j
i j j

K m
j

i i j
i j

Ψ t Ψ t

                                              Ψ t t

ρ

ξ θ θ θ

ξ θ θ

= = =

= =

    
+    

    
  

+ =  
  

∑ ∑ ∑

∑ ∑

M U C U

K U F

 

  (32) 

Taking the inner product on both sides of the equation with ( )kΨ θ  and employing the orthogonal 

property in Eq. (11), we have 
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( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1
0 1 0 0

2 2
0 2 0

, ,

, ,
E

Km m
j j

i j k i j k
j i j

Km
j

i j k i k f
j i

Ψ Ψ t Ψ Ψ t

                                 + Ψ Ψ t Ψ

ρ

ξ θ θ θ θ θ

ξ θ θ θ θ

= = =

= =

+

=

∑∑ ∑

∑∑

M U CU

K U F

 

 ( 0,1, 2k m=  )(33) 

Rewriting Eq. (33) in the matrix multiplication form, we have  

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )
( )

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )
( )

( )

0,0 0,1 0, 0,0 0,1 0,0 0

1 11,0 1,1 1, 1,0 1,1 1,

,0 ,1 , ,0 ,1 ,

m m
s s s s s s

m m
s s s s s

m mm m m m m m m m
s s s s s s

t t
t t

t t

           

      
      
      +      
      
            

M M M C C CU U
U UM M M C C C

U UM M M C C C

  

  

        
 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )
( )

( )

( )
( )

( )

0,0 0,1 0, 0 0

1 11,0 1,1 1,

,0 ,1 ,

m
s s s

m
s s

m mm m m m
s s s

t t
t t

              

t t

     
     
     + =     
     
         

K K K U F
U FK K K

U FK K K





    



  (34) 

where  

 ( ) ( ) ( ) ( ),
2 2

2 0
,

EK
j k

s i j k i
i

Ψ Ψξ θ θ θ
=

= ∑K K  ( , 0,1, 2j k m=  )           (35) 

 ( ) ( ) ( ) ( ),
1 1

1 0
,

K
j k

s i j k i
i

Ψ Ψ
ρ

ξ θ θ θ
=

=∑M M  ( , 0,1, 2, ,j k m=  )         (36) 

 ( ) ( ), 2j k
s k jkΨ θ δ=C C      ( 0,1, 2, ,k m=  )            (37) 

and  

 ( ) ( ) ( ) , 0
,

0, 1, 2,3, ,
k

k
t k=

Ψ t
k= m

θ


= = 


f
F f


  (38) 

When considering the uncertainties in the damping matrix, using the similar procedure and we have 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ),
1 1 2 2

1 2
, ,

EK K
j k

s i j k i i j k i
i i

Ψ Ψ Ψ Ψ
ρ

α ξ θ θ θ β ξ θ θ θ
   

= +   
  

∑ ∑C M K   (39) 

Eq. (34) can then be simplified as 

 ( ) ( ) ( ) ( )s s s s s s st t t t+ + =M U C U K U F    (40) 
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The coefficients of PC expansion can be calculated by solving Eq. (40). The DOFs of the stochastic 

system is equal to ( )1dof m× + .  

 

3.4 Model reduction 

It should be noted when a large number of KL expansion terms and a high order of PC expansion 

are involved, the dimensions of the stochastic system as shown in Eq. (33) will increase significantly 

and the response analysis will be extremely computational intensive. Model reduction technique will 

be applied to reduce the size of system matrices and improve the compuational efficiency. Only the 

essential DOFs are kept in the comuptation. In the last several decades, various techniques have been 

developed for model order reduction, such as Guyan’s method [22], Improved Reduced System method 

[23] and IIRS [24]. The convergence of IIRS used for model reduction has been proved by Friswell 

[25]. Later it has been successfully used for structural condition assessment [26] and calculating the 

structural responses and sensitivities [27]. It is noted that the selection of master DOFs may affect the 

accuracy of modal analysis and response analysis. One of the commonly used criterion is to choose 

those DOFs with the lowest stiffness to mass ratio in the system matrices. Other methods like Shah 

and Raymund’s scheme [28], element-based node selection method [29] are also proposed to better 

identify the master DOFs.  

IIRS model reduction technique is used in this study, and will be described briefly in this section. 

The essential DOFs of the stochastic system are selected as the master DOFs in the reduced system. 

The eigenvalue problem of the stochastic system can be expressed as  

 s s= ΛK Φ M Φ   (41) 

where Φ   and Λ   are the eigenvector and eigenvalues respectively. To apply the dynamic 

condensation scheme for model reduction, Eq. (41) can be rewritten in a partitioned form as  

 aa ab aa aa ab aa
aa

ba bb ba ba bb ba

       
= Λ       

       

K K Φ M M Φ
K K Φ M M Φ

  (42) 

where the subscript a indicated the master DOFs which are kept in the reduced system and b represents 

the slave DOFs to be eliminated.  
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To eliminate the slave DOFs, the second row of Eq. (42) can be rearranged to obtain  

 ( )1 1
ba bb ba aa bb ba aa bb ba aa

− −= − + + ΛΦ K K Φ K M Φ M Φ   (43) 

A transformation matrix is defined as  

  tb ra aa=Φ t Φ   (44) 

with 

 ( )1 1 1   bb ba bb ba bb aa aa aatr tr
− − −= − + + Λt K K K M M t Φ Φ   (45) 

The whole eigenvalue vector can be expressed with only master DOFs  

 
 

aa aa

tr
aa aa

ba

   
= =   

   

Φ I
Φ TΦ

Φ t
  (46) 

where aaI   is an identity matrix of the size a a×  . Substituting Eq. (46) into Eq. (42) and 

premultiplying TT  on the left of this equation, the reduced system matrices is obtained as 

 aa abT T
r s

ba bb

 
= =  

 

K K
K T K T T T

K K
  (47) 

       aa abT T
r s

ba bb

 
= =  

 

M M
M T M T T T

M M
                      (48) 

By analysing the above-reduced matrices, a reduced eigenvalue problem of the size a a×   is 

constructed as 

 r aa r aa aa= ΛK Φ M Φ   (49) 

The eigenvalues can be approximated with 

 1 1
aa aa aa r r

− −Λ =Φ Φ M K   (50) 

Substituting Eq. (50) into Eq. (45), the transformation matrix can be obtained as  

 ( )1 1 1   tr trbb ba bb ba bb r r
− − −= − + +t K K K M M t M K   (51) 

Since Eq. (51) is nonlinear, the iterative form is given as 

 ( ) ( )( ) ( )( ) ( )11 1 11 1it it it it
tr bb ba bb ba bb tr r r

−− − −− −= − + +t K K K M M t M K   (52) 

The iterative form of the reduced matrices can be constructed as  
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 ( ) ( )( ) ( ) ( )( ) ( )1 1 1 1 1T Tit it it it itaa ab
r s

ba bb

− − − − − 
= =  

 

M M
M T M T T T

M M
  (53) 

 ( ) ( )( ) ( ) ( )( ) ( )1 1 1 1 1T Tit it it it itaa ab
r s

ba bb

− − − − − 
= =  

 

K K
K T K T T T

K K
  (54) 

The eigenvalues and the associated eigenvectors of the reduced stochastic system after (it-1)th 

iteration are estimated by solving the generalized eigenproblem as 

 ( ) ( ) ( ) ( ) ( )it it it it it
r aa r aa aa= ΛK Φ K Φ   (55) 

Eq. (53) and (54) will continue until the convergence criteria is satisfied, which is defined as 

 
( ) ( )

( )

1it it
aa aa

it
aa

Tol
−Λ −Λ

≤
Λ

  (56) 

The details of IIRS method can be found in [24, 25, 30]. 

The Rayleigh damping model is defined for the reduced stochastic system  

 r r rα β= +C M K   (57) 

The reduced matrices, i.e., rM , rK  and rC , will be used for the stochastic dynamic response 

analysis by using Eq. (40). The associated reduced coefficients of PC expansions, ( )r tU , ( )r tU  and 

( )r tU  are obtained by using the mode superposition method [31]. After obtaining the coefficients of 

PC expansions, the mean value of nodal displacements MEANU  can be evaluated as 

 ( )0
rMEAN t=U U   (58) 

The variance of nodal displacements VARU  is obtained as 

 ( ) ( )2 2

1

m
j

r j
j

VAR t Ψ θ
=

 =  ∑U U   (59) 

 

4 Numerical Studies 

4.1 Beam model 
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A two-dimensional finite element model is built by using Matlab to simulate a marine riser, as 

shown in Figure 1. The length of the riser is 100m, and the outer diameter is 0.1524 m. The riser is 

modeled with 20 Euler beam elements with each having 2 nodes and 4 DOFs. The bottom of the riser 

is considered as a fixed support. Totally the structure has 40 DOFs. The flexural rigidity (EI) and the 

mass density (mass per unit length) are assumed as two independent Gaussian random variables with 

mean values of 4.0×1010 N/m2 and 15 kg/m, respectively. Each of them is assumed to have the spatial 

correlation represented as a Gaussian covariance kernel as follows  

 ( ) ( )2 2
1 2 /2

cov 1 2,
z z a

C z z eσ
− −

=   (60) 

where σ   is the standard deviation of the system parameter. The parameter a and the expression 

1 2z z−   denote the correlation length and the distance between two points in a spatial domain of 

interest, respectively. In this study, 20% uncertainties in the mass density and flexural rigidity are 

considered, and the correlation length is defined as 30m. 

The riser, assumed at rest initially, is excited by the sea wave loads. The ocean surface current 

velocity ( )currentU t  is modeled as a mean flow with sinusoidal components to simulate the riser with 

an average deflected profile. The sinusoids are assumed to have frequencies 

{ }0.867,1.827,2.946,4.282=ω Hz. The current ( )currentU t  can be express as 

 ( ) ( )
4

1
sinm ir

i
cu rentU t U U tω

=

= + ∑   (61) 

where 2 /U m s=  is the mean flow current and 0.2mU =  is the amplitude of the oscillating flow. 

The surface current generated by Eq. (61) is shown in Figure 2. The full current load is applied from 

z=100 to 70 m, and the load is linearly declining from z=70 to the ocean floor z=0, to simulate a depth 

dependent ocean current profile ( ),currentU z t . The excitation f(z,t) is simulated by using Eq. (15) with 

CD=1.361, β=0, and fv=2.625. These parameters to simulate the current loading are selected from an 

existing study [3].  

The uncertainty in damping is also considered in the numerical simulation. The damping matrix 

is obtained from Eq. (39) in which the damping model coefficients defined as 0.6263α =   and 
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0.0003β = , which are calculated based on the mean values of the first two natural frequencies and 

the assumed damping ratio 2% for all the modes. It should be noted that the responses under the sea 

wave loads are analysed, that means, the force to the top end of the riser due to the floating platform 

is not considered.   

 

4.1.1 Calculations without model reduction    

Figure 3(a) shows the eigenvectors associated with the defined Gaussian covariance kernel for 

given values of σ  and the correlation length, and Figure 3(b) shows the corresponding eigenvalues. 

The eigenvectors and eigenvalues are obtained from the discrete KL method [32]. Due to the fast decay 

of the eigenvalues, the first six terms are used in Eq. (1) to generate the random fields. Figure 3(c) 

shows different samples of random field realizations generated by the Gaussian covariance kernel. The 

generation of random fields of flexural rigidity can also be obtained with a similar procedure. 

Numerical studies without using model reduction technique are conducted. A convergence study 

with different numbers of MCS simulation runs is conducted to obtain the statistics, i.e. the mean value 

and variance of the horizontal deformation at the top of the riser at 50s. The results are shown in Figure 

4. It is shown that the statistical result from 50,000 simulations is converged, however, requiring the 

computational time of 16 hours with a computer of an i7-6770 CPU and 32 GB RAM. These response 

statistics will be taken as the reference values for comparison.    

Studies by using different orders of PC expansion for stochastic dynamic responses are conducted 

to investigate the effect of the order of PC expansion on the accuracy of the stochastic response analysis.  

Figures 5 and 6 show the comparisons of the mean responses and variances at the top and middle span 

of the riser from MCS and SFEM with different orders of PC expansions. The results with different 

PC expansion orders indicate that a higher order of PC expansion will achieve a better accuracy, 

particularly for the variance. The computational time with different PC expansion orders can be found 

in Table 1. The numbers of DOFs of the stochastic system in Eq. (33) are 420, 3640 and 18200 

repsectively when the order of PC expansion equals to 1, 2, and 3, respectively. The computational 

time for each case are 11s, 109s and 2519s, respectively. Although a better accuracy can be 

accomplished with a higher PC order in SFEM, the computational load also increases significantly. 
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This is the reason why the model reduction technique is considered to maintain the similar acceptable 

accuracy level but reduce the intensive computation requirement. Figures 7 and 8 show the 

convergence of the probability density function (PDF) and cumulative distribution function (CDF) of 

the responses at the top and middle span of the riser at 50s with different orders of PC expansion. It is 

also proven that a higher order in PC expansion would improve the accuracy in obtaining the PDF and 

CDF of calculated stochastic responses.  

 

4.1.2 Calculations with model reduction 

In this section, the rotational DOFs are defined as the slave and unfavorable DOFs since they are 

not of signficant interest and usually the responses at the translational DOFs are used in structural 

response analysis and design. The corresponding terms in the PC expansions associated with those 

slave DOFs are eliminated by using the described IIRS technique in Section 3.4. The calculation results 

from SFEM in the above Section 4.1.1 are selected as reference values for comparison when a different 

number of vibration modes are included in the model reduction to calculate the dynamic responses. 

It has been demonstrated that a good accuracy is achieved with the order of PC expansions equal 

to 3. The computational results with the order of PC expansion equal to 3 are presented in this section. 

Figure 9 shows the convergence of the obtained results with different numbers of included modes. The 

coefficients of the PC expansion match well with the true values when the first 30% modes (2730 

modes in this study) are involved, indicating that the error caused by the model reduction is minimal. 

The displacement variance at the top of the riser when the first 30% modes are included in the model 

reduction is shown in Figure 10, comparing with the result obtained without model reduction. These 

results demonstrate that the same accuracy can be achieved when the model reduction is used in the 

stochastic dynamic response analysis. However, the computational workload is reduced with a smaller 

system matrix size. It is noted that in this case, the computational time with using model reduction is 

decreased from 2519s to 1436s.  

 

4.2 Hollow cylinder model 
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To investigate whether this proposed approach is applicable for stochastic response analysis of a 

relatively large scale structure, a three-dimensional finite element model of a riser is further built with 

shell elements for numerical investigations in this section. The length of the riser is 4m, and the outer 

radius is 0.1m. The thickness is 10mm. The mean values of the mass density and elastic modulus of 

the riser are 7850 kg/m3 and 200 GPa, respectively. The mesh size of the finite element model is defined 

as 0.5m in the longitudinal direction. The cross-section is divided into 16 elements. Each shell element 

has 4 nodes and each node has 6 DOFs. The finite element model has 144 nodes, 128 elements and 

864 DOFs in total, as shown in Figure 11. The riser is fixed at the bottom, and is excited by a distributed 

non-uniform transverse load in the y-direction, which is modeled as multiple sinusoidal components 

( ) ( ) ( )10sin 2sin 4f t t tπ π= +  KN. The full current load is applied from z=4m to 3m and linearly 

declines to zero from 3m to the ocean floor.  

Same as the previous numerical study, the uncertainty in damping is also considered. The damping 

ratios are assumed as 2% for all the modes, and the damping coefficients can be obtained as 

3.5969α =  and -55.31 10β ×= . The random field is described by a three dimensional exponential 

covariance kernel as 

( ) ( )( ) ( ) ( ) ( )( )2 2 22 2 2
1 2 1 2 1 2/ / /2

cov 1 1 1 2 2 2, , , , , x y zx x l y y l z z l
C x y z x y z eσ

− − + − + −
=           (62) 

with the correlation lengths lx=ly=0.05 and lz=1. Uncertainties in the elastic modulus and mass density 

are considered separately to understand the structural vibration behavior. 10% uncertainty level is 

considered for those two parameters. 

MCS with 50000 runs are carried out to obtain the reference values of the response statistics for 

comparison with the SFEM results, taking more than 220 hours because of the complexity of the used 

model. KL expansions with the first four eigenvalues and eigenvectors are employed to generate the 

random fields for system parameters. The third order PC expansion is used to approximate the output 

responses. The vibration along the x direction is very small since the loads are applied in the y-z plane. 

Therefore, the DOFs along the x direction and all the rotational DOFs are taken as the slave DOFs and 

eliminated by using IIRS. When using the mode superposition to calculate the dynamic responses, the 
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first 30% modes (2688 modes in this study) are included. The same computational procedure is 

followed as the numerical studies in Section 4.1. 

The response statistics at a critical point at the top of the riser as shown in Figure 11 are obtained. 

Figure 12 shows the mean value and variance of the displacement at the critical point when the 

uncertainty in the elastic modulus is considered. The results from SFEM with and without model 

reduction are shown in Figure 12, indicating a well agreement with those obtained from MCS. The 

required computational time with and without model reduction are 2052s and 6144s, respectively. 

Compared with the intensive computational load required for MCS, the proposed approach with model 

reduction technique can significantly improve the efficiency of stochastic analysis but has no 

significant impact on the accuracy. Figure 13 shows the PDF and CDF of the displacement response 

at the critical point from MCS and SFEM with model reduction at the time instant with the maximum 

deformation. The results from MCS and SFEM with model reduction are well matched, which 

demonstrates that the accuracy in obtaining the response statistics when using model reduction is not 

affected significantly. Figure 14 shows the contour of the displacement variance along the whole riser 

due to the uncertainty in the mass density at t=4.8s. The amplitude of variance reduces from the top to 

the bottom, maybe because more significant vibrations are observed at the top of the model. The 

variance due to the uncertainty in elastic modulus is larger than that due to the uncertainty in mass 

density when comparing the variances as shown in Figures 12 and 14indicating that the uncertainty in 

the elastic modulus has a more significant effect on the response statistics in the stochastic dynamic 

analysis of this model. 

 

5 Conclusions 

This paper performs the stochastic dyanmic response analysis of offshore risers considering the 

uncertainty in material properties. The uncertainties in the mass density and elastic modulus are 

considered. The random inputs are represented by using the KL expansion and random outputs are 

represented by PC expansion. The coefficients of PC expansion of the slave DOFs are eliminated with 

a mode reduction technique, such as IIRS. The response statistics are obtained and compared with 

those from MCS. Two numerical examples are presented in this paper. Results show that a high order 
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PC expansion is required to represent the random output, and using the model reduction technique has 

no significant effect on the accuracy in the stochastic response analysis but significantly reduces the 

computational time. The results from the proposed approach based on SFEM and model reduction 

match well with those from MCS, while the computational time is much less.  
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Table 1 Computational time for MCS and SFEM without model reduction 

 Case 1 Case 2 Case 3 MCS 

PC order 1 2 3 - 

Matrix size 

(m×dof) 
13×40 91×40 455×40 40 

Computation time  11s 109s 2519s 16 hours 
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(a) Marine riser (b) Simplified model  (c) Numerical model 

Figure 1 Schematic marine riser, a simplified model and the corresponding numerical model  
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Figure 2 Time history of the applied surface ocean current velocity 
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(a) Eigenvectors (b) Eigenvalue 

 

(c) Random field realizations 

Figure 3 Generation of random fields by using KL expansion 
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(a) Convergence of mean value with different number of MCS from 

the top of riser at t=50s 

 
 

(b) Convergence of variance with different number of MCS from 

the top of riser at t=50s 

Figure 4 Convergence analysis of MCS analysis 
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(a) Displacement at the top of riser 

 
(b) Displacement at the middle span of riser 

Figure 5 Mean value of the riser from SFEM and MCS 
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(a) Displacement variance at the top of riser 

 

(b) Displacement variance at the middle span of riser 

Figure 6 Variance of the riser from SFEM and MCS 
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(a) PDF  

 

(b) CDF  

Figure 7 PDF and CDF of the displacement response at the top of riser (t=50s)  

from MCS and SFEM with different orders of PC expansion 
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(a) PDF  

 

 
(b) CDF  

Figure 8 PDF and CDF of the displacement response at the middle span of the riser (t=50s) from 

SFEM and MCS 
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Figure 9 PC coefficients obtained with different number of modes 
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(a) Mean value of displacement at the top from SFEM with/without model reduction when PC=3 

 

 
(b)  Variance of displacement at the top from SFEM with/without model reduction when PC=3 

Figure 10 Response statistics at the top of riser from SFEM with/without model reduction 
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Figure 11 Hollow cylinder model 
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(a) Mean value of the displacement at the critical point along the y-direction 

 

(b) Variance of the displacement at the critical point along the y-direction 

Figure 12 Response statistics at the critical point from 

SFEM with/without mode reduction 
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(a) PDF  

 

(b) CDF  

Figure 13 PDF and CDF of the displacement response along the y-direction at the critical point  

from MCS and SFEM with model reduction  
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Figure 14 Contour of the displacement variance along the whole model due to 10% uncertianty  

in the mass density at t=4.8s 

 

 




