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ABSTRACT 

With promising benefits such as traffic emission reduction, traffic congestion alleviation, and 

parking problems solving, electric vehicle (EV) sharing systems have attracted huge attentions. 

This study proposes a novel dynamic pricing scheme (DPS) for a large-scale EV-sharing net-

work by considering station-level demand prediction and vehicle-grid-integration. The station-

level demand can be predicted through a graph convolutional neural network based on data-

driven graph filter which can automatically capture hidden correlations among stations. Based 

on accurate demand predictions, the proposed DPS aims at maximizing total system profit from 

EV operation and vehicle-grid-integration (VGI) services by solving a Mixed Integer Nonlin-

ear Programming problem (MINLP). The proposed DPS can provide the optimal combination 

of the two Price Adjustment Levels (PALs) to maximize the profit of operation system by 

considering rebalancing services and VGI services. Several interesting points were found 

through the computation experiments of the proposed DPS. 
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1. Introduction 

Vehicle sharing is one of the novel business modes, which has become popular with the poten-

tial to reduce traffic congestion, decrease traffic emission and solve parking problems. Espe-

cially, considering a typical motorized passenger vehicle emits about 4.7 metric tons of carbon 

dioxide per year (US EPA 2016), many vehicle systems have been seeking to provide mobility 

services based on electric vehicles (EV). 

To design an efficient EV-sharing system, some studies focus on estimating the will-

ingness of the public about EV sharing. Kim et al. (2015) conducted a survey to identify factors 

that may affect participants’ attitudes towards car ownership and EV-sharing program partici-

pation. Some studies aim at solving the location problem of EV charging infrastructure.  Frade 

et al. (2011) proposed a maximal covering model to determine optimal location of EV charging 

stations, the number, and capacity of the stations. Besides that, for one-way station-based ve-

hicle sharing system in which users can take a vehicle or a bike at one station and return it to 

any other station, the common vehicle imbalance problem has also attracted a lot of attentions 

(Bruglieri et al. 2014; Lin 2018).  

Furthermore, considering customers in most sharing economy are price sensitive 

(Kumar et al. 2018), a dynamic trip pricing is an essential component in the EV-sharing system. 

Previous study developed a trip pricing methodology which can maximize the system profit by 

reducing vehicle imbalance (Jorge et al. 2015), e.g., charging higher prices for the trips that 

increase imbalance and lower prices for trips that improve the balance. However, this study 

only focused on traditional gas vehicles. For the EV-sharing system, factors from different 

domains, i.e., transportation and power system need to be considered. For example, the simul-

taneous charging activity may cause stability problems within distribution grids in residential 

areas (Flath et al. 2013). Yang et al. (2015) proposes a new optimal EV route model considering 

the fast-charging and regular-charging under the time-of-use price in the electricity market, 

which took into account factors from both transportation and power system. Kempton and 

Tomić (2005) develops equations to evaluate revenue and costs for EVs to supply electricity 

to three electric markets (peak power, spinning reserves, and regulation). Similarly, the charg-

ing capacity of an EV-sharing station should also be taken as a variable to formulate the Dy-

namic Pricing Scheme (DPS).   

Another element that has not been paid enough attention in the EV-sharing system is 

station-level demand prediction, which is a hot topic in other transportation systems, such as 

bike-sharing systems (Lin et al. 2017; Regue and Recker 2014). Station-level demand predic-

tions enable not only rebalancing the vehicle but also scheduling the Vehicle-Grid-Integration 

(VGI) in practical application, which is a necessary foundation to develop the DPS. For the 

aspect of rebalancing the vehicle, if the destination of a trip will have a high demand in the next 

operation hour, a higher price can be charged to urge the user to return the EV earlier; For the 

aspect of scheduling the VGI, if there will have a significant margin above charging/discharg-

ing for a longer time, the price can be adjusted accordingly. This will require a model to have 

the capability to provide accurate predictions. In recent years, the development of artificial 

intelligence and deep learning models has shown very satisfying performances in many pre-

dictive tasks. With the accumulation of EV-sharing demand data, station-level demand predic-

tion should be included in the dynamic pricing model.  

This study proposes a novel pricing scheme in a large-scale EV-sharing network con-

sidering station-level demand prediction and VGI. A graph convolution neural network model 

(GCNN) with Data-driven Graph Filter (DDGF) model is applied for the station-level EV-

sharing demand prediction. The GCNN-DDGF model has shown promising performance for 

station-level bike-sharing demand prediction in a large network (Lin et al. 2017). To the best 



knowledge of the author, the proposed scheme is the first study to develop a dynamic market 

based mechanism to schedule and manage EVs to satisfy demands at station-level as well as 

settle VGI schedules.  

 The rest of the paper is organized as follows. The next section introduces the novel 

dynamic pricing scheme in a large-scale EV-sharing network considering the station-level de-

mand prediction and the VGI. Then, a case study is proposed to demonstrate the proposed 

scheme. The paper concludes with a discussion of the study findings and future research direc-

tions. 

2. Methodology 

In this section, we first introduce the station-level EV demand prediction model graph convo-

lutional neural network. On the basis of accurate predictions, the rest part of the section intro-

duce the dynamic pricing scheme.  

2.1 Graph Convolutional Neural Network 

Comparing with traditional Convolutional Neural Network (CNN) which can be applied 

straightforwardly only in grid structured data such as image and video, Graph Convolutional 

Neural Network (GCNN) is applicable for data lying on irregular domains. The GCNN model 

conducts the convolution through the graph spectral filtering methodology. Suppose we have 

a graph 𝐺 = (𝑉, 𝑥, ℰ, 𝐴), where 𝑉 is a finite set of vertices with size 𝑁, signal 𝑥 ∈ ℝ𝑁is a scalar 

for every vertex,ℰ is a set of edges, 𝐴 ∈ ℝ𝑁×𝑁 is the adjacency matrix, and entry 𝐴𝑖𝑗 encodes 

the connection degree between the signals at two vertices. A normalized graph Laplacian ma-

trix is defined as 

𝐿 =  𝐼𝑁 −  𝐷−1/2𝐴𝐷−1/2           (1) 

where 𝐼𝑁 is the identity matrix, and 𝐷 ∈ ℝ𝑁×𝑁 is a diagonal degree matrix with 𝐷𝑖𝑖 = ∑ 𝐴𝑖𝑗𝑗 . 

𝐿 is a real symmetric positive semidefinite matrix which can be diagonalized as 

 𝐿 = 𝑈𝑈𝑇             (2) 

where 𝑈 = [𝑢0, 𝑢1, … , 𝑢𝑁−1];  = 𝑑𝑖𝑎𝑔([
0

, 1, … , 𝑁−1]);0, 1, … , 𝑁−1 are the eigenval-

ues of 𝐿, and 𝑢0, 𝑢1, … , 𝑢𝑁−1 are the corresponding set of orthonormal eigenvectors.  

The spectral graph convolution consists of the following three steps: 

(1) Graph Fourier Transform 

Analogous to the Fourier transform which is the expansion of a signal in terms of the 

complex exponentials, the graph Fourier transform is defined as the expansion of a signal in 

terms of the eigenvectors of the graph Laplacian (Shuman et al. 2013): 

�̂� = 𝑈𝑇𝑥                        (3) 

(2) Spectral Filtering 

Furthermore, the graph spectral filtering is defined as: 

 �̂�𝑜𝑢𝑡 = 𝑔𝜃()�̂�            (4) 

where 𝑔𝜃() is a function of the eigenvalues of  𝐿. 

(3) Inverse Graph Fourier Transform 

The Inverse Graph Fourier Transform is given by 

𝑥𝑜𝑢𝑡 = 𝑈�̂�𝑜𝑢𝑡                (5) 

Merging three steps together, a spectral convolution on the graph is defined as fol-

lows: 

𝑔𝜃 𝑥 = 𝑈𝑔𝜃()𝑈𝑇𝑥              (6) 

Previous study has shown that the calculation of 𝑔𝜃𝑥can be simplified by using only 

the first-order polynomial of 𝐿(Kipf and Welling 2016): 

𝑔𝜃𝑥 ≈ 0𝑥 + 1�̃�𝑥            (7) 



 

where �̃� is a rescaled Laplacian matrix, �̃� =
2

𝜆𝑚𝑎𝑥
𝐿 − 𝐼𝑁, 𝜆𝑚𝑎𝑥 is the maximum eigenvalue of 

𝐿. 

Furthermore, Kipf and Welling (2016) approximately set 𝜆𝑚𝑎𝑥 = 2 since the neural 

network parameters will adapt to this change in scale during training, 

 𝑔𝜃𝑥 ≈ 0𝑥 + 1(𝐿 − 𝐼𝑁)𝑥           (8) 

Replacing 𝐿 with (1), 

 𝑔𝜃𝑥 ≈ 0𝑥 −  1𝐷−
1

2𝐴𝐷−
1

2𝑥           (9) 

To constrain the number of parameters to further reduce the overfitting risk, let 𝜃 ′ =
0 = −𝜃1, 

 𝑔𝜃𝑥 ≈ 𝜃 ′(𝐼𝑁 +  𝐷−
1

2𝐴𝐷−
1

2)𝑥         (10) 

When applied to the multi-layer structure, renormalization is applied at each layer to 

retain numerical stability: 

 𝐼𝑁 +  𝐷−
1

2𝐴𝐷−
1

2 →  �̃�−
1

2�̃��̃�−
1

2         (11) 

where �̃� = 𝐴 + 𝐼𝑁 is the summation of the adjacency matrix of the undirected graph 𝐴 and the 

identity matrix 𝐼𝑁. In another word, �̃� is the adjacency matrix of an undirected graph where 

each node connects with itself; �̃�𝑖𝑖 = ∑ �̃�𝑖𝑗𝑗 . 

Generalizing this convolution calculation to a signal 𝑋 ∈ ℝ𝑁×𝐶 where each vertex 𝑣𝑖 

has a 𝐶-dimensional feature vector 𝑋𝑖, 

 𝑍 = �̃�−
1

2�̃��̃�−
1

2𝑋Θ          (12) 

where Θ ∈ ℝ𝐶×𝐹 is a matrix of filter parameters; Z ∈ ℝ𝑁×𝐹 is the convolved signal matrix. 

Suppose GCNN model has layers from 0, 1, … to 𝑚 from the input to the output.For 

each layer 𝑙, 𝑙 = 1, … , 𝑚 − 1, the layer-wise calculation of GCNN model 𝑓(𝑋, 𝐴) propagates 

from the input to the output with the following rule: 

𝐻𝑙 = 𝜎 (�̃�−
1

2�̃��̃�−
1

2𝐻𝑙−1𝑊𝑙)        (13) 

For the output layer 𝑚, the result is: 

 𝐻𝑚 = �̃�−
1

2�̃��̃�−
1

2𝐻𝑚−1𝑊𝑚        (14) 

where 𝑊𝑚 ∈ ℝ𝐶𝑚−1×𝐶𝑚
 are the weight parameters to be learned; 𝐻𝑚 ∈ ℝ𝑁×𝐶𝑚

 are the predic-

tions. 

To the best of our knowledge, all previous studies on GCNN require the predefinition 

of the graph, which means the adjacency matrix 𝐴 has to be determined. Now, suppose the 

adjacency matrix �̃� is unknown; let �̂� = �̃�−
1

2�̃��̃�−
1

2, then (13) becomes:  

 𝐻𝑙 = 𝜎(�̂�𝐻𝑙−1𝑊𝑙)          (15) 

where �̂� is a symmetric matrix consisting of trainable filter parameters. 

Hence, the graph filter of GCNN model becomes totally data driven. From another per-

spective, we can view the data-driven graph filtering as filtering in the vertex domain, which 

avoids the three operations: graph Fourier transform, filtering and inverse graph Fourier trans-

form.  

To illustrate the GCNN model with data-driven graph filter (DDGF), Fig. 1 shows an 

example with three stations 𝑖, 𝑗 and 𝑘. First, at Layer (𝑙 − 1), the signal vectors at the three 

stations are 𝐻𝑖
𝑙−1 ∈ ℝ𝐶𝑙−1

, 𝐻𝑗
𝑙−1 and 𝐻𝑘

𝑙−1. From Layer (𝑙 − 1) to Layer 𝑙, in step 1, the signal 

vector at the central station vertex is amplified or attenuated, and linearly combined with sig-

nals at other vertices weighted proportionally to the learned degree of their correlations. The 

signal vectors become (�̂�𝐻𝑙−1)𝑖 , (�̂�𝐻𝑙−1)𝑗  and (�̂�𝐻𝑙−1)𝑘  . In step 2, the signal vectors at 



vertices of the next layer 𝑙 are calculated using the traditional feed-forward neural network and 

become 𝐻𝑖
𝑙 ∈ ℝ𝐶𝑙

, 𝐻𝑗
𝑙 and 𝐻𝑘

𝑙 . 

 
 

Fig. 1. Layer-wise Calculation of GCNN-DDGF Model 

 

2.2 The Dynamic Pricing Scheme (DPS) in a Large-Scale EV-Sharing Network 

On one aspect, based on station-level demand predictions provided by the GCNN-DDGF 

model, we can find an optimal Price Adjustment Level (PAL) between each pair of stations 

such that the profit of operating the system is maximized; on the other aspect, we can find 

another optimal PAL such that the profit of VGI services in each stations is maximized while 

take into account the parking time and electricity price. Electricity price forecasting in different 

stations and different time periods are of importance to the pricing scheme especially when the 
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EV-sharing scale is large. The Panel Cointegration and Particle Filter (PCPF) model (Li et al. 

2013) which utilizes information of both the inter-temporal dynamics and the individuality of 

interconnected regions, was adopted in this study to maximize profits from these two aspects 

while detailed description of the techniques is beyond the scope of this paper.  

Different from other business modes, customers in sharing economy are price sensitive, 

that is, users of sharing EV can be motivated by a well-designed DPS to take part in the oper-

ation management. The DPS in a large-scale EV-Sharing network proposed in the study is a 

time-varying price matrix contains two PALs between each Origin-Destination pair of stations. 

PAL1 =
𝑷𝒌𝒋

𝒊

𝑃0
 aims at encouraging the EV movements between a set of stations to maximize the 

profit of a one-way EV-Sharing network during a given period. PAL2 =
𝑷

𝜹𝒌𝒋
𝒕

𝒊

𝑃0
 aims at affecting 

the travel time based on a tradeoff between profit from EV-sharing services and VGI services 

according to the electricity prices during a given period. Thus, a mixed-integer non-linear pro-

gramming (MINLP) model is formulated to search the optimal combination of the two PALs 

to maximize the profit of operation system by considering rebalancing services and VGI ser-

vices. The notations used to formulate the model (sets, data and decision variables) are sum-

marized as follows: 

Sets: 

K’ = (1, … , k … , K): Set of Stations. 

V’ = (1, … , v … , V): Set of sharing EVs. 

T’ = (1, … , t … , T): Set of time instants in the operation period. 

I’ = (1, … , i … , I): The set of time intervals in the operation period. 

X = (1, … , kt−1 … , kt, kt+1, … , KT): Set of nodes of a time–space network combining the K 

stations with the T time instants, where kt represents station k at time instant t. 

A1 = (… , (kt, jt+δkj
t ), … ) , kt ∈ X: Set of arcs over which vehicles move between stations k and 

j,∀k, j ∈ K′, k ≠ j,betweentime instant t and t + δkj
t . 

A2 = (… , (kt, kt+1), … ), kt ∈ X: Set of arcs that represent vehicles stocked in stationk, ∀k ∈
K′, from time instant t to time t + 1. 

Data: 

𝐶𝑚𝑣: The maintenance cost of each vehicle per time step driven. 

𝐶𝑚𝑝: The cost of maintaining one parking space per day. 

𝐶𝑣: The depreciation cost of one vehicle per day. 

𝑃0: The current carsharing price for all Original-Destination pairs of stations at any time instant. 

𝐷0𝑘𝑡𝑗
t+δkj

t
: Number of customer trips from stations 𝑘  to 𝑗  from instant t  to instant t +

δkj
t ,∀(𝑘𝑡𝑗t+δkj

t ) ∈ A1for the reference price. 

𝛿0𝑘𝑗
𝑡 : Travel time, in time instants, between stations 𝑘 and 𝑗 when departure time is 𝑡,∀𝑘 ∈

X, 𝑗 ∈ 𝐾′for the reference price. 

𝑃0𝑘𝑗
𝑖 : The current carsharing price per time step driven from stations 𝑘 to 𝑗 when departure 

time interval is 𝑖, ,,∀𝑘 ∈ X, 𝑗 ∈ 𝐾′, 𝑖 ∈ 𝐼′ for the reference price. 

𝛿0ktkt+1

𝑣 : The time that the vehicle v is connected in the parking lot at station 𝑘 from time 

instant t to time t + 1, ∀𝑣 ∈ V′, (ktkt+1) ∈ A2 for the reference price. 

𝐵𝑣: The nominal battery capacity of vehicle v, ∀𝑣 ∈ V′. 
BV

UT: The upper threshold of SOC of battery. 



BV
LT: The lower threshold of SOC of battery. 

𝑃𝐸𝐿𝑧
𝑖 : The electricity price (€/KWh) in zone Z at time interval 𝑖,∀𝑧 ∈ Z′, 𝑖 ∈ 𝐼′. 

𝑃𝐸𝐶𝑧
𝑖: The capacity price (€/KWh) in zone Z at time interval 𝑖, ∀𝑧 ∈ Z′, 𝑖 ∈ 𝐼′. 

𝑅𝑑−𝑐
𝑣 : The average ratio of the actual energy dispatched for regulation and the total power 

available. 

𝑍𝑘: Size of station 𝑘,∀𝑘 ∈ K′, where size refers to the number of parking spaces. 

𝑎𝑘𝑡: Number of available vehicles at station 𝑘 at time instant, ∀𝑘 ∈ X. 

𝑉ktkt+1
: Number of vehicles stocked at each station 𝑘 from time instant t  to time  t +

1, ∀(ktkt+1) ∈ A2. 

SOC𝑣
𝑡 : The state of charge of vehicle v at instant t, ∀𝑣 ∈ V′. 

Cap𝑘
𝑡 : The contracted capacity available at station 𝑘 at instant t. 

𝛿ktkt+1

𝑣 : The time that the vehicle v is connected in the parking lot at station 𝑘 from time instant 

t to time t + 1, ∀𝑣 ∈ V′, (ktkt+1) ∈ A2 after the price isvaried. 

⌈𝛿ktkt+1

𝑣 ⌉: The round up time (in hours) that the vehicle v in the parking lot at station 𝑘 from 

time instant t to time t + 1, ∀𝑣 ∈ V′, (ktkt+1) ∈ A2. 

𝑉𝐺𝑣
ktkt+1: The power that the vehicle v is discharge to the parking lot at station 𝑘 per minute 

from time instant t to time t + 1, ∀𝑣 ∈ V′, (ktkt+1) ∈ A2. 

𝐺𝑉𝑣
ktkt+1: The power that the vehicle v is charge from the parking lot at station 𝑘 per minute 

from time instant t to time t + 1, ∀𝑣 ∈ V′, (ktkt+1) ∈ A2. 

Decision Variables: 

𝐷𝑘𝑡𝑗
t+δkj

t
: Number of customer trips from stations  𝑘  to  𝑗  from instant t  to instant t +

δkj
t ,∀(𝑘𝑡𝑗t+δkj

t ) ∈ A1 after the price is varied. 

𝛿𝑘𝑗
𝑡 : Travel time, in time instants, between stations 𝑘 and 𝑗 when departure time is 𝑡,∀𝑘 ∈ X, 𝑗 ∈

𝐾′after the price is varied. 

PAL1: PAL per time step driven between stations 𝑘 and 𝑗 when departure time period is 𝑖,∀𝑘 ∈
X, 𝑗 ∈ 𝐾′,𝑖 ∈ 𝐼′. 

PAL2: PAL driven the travel time between stations 𝑘 and 𝑗 when departure time period is 

𝑖,∀𝑘 ∈ X, 𝑗 ∈ 𝐾′, 𝑖 ∈ 𝐼′. 

EV-Sharing Demand, in this model, varies according to a simple elastic behavior. The 

new demand (𝑫𝒌𝒕𝒋
𝒕+𝜹𝒌𝒋

𝒕
) results from applying the price elasticity 𝑬𝐷𝑒𝑚𝑎𝑛𝑑 to a reference de-

mand (𝑫𝟎𝒌𝒕𝒋
𝒕+𝜹𝒌𝒋

𝒕
) that exists for price 𝑷𝟎. The expression is: 

𝑬𝐷𝑒𝑚𝑎𝑛𝑑 =

𝐃𝐤𝐭𝐣
𝐭+𝛅𝐤𝐣

𝐭
−𝐃𝟎𝐤𝐭𝐣

𝐭+𝛅𝐤𝐣
𝐭

𝐃𝟎𝐤𝐭𝐣
𝐭+𝛅𝐤𝐣

𝐭

𝑷𝒌𝒋
𝒊 −𝑃0

𝑃0

          (16) 



 

EV-Sharing travel time, in this model, varies according to a simple elastic behavior. 

The travel time(𝜹𝒌𝒋
𝒕 ) results from applying the price elasticity 𝑬𝑇𝑖𝑚𝑒 to a reference travel 

time(𝜹𝟎𝒌𝒋
𝒕 ) that exists for price 𝑷𝟎. The expression is: 

𝑬𝑇𝑖𝑚𝑒 =

𝜹𝒌𝒋
𝒕 −𝜹𝟎𝒌𝒋

𝒕

𝜹𝟎𝒌𝒋
𝒕

𝑷
𝜹𝒌𝒋

𝒕
𝒊 −𝑃0

𝑃0

                    (17) 

We assume that there are inverse proportional relationship between the varies in Shar-

ing EV travel time and the varies in Sharing EV parking lot connection time 𝜹𝐤𝐭𝐤𝐭+1

𝒗 . The ex-

pression is: 
𝜹𝐤𝐭𝐤𝐭+1

𝒗

𝜹𝟎𝐤𝐭𝐤𝐭+1
𝒗 =

𝜹𝟎𝒌𝒋
𝒕

𝜹𝒌𝒋
𝒕                     (18) 

Therefore, we have 

𝜹𝐤𝐭𝐤𝐭+1

𝒗 =
𝜹𝟎𝐤𝐭𝐤𝐭+1

𝒗 ×𝑃0

𝑃0+(𝑷
𝜹𝒌𝒋

𝒕
𝒊 −𝑃0)×𝑬𝑇𝑖𝑚𝑒

                  (19) 

Using the above notation, the model is formulated as follows: 

𝑴𝒂𝒙𝜽 = ∑ (𝐤𝐭𝐣
𝐭+𝛅𝐤𝐣

𝐭 ∈A1

k∈K′

t∈T′

i∈I′

𝑹𝐷𝑆) + ∑ (v∈V′

k∈K′

t∈T′

i∈I′

𝑹𝑉𝐺𝐼)                 (20) 

𝑹𝐷𝑆 = (𝑷𝒌𝒋
𝒊 − 𝐶𝑚𝑣) × 𝐃𝐤𝐭𝐣

𝐭+𝛅𝐤𝐣
𝐭

× 𝛅𝐤𝐣
𝐭 − 𝐶𝑚𝑝 ∑ Zkk∈K′ − 𝐶𝑣 ∑ αk1k∈K′              (21) 

 

𝑹𝑉𝐺𝐼 = 𝑷𝑬𝑳𝑧
𝑖 × 𝜹𝐤𝐭𝐤𝐭+1

𝒗 × (𝑽𝑮𝑣
𝐤𝐭𝐤𝐭+1−𝑮𝑽𝑣

𝐤𝐭𝐤𝐭+1) + 𝐦𝐢𝐧 (𝐒𝐎𝐂𝒗
𝒕，

𝐂𝐚𝐩𝒌
𝒕

𝑽𝐤𝐭𝐤𝐭+1

) ×

(𝑷𝑬𝑪𝑧
𝑖 × ⌈𝜹𝐤𝐭𝐤𝐭+1

𝒗 ⌉ + 𝑷𝑬𝑳𝑧
𝑖 𝑹𝑑−𝑐

𝑣 × 𝜹𝐤𝐭𝐤𝐭+1

𝒗 )                  (22) 

 

Subject to, 

𝐃𝐤𝐭𝐣
𝐭+𝛅𝐤𝐣

𝐭
≥ 𝑫𝟎𝒌𝒕𝒋

𝐭+𝛅𝐤𝐣
𝐭

+

𝑬𝐷𝑒𝑚𝑎𝑛𝑑×𝐃𝟎𝐤𝐭𝐣
𝐭+𝛅𝐤𝐣

𝐭 ×(𝑷𝒛𝒘
𝒊 −𝑃0)

𝑃0
− 𝟎. 𝟓, ∀ (𝒌𝒕𝒋𝐭+𝛅𝐤𝐣

𝐭 ) ∈ 𝐀𝟏, 𝒛, 𝒘 ∈

Z′, 𝒊 ∈ 𝑰′             (23) 

𝐃𝐤𝐭𝐣
𝐭+𝛅𝐤𝐣

𝐭
≤ 𝑫𝟎𝒌𝒕𝒋

𝐭+𝛅𝐤𝐣
𝐭

+

𝑬𝐷𝑒𝑚𝑎𝑛𝑑×𝐃𝟎𝐤𝐭𝐣
𝐭+𝛅𝐤𝐣

𝐭 ×(𝑷𝒛𝒘
𝒊 −𝑃0)

𝑃0
+ 𝟎. 𝟓, ∀ (𝒌𝒕𝒋𝐭+𝛅𝐤𝐣

𝐭 ) ∈ 𝐀𝟏, 𝒛, 𝒘 ∈

Z′, 𝒊 ∈ 𝑰′            (24) 

𝑫𝟎𝒌𝒕𝒋
𝐭+𝛅𝐤𝐣

𝐭
+

𝑬𝐷𝑒𝑚𝑎𝑛𝑑×𝐃𝟎𝐤𝐭𝐣
𝐭+𝛅𝐤𝐣

𝐭 ×(𝑷𝒛𝒘
𝒊 −𝑃0)

𝑃0
≥ 𝟎         (25) 

𝑽𝐤𝐭𝐤𝐭+1
+ ∑ 𝐃𝐤𝐭𝐣

𝐭+𝛅𝐤𝐣
𝐭𝒋∈𝑲′ = ∑ 𝐃𝐣

𝒕′𝐤𝐭𝒋∈𝑲′:𝒕′=t−𝛅𝐤𝐣
𝐭 + 𝑽𝐤𝐭𝐤𝐭+1

, ∀𝒌 ∈ X    (26) 

𝒂𝒌𝒕 = 𝑽𝐤𝐭𝐤𝐭+1
+ ∑ 𝐃𝐤𝐭𝐣

𝐭+𝛅𝐤𝐣
𝐭𝒋∈𝑲′ , ∀𝒌 ∈ X       (27) 



𝒁𝒌 ≥ 𝒂𝒌𝒕, ∀𝒌 ∈ X          (28) 

𝐃𝐤𝐭𝐣
𝐭+𝛅𝐤𝐣

𝐭
∈ ℕ𝟎, ∀ (𝒌𝒕𝒋𝐭+𝛅𝐤𝐣

𝐭 ) ∈ 𝐀𝟏        (29) 

𝑷𝒛𝒘
𝒊 ∈ ℝ𝟎, ∀𝒛, 𝒘 ∈ Z′, 𝒊 ∈ 𝑰′         (30) 

𝑽𝐤𝐭𝐤𝐭+1
∈ ℕ𝟎, ∀(𝐤𝐭𝐤𝐭+1) ∈ 𝐀𝟐        (31) 

𝒂𝒌𝒕 ∈ ℕ𝟎, ∀𝒌 ∈ X          (32) 

𝒁𝒌 ∈ ℕ𝟎, ∀𝒌 ∈ K′          (33) 

𝜹𝐤𝐭𝐤𝐭+1

𝒗 ≥
𝜹𝟎𝐤𝐭𝐤𝐭+1

𝒗 ×𝑃0

𝑃0+(𝑷
𝜹𝒌𝒋

𝒕
𝒊 −𝑃0)×𝑬𝑇𝑖𝑚𝑒

− 𝟎. 𝟓, ∀ (𝒌𝒕𝒋𝐭+𝛅𝐤𝐣
𝐭 ) ∈ 𝐀𝟏, 𝒛, 𝒘 ∈ Z′, ∀𝒗 ∈ V′, 𝒊 ∈ 𝑰′  (34) 

𝜹𝐤𝐭𝐤𝐭+1

𝒗 ≤
𝜹𝟎𝐤𝐭𝐤𝐭+1

𝒗 ×𝑃0

𝑃0+(𝑷
𝜹𝒌𝒋

𝒕
𝒊 −𝑃0)×𝑬𝑇𝑖𝑚𝑒

+ 𝟎. 𝟓, ∀ (𝒌𝒕𝒋𝐭+𝛅𝐤𝐣
𝐭 ) ∈ 𝐀𝟏, 𝒛, 𝒘 ∈ Z′, ∀𝒗 ∈ V′, 𝒊 ∈ 𝑰′  (35) 

 
𝜹𝟎𝐤𝐭𝐤𝐭+1

𝒗 ×𝑃0

𝑃0+(𝑷
𝜹𝒌𝒋

𝒕
𝒊 −𝑃0)×𝑬𝑇𝑖𝑚𝑒

≥ 𝟎         (36) 

 

𝑽𝑮𝑣
𝐤𝐭𝐤𝐭+1 × 𝑮𝑽𝑣

𝐤𝐭𝐤𝐭+1 = 0         (37) 

0 ≤ 𝑽𝑮𝑣
𝐤𝐭𝐤𝐭+1 × 𝜹𝐤𝐭𝐤𝐭+1

𝒗 ≤
𝐂𝐚𝐩𝒌

𝒕

𝑽𝐤𝐭𝐤𝐭+1

        (38) 

0 ≤ 𝑮𝑽𝑣
𝐤𝐭𝐤𝐭+1 × 𝜹𝐤𝐭𝐤𝐭+1

𝒗 ≤
𝐂𝐚𝐩𝒌

𝒕

𝑽𝐤𝐭𝐤𝐭+1

        (39) 

𝐒𝐎𝐂𝒗
𝒕 +

𝑽𝑮𝑣
𝐤𝐭𝐤𝐭+1×𝜹𝐤𝐭𝐤𝐭+1

𝒗

𝑩𝒗
≤ 𝐁𝐕

𝐔𝐓        (40) 

𝐁𝐕
𝐋𝐓 ≤ 𝐒𝐎𝐂𝒗

𝒕 −
𝑮𝑽𝑣

𝐤𝐭𝐤𝐭+1×𝜹𝐤𝐭𝐤𝐭+1
𝒗

𝑩𝒗
        (41) 

 

The objective function (20-22) is to maximize the total profit 𝜽 of the one-way carshar-

ing service, taking into consideration the revenue from i) the rebalancing services, including 

the trips paid by clients, vehicle maintenance costs, vehicle depreciation costs, station mainte-

nance costs, and relocation costs; ii) the VGI services, including the charging cost or discharg-

ing income, revenues from spinning reserves and regulation services.  

Equations (23-33) are constraints related to the rebalancing services. Constraints (23) 

and (24) compute the demand resulting from considering the price change. Given that this de-

mand is a continuous function of price, we use two inequalities to ensure that D will be integer. 

Constraints (25) ensure that the demand resulting from the application of price elasticity to the 

reference demand is positive. Constraints (26) ensure the conservation of vehicle flows at each 

node of the time–space network. Constraints (27) compute the number of vehicles at each sta-

tion k at the start of time instant t, assuming that vehicles destined to arrive at station k at time 

instant t arrive before vehicles leave from the same station at time instant t. Constraints (28) 

guarantee that the size of the station at location k is greater than the number of vehicles located 

there at each time instant t. Expressions (29)–(33) set the variables domain.  



 

Equations (34-41) are constraints related to the VGI services. Similar to Constraints 

(23-25), Constraints (34) and (35) compute the Sharing EV parking lot connection time result-

ing from considering the price change while (36) regulate the price elasticity. Constraints (37) 

ensure that the simultaneous charging and discharging at the same period is not a feasible op-

eration for an EV. Constraints (38) and (39) guarantee that the spinning reserves and regulation 

services each EV provided is in compliance with the nominal power of the charging infrastruc-

ture. Constraints (40) and (41) ensure that EV battery operates within acceptable limits.   

The DPS model assumes that the estimated value of the price elasticity of demand is 

known and do not change during the operation period. Therefore, the decision variables 

𝑫𝒌𝒕𝒋
𝐭+𝛅𝐤𝐣

𝐭
 and 𝜹𝒌𝒋

𝒕  are considered known when the MINLP solver is searching the optimal com-

bination of PAL 
𝑷𝒌𝒋

𝒊

𝑃0
 and 

𝑷
𝜹𝒌𝒋

𝒕
𝒊

𝑃0
 by substituting (16-19).  

3. Case study 

3.1 Computation Experiments of the proposed DPS  

The data studied in the computation experiments of the proposed DPS was listed in Table 1. It 

should be noted that there are no studies in the literature that specifically address the calculation 

of carsharing elasticity of travel time 𝑬𝑇𝑖𝑚𝑒 , we firstly assume 𝑬𝑇𝑖𝑚𝑒 = 𝑬𝐷𝑒𝑚𝑎𝑛𝑑 = −1.5 

based on the previous study (Jorge et al. 2015), then change the value of 𝑬𝑇𝑖𝑚𝑒 as -0.8, -1.0, -

1.2, -1.7 or -2 to investigate the impact of 𝑬𝑇𝑖𝑚𝑒 on the profit of the operation network. 

  

Table 1. Data/Parameter values in the computation experiments 

 

Data/Parameters Value Reference 

𝐂𝐦𝐯 € 0.007/ min Wang et al. (2011) 

𝐂𝐦𝐩 €0.0013/min Jorge et al. (2015) 

𝐂𝐯 €0.012/min Jorge et al. (2015) 

𝐏𝟎 €0.3/min Car2go (2018)1 

𝐁𝐯 30 KWh Nissan Leaf (2018)2 

𝐁𝐕
𝐔𝐓 95% Kempton and Tomić (2005) 

𝐁𝐕
𝐋𝐓 50% Kempton and Tomić (2005) 

𝐏𝐄𝐂𝐳
𝐢  €0.0032/ KWh Nord Pool (2018)3 

𝐑𝐝−𝐜
𝐯  10% Nord Pool (2018) 

𝑬𝑫𝒆𝐦𝐚𝐧𝐝 -1.5 Jorge et al. (2015) 

𝑬𝑻𝒊𝒎𝒆 -1.5 - 

𝑫𝟎𝒌𝒕𝒋
𝐭+𝛅𝐤𝐣

𝐭
 predicted by GCNN model Lin et al. (2017) 

𝑷𝑬𝑳𝒛
𝒊  predicted by PCPF model Li et al. (2013) 

1 Car2go (2018) https://www.car2go.com/IT/en/ 
2 Nissan Leaf(2018) https://www.nissanusa.com/vehicles/electric-cars/leaf.html 
3 Nord Pool (2018) https://www.nordpoolgroup.com/Market-data1/#/nordic/table 

 

It is worth noting that 𝐷0𝑘𝑡𝑗
t+δkj

t
 and 𝑃𝐸𝐿𝑧

𝑖  can be predicted from the previous works 

proposed by the authors. For the consideration of simplicity, we assume these values are given. 

With these data and parameters, the DPS model was implemented for a “two stations and one 

hour” case. The computation results are given in Table 2, where PAL1(1-2) and PAL2(1-2) 

denote the PALs for trips from station 1 to station 2, PAL1(2-1) and PAL2(2-1) denotes the 

https://www.car2go.com/IT/en/
https://www.nissanusa.com/vehicles/electric-cars/leaf.html
https://www.nordpoolgroup.com/Market-data1/#/nordic/table


PALs for trips from station 2 to station 1. Composite PAL is calculated by multiplying the 

corresponding PAL1 and PAL2. Using the optimal combination of PALs, the 2 stations EV-

sharing network is able to achieve a profit of 287.59€during one hour’s operation.  Not sur-

prisingly, we found that the adjusting directions of the same PALs from station 1 to station 2 

and from station 2 to station 1 are opposite. It indicates that the movements of EVs from station 

1 to station 2 will be encouraged because PAL1(1-2) lowering the carsharing price, and the 

travel time from station 1 to station 2 is expected to be shorten as PAL2(1-2) will lead to a 

higher price.  That is to say the DPS would encourage EVs move to station 2 faster. Besides, 

some interesting points can be found from the result: i) the adjusting directions of the two PALs 

between each origin-destination pair of stations are opposite. For example, if applying PAL1(1-

2) only, the adjusted car sharing price from station 1 to station 2 will enjoy a 10% discount. 

But PAL2(1-2) will raise the price up; ii) PAL2 has a dominant impact on the adjusted price 

than PAL1. It can be seen easily because the adjusting directions based on the composite PAL 

and the PAL2 are always the same, e.g., 108% and 120% for trips from station 1 to 2, and 88% 

and 80% for trips from station 2 to 1; iii) The mean of the adjusted car sharing prices from 

station 1 to 2 and from station 2 to 1 is (€0.324/min + €0.264/min) / 2 = € 0.294/min, which 

is close to the original carsharing price €0.3/min. From this point of view, the customers will 

enjoy a slightly discount by the DPS. 

 

Table 2. Computation results of DPS model 

 

PAL1(1-2) PAL2(1-2) PAL1(2-1) PAL2(2-1) Profit (€/hour) 

90% 120% 110% 80% 

287.59 

Composite PAL (1-2) Composite PAL (2-1) 

108% 88% 

Adjusted car sharing price (1-2) Adjusted car sharing price (2-1) 

€0.324/min  €0.264/min 

 

We then change the values of  𝑬𝑇𝑖𝑚𝑒 from -0.8 to -2 with a step of 0.2 to investigate 

the impact of 𝑬𝑇𝑖𝑚𝑒 on the profit of the operation network. Fig. 2 shows the statistics of best 

solutions found during each of the runs. It can be seen that PAL2(1-2) raised the prices much 

heavily while PAL2(2-1) lower the prices at most all the time. 

 



 

 
Fig. 2. Computation results of different 𝑬𝑇𝑖𝑚𝑒 

 

As shown in Table 3, the elasticity influences the results achieved by the algorithm 

when reference parameters are used. Very good results can be obtained when the demand does 

not significantly depend on the price, as can be seen for the elasticity 𝑬𝑇𝑖𝑚𝑒= -1.2 (best profit 

found is 308.24€during one hour’s operation). At this case, both Composite PALs are lower 

than the original carsharing price, which means all customers enjoy discount in the network by 

DPS. It can be easily explained by the economics fact that a relatively low elasticity and dis-

count prices attracting more customers to move to the destination faster. Besides, it’s of interest 

to see that the lowest profits were registered for the lowest elastic problem we considered, 

where the worst solution has a profit of 278.60€during one hour’s operation and the average 

of all cases is 292.52€. In general, when the price elasticity fall within the interval (−1, 0), 

changes in price are considered have a relatively small effect on the quantity of the demand. In 

this case, the service providers can raise prices without affecting consumers’ travel time. The 

low profit achieved can be explained that the inelasticity unable to increase the connected time 

in parking lots so that the profit from VGI services cannot be increased. 

 

Table 3. Computation results of different 𝑬𝑇𝑖𝑚𝑒 

 

𝑬𝑇𝑖𝑚𝑒 PAL1(1-2) PAL2(1-2) 
Composite 

PAL (1-2) 
PAL1(2-1) PAL2(2-1) 

Composite 

PAL (2-1) 

Profit 

(€/hour) 

-0.8 100% 120% 120% 100% 90% 90% 278.60 

-1 80% 120% 96% 80% 90% 72% 283.18 

-1.2 90% 100% 90% 90% 90% 81% 308.24 

-1.5 90% 120% 108% 110% 80% 88% 287.59 

-1.7 100% 110% 110% 100% 80% 80% 290.69 

-2 80% 80% 64% 110% 90% 99% 286.77 

Aver-

age 
93% 102% 98% 103% 93% 85% 292.52 

50%

70%

90%

110%

130%

150%
-0.8

-1

-1.2

-1.5

-1.7

-2

PAL1(1-2)

PAL2(1-2)

PAL1(2-1)

PAL2(2-1)



 

Note that the objective function (20) in the proposed DPS model is a MINLP problem 

which is not easily solvable by traditional branch and cut algorithms. Some MINLP solver 

software solutions are available to solve this type of problem for both concave and non-concave 

formulations, but the size of the search space of our problem is much greater than that these 

solvers can tackle.  With only two stations and one time period, if PALs vary from 80%  to 

120% with 0.1 increments, the number of possible solutions for this problem would be 625; 

For four stations and one time period, the number of possible solutions will increase to as high 

as 524 . 

4. Conclusion and Future Study 

EV-sharing is an emerging transportation mode that can help to solve many transportation is-

sues such as traffic congestion, traffic emission and so on. A novel dynamic pricing scheme 

(DPS) is proposed in this study to keep a large-scale EV-sharing system norally running. Both 

transportation system and energy system are considered in this DPS. For the former, station-

level EV demand can be predicted through a graph convolutional neural network based on data-

driven graph filter which can learn hidden correlations between stations to improve prediction 

performances; For the latter, vehicle-grid-integration (VGI) is considered. The proposed DPS 

is tested on a case study. The results show that the proposed DPS can effectively maximize the 

system profit by considering both vehicle rebalancing and VGI scheduling. For future study, 

considering the complexity of the problem, an advanced algorithm should be adopted to solve 

the DPS model more efficiently. 
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