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Abstract

This paper investigates the small-scale effect on the linear and nonlinear vibrations of
the graphene nanoplatelet (GNPL) reinforced functionally gradient piezoelectric composite
microplate based on the nonlocal constitutive relation and von Karman geometric
nonlinearity. The GNPL reinforced functionally gradient piezoelectric composite microplate
is resting on the Winkler elastic foundation and is subjected to an external electric potential.
The parallel model of Halpin Tsai is used to compute the effective Young’s modulus of the
GNPL reinforced functionally gradient piezoelectric composite microplate. The Poisson’s
ratio, mass density and piezoelectric properties of the GNPL reinforced functionally
gradient piezoelectric composite microplate are calculated by using the rule of mixture.
Hamilton’s principle is adopted to obtain the higher-order nonlinear partial differential
governing equations of motion for the GNPL reinforced functionally gradient piezoelectric
composite microplate. The partial differential governing equations of motion are reduced to
a system of the nonlinear algebraic eigenvalue equations by using the differential quadrature
(DQ) method and are solved by an iteration progress. The efficiency and accuracy of the
present approach are verified by comparing with the existed results. Both uniformly and
functionally distributing graphene nanoplatelets (GNPLs) are considered to investigate the
effects of the GNPL concentration, external voltage, nonlocal parameter, geometrical and
piezoelectric characteristics of the GNPLs as well as the elasticity coefficient of the Winkler
elastic foundation on the linear and nonlinear dynamic behaviors of the GNPL reinforced
functionally gradient piezoelectric composite microplate with various boundary conditions.
The numerical results clearly manifest that the GNPLs can significantly enhance the

structural stiffness of the micro-electro-mechanical system (MEMS).

Keywords: Linear and nonlinear vibrations; GNPL reinforced functionally gradient

piezoelectric composite microplate; nonlocal theory; small-scale effect



1. Introduction

The graphene nanoplatelets (GNPLs) have attracted considerable industrial and
academic attentions because of their excellent mechanical, thermal and electrical properties
[1-3]. The Young's modulus of the epoxy nanocomposites with 0.1% weight fraction of the
graphene nanoplatelet (GNPL) reinforcements is increased to 131% compared with the pure
epoxy [4]. The storage modulus, stress at the break and Young’s modulus of the PVDF
matrix are respectively increased to 124%, 97% and 121% by adding 0.75% volume fraction
of the GNPLs [5]. With the addition of graphite, the electrical conductivity of the epoxy
nanocomposites obtained an increase of 12 times [6].

In the last two decades, functionally graded materials (FGMs) are very popular for
enhancing the static and dynamic characteristics of the structures [7,8] even in the
environment with the high temperature due to their continuous and smooth manner [9].
Zhang and his co-authors organized a serial valuable work to explore the nonlinear dynamic
behaviors of the functionally graded material (FGM) structures, including the FGM plate
[8,10-13] and FGM shell [14] under different operating conditions. Recently, Yang’s group
[15] introduced the GNPL reinforced functionally gradient multilayer composites, in which
the GNPLs meet a layer mode along the thickness direction and also made a series of
valuable research about the static and dynamic behaviors of the GNPL reinforced
functionally gradient beams and plates using the classical continuum theories [15-17]. Their
results illustrated that a small amount of GNPLs spreading in the polymer matrix can
significantly enhance the static and dynamic responses of the GNPL reinforced functionally
gradient beams and plates. Shen and his co-authors [18-20] took into account the interaction
of the varying temperature and foundation excitation to investigate the linear and nonlinear
behaviors of the GNPL reinforced functionally gradient structures through the third-order
shear deformation theory. Kiani [21] investigated the large amplitude free vibration of the
graphene sheet reinforced laminated plates based on the finite elements, the third-order
shear deformation theory and non-uniform reasonable B-spline shape functions.

The piezoelectric materials have been widely used in the smart structures and
electromechanical systems [22,23] because of their excellent electro-mechanical coupling
behaviors. Song et al. [24] achieved the active control of carbon nanotube strengthen
composite cylindrical shells using the piezoelectric patches. Zhang et al. [25] investigated

the 1:2 internal resonance of the composite laminated piezoelectric rectangular plate. Zhang



and Hao [26] studied the global bifurcations and multi-pulse chaotic dynamics of a
composite laminated piezoelectric rectangular plate with four-edge simply supported.
Zhang and his coauthors analyzed the chaotic dynamic behaviors of the laminated
composite piezoelectric rectangular plate [27] and beam [28]. Selim et al. [29] proposed the
position of the piezoelectric sensor to control the vibrations of the carbon nanotube
reinforced composite plate. Zhang et al. [30] conducted the active flutter control of the
cylindrical nanocomposite under the supersonic airflow and the thermal environments.
Zhang et al. [31] found that the dynamic characteristics of the piezoelectric plate are
particularly sensitive to the forcing and parametric excitations. Lu et al. [32] investigated
the nonlinear vibrations of the deploying cantilevered composite laminated plate under
combined the aerodynamic load and piezoelectric excitation.

Many opening literatures demonstrated that the GNPL reinforcements can strengthen
the dielectric, mechanical, piezoelectric, pyroelectricity properties and structural stiffness
of the piezoelectric composite structures [5,33-34]. Mao et al. studied the linear and
nonlinear vibrations [35] and the buckling and postbuckling behaviors [36] of the GNPL
reinforced PVDF composite macroplates. They indicated that the GNPL nanofillers can
significantly improve the static and dynamic behaviors of the PVDF composite microplates.
Guo et al. [37] considered von Karman geometric nonlinear relationship of the composite
laminated plates with the graphene skin to analyze their dynamic behaviors. Xu et al.’s
experiments [38] found that the suspended graphene layers have the positive
piezoconductive effect. This effect is closely relevant to the number of graphene layers.
Abolhasani et al. [39] prepared the graphene reinforced polyvinylidene fluoride (PVDF)
composite nanofibers successfully and firstly investigated their polymorphism, morphology,
crystallinity and electrical outputs experimentally. According to the present research, there
is a great potential value for the GNPLs using in the fields of flexible electronics and sensing
technology [40], especially for the micro- and nano- electromechanical systems (MEMS
and NEMYS).

For the micro- and nano- structures, the experimental studies observed the small size
effects on the mechanical properties [41-43]. The classical elasticity theory is unable to
explain the size effects since it does not involve a material length scale. To model and
analyze the small-sized mechanical structures, many size-dependent theories which can
capture the size effects were proposed and developed [44-48]. One of the well-known
models is the nonlocal elasticity theory [48], which includes both the scale effects and the
long-range atomic interactions. Reddy [49] developed the nonlocal theory to analyze the
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nonlinear bending of the isotropic nanoplates with the classical and shear deformations
based on von Karman nonlinearity. Ke and his group [50,51] discussed the linear and
nonlinear vibrations of the piezoelectric nanoplates with various boundary conditions under
the effects of the multi-field coupling, including the thermo-electro-mechanical and electro-
mechanical through the nonlocal theory. With the governing equations of the nonlocal plate
model, Zhang et al. [52-54] employed the element-free KP-Ritz method to solve the natural
frequencies [52], nonlinear deflections [53] and buckling loads [54] of the single-layered
graphene nanosheets.

The references involving the small size effects of the graphene reinforced composite
structures are very limited. Only Sahmani and his colleagues [55,56] considered the
nonlocal size effects to investigate the nonlinear bending and instability behaviors of the
GNPL reinforced functionally graded porous micro- and nano-beams [55] and shells [56].
Moreover, there is no public report to research the static and dynamic behaviors of the GNPL
reinforced piezoelectric composite structures by considering the influence of the small size.

This paper investigates the small-scale effect on the linear and nonlinear vibrations of
the GNPL reinforced functionally graded piezoelectric composite microplate, which is
resting on the Winkler elastic foundation and subjected to an external electric potential,
based on the nonlocal constitutive relation and von-Karman geometric nonlinearity. The
GNPLs are assumed to be respectively uniformly and graded distributing in the PVDF
matrix. The parallel model of Halpin Tsai is introduced to compute the effective Young’s
modulus of the GNPL reinforced functionally graded piezoelectric composite microplate.
The Poisson’s ratio, mass density and piezoelectric properties of the GNPL reinforced
functionally graded piezoelectric composite microplate are deduced by using the rule of
mixture. The higher-order nonlinear partial differential governing equation of motion for
the GNPL reinforced functionally graded piezoelectric composite microplate is established
by Hamilton’s principle. The differential quadrature (DQ) method and the iteration progress
are utilized to solve the nonlinear partial differential governing equation of motion for the
GNPL reinforced functionally graded piezoelectric composite microplate. The effects of the
external voltage, nonlocal parameter, GNPL distributing pattern and concentration,
geometric and piezoelectric characteristics of GNPLs, elasticity coefficient of the Winkler
elastic foundation as well as the boundary conditions on the linear and nonlinear vibration
characteristics are studied for the nonlocal GNPL reinforced functionally graded

piezoelectric composite microplate in detail.



2. Theoretical Formulation

Figure 1 demonstrates a GNPL reinforced functionally graded piezoelectric composite
microplate which is subjected to an external electric potential ¢ and is rested on the

Winkler elastic foundation in the Cartesian coordinate system. The length, width and
thickness of the GNPL reinforced functionally graded piezoelectric composite microplate
respectively are a, b and h. The GNPL reinforced functionally graded piezoelectric

composite microplate consists of N GNPL reinforced piezoelectric layers with equal
thickness Ah=h, /N, where N is an even number. Both the uniform and the graded

distributing forms of the GNPLs are explored, as shown in Figure 2. In each GNPL
reinforced piezoelectric layer, the GNPLs distribute uniformly. For the U pattern, the
concentration of the GNPL reinforced piezoelectric layer keeps same along the thickness of
the GNPL reinforced piezoelectric composite microplate. However, for the X and O patterns,
the concentration respectively increases and decreases symmetrically and linearly from the
middle layer to the top and bottom layers. In Figure 2, the varying concentration is expressed
by the different colors of the GNPL reinforced piezoelectric layers, in which the darker color
represents the bigger GNPL volume fraction. As seen in Figure 2, the top and bottom layers
of the X pattern are darker than the middle layers, which means that either sides have more
GNPL reinforcements than the middle layers. Inversely, the middle layers have the darker

color for the O pattern microplate.

Assuming the integral volume fractions V,,, N V* and V" of the GNPLs for the

GNPL reinforced functionally graded piezoelectric composite microplate are respectively
the maximum and minimum volume fractions in the X and O patterns. We have the
following equation

. 2
V :—N.Vgpl'
I+—
2

(1)

Since the content of the GNPLs in the X and O patterns varies linearly layer by layer,
the volume fractions of the GNPLs in the k-th layer of the GNPL reinforced functionally
graded piezoelectric composite microplate are expressed as

for the X pattern

Vk:(%+1—kJV*,when kS%’ (2a)



Vk:(k—le*,when kzﬁ, (2b)
2 2
and for the O pattern

V. =kV",when kS%’ (3a)

V. =(N+1-k)V", when kZ%. (3b)

Moreover, the GNPL volume fraction of the k-th GNPL reinforced piezoelectric layer

isequal to ¥, for the U pattern.

The GNPLs are easier to disperse into the composite when the content of the GNPLs
is less than 1% [57]. In addition, the experimental results given by Layek et al. [5]
manifested that the GNPL reinforcements tend to parallelly disperse into the PVDF matrix
when the GNPL content is not higher than 1%. The parallel model of Halpin Tsai is valid
when we calculate the Young’s modulus of the novel material [5]. The PVDF composite
microplate considered in the present paper is reinforced by the perfectly bonded rectangular

GNPLs with the length «_,, width b , and thickness 7%, . Besides, we have V,, <1%.

The Young’s modulus E, of the k~~th GNPL reinforced piezoelectric layer is expressed as

2
1+ iy
Ek :LEM, (4)

where

N =, (5)

+ el
E,  3h,,

and the subscripts “M” and “G” respectively indicate the PVDF matrix and GNPLs.

The Poisson’s ratio v, mass density p, piezoelectric constant e, and dielectric

constant x, of the k-th GNPL reinforced piezoelectric layer are calculated by the mixed

law
v, =Vl +v, (1=7,), (6a)
Pr =PcVi +Pu1=V3), (6b)
eim,k = eim,GI/k + eim,M (1 - I/k) > (6C)

Kimpe = sz,GVk + K (1- Vk) . (6d)
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According to the first-order shear deformation plate theory (FSDT), the
displacement field u(x,y,z,t), u,(x,y,z,t) and wu,(x,y,z,t) of an arbitrary point

along the x, y and z directions are respectively expressed as

u, (x, vz, t) = U(x, P, t)+ Z(px(x,y, t), (7a)
u, (x, V,z,t)= V(x,y,t)+ Z(py(x,y,t), (7b)
uy(x, y,2,8)=W(x, y,1), (7¢)

where U (x, y,t), V(x, y,t) and W(x, y,t) are the displacement components on the mid-
plane of the GNPL reinforced functionally graded piezoelectric composite microplate,
(px(x,y,t) and (py(x, y,t) are respectively the cross section rotations aboutthe y and x
axes, and f is time.

Based on von-Karman large deformation theory, the relationship between the strain

and displacement is written as

wl| | Y £
ey | | & )
2e, =920t + 29201, (8)
28, | |28} 2¢!)
2, 28;?}) 2¢))

where ¢, and €, are respectively the normal strains along the x and y axes, 2¢_,

2g,. and 2g¢ _ are separately the shear strains along the xOy, yOz and xOz planes, and

we have
U l(a_Wj
ox 2\ ox
e || v 1o
s(y‘;) oy 2\ oy
260t=t W L (%)
26©® ox
E}g) a_W+
2e, o ?,
oUu oV ow ow
oy Ox Ox Oy
and



99,
g o
XX 8(P
M
€, 5 Y
200=y T ¢ (9b)
M
2e), 0
1
2¢)) |09, , O,
oy  Ox

To investigate the linear and nonlinear vibrations of the GNPL reinforced functionally
graded piezoelectric composite microplate, the extended Eringen’s nonlocal elasticity
theory [48] is employed. The stress at a certain point x in the body not only depends on the
strain of this tiny point, but also relies on the electric field and stress field of other points
x" around the reference point x.

The nonlocal integral constitutive relations of a homogeneous and isotropic

piezoelectric solid can be written as [50,51]

5, = [l ~9)[0,8.(x)- e, B0 (v (100

A

D, :JQQx’—x
A

where A represents the volume of the piezoelectric solid, o, is the stress component,

) e ()~ 1, EP () (10b)

¢; Indicates the strain component, D, and E, i(d’) respectively represent the components of

the electrical displacement and electric field, O,,, e, and x, respectively denote the

nij

elastic constant, piezoelectric constant and dielectric constant, an’ — x|, 1:) is the nonlocal

attenuation function, in which |x’ —x| is the Euclidean distance, t=e¢ya,// is the scale

modulus which merges the small scale factor, e,, a, and / are separately the material

coefficient which is always obtained experimentally, internal and external natural lengths of
the nanostructures.
Ignoring the body force density, the nonlocal integral constitutive relations are

rewritten as equivalent differential form [50,51]

o, = pii,, (11a)
D, =0, (11b)
E =0, (11c)

where equations (11a)-(11c) are respectively the kinematic equation, Maxwell equation and



relation between electric potential and electric field, u, and p are respectively the

components of the displacement and mass density.
Under the assumption on each GNPL reinforced piezoelectric layer is homogeneous
and isotropic, the nonlocal constitutive relations of the &-th GNPL reinforced piezoelectric

layer are rewritten as

Gy — (eoao )2v261j = Q€ — €L @ ’ (12a)

iin"—n

D, —(eya, ) VD, = e, e, —x,.E,", (12b)

nij"—'n
where e a, is the scale coefficient revealing the size effect on the response of the

structures in the nano- and micro-sizes, and V> is the Laplace operator.
Therefore, the constitutive equations of the k-th GNPL reinforced nonlocal
piezoelectric layer for the GNPL reinforced functionally graded piezoelectric composite

microplate are approximated as

O, G 0, 0, 0 0 0 o
O,y O,y O, O, O 0 0 €y
ze _(eoa)2V2 ze = O O QSS 0 O 28xz
C,. c, 0 0 0 0, O 2e
ny *® ny o 0 0 0 0 Q66 k) 28)0} @
[0 0 e,
0 0 e, E.
- 0 0 0 Ey , (13)
0 e, O e
les 0 0] "
where
E
= =—r, 14a
Qll(k) Q22(k) 1— szc ( )
7L 14b
le(k) 1— V/Zc > ( )
v, E
Q44(k) = QSS(k) = Qé()(k) =k (14c)

2(1+v,)

Wang and Wang et al. [58,59] reported that the distribution of the electric potential in
the flexural direction is a half-cosine distribution when a uniform moment is applied to the
piezoelectric structures. They assumed the electric potential as a combination of a half-
cosine and linear variation and verified that this assumption satisfies the Maxwell static
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electricity equation, namely, the sinusoidal variation of the potential, by using Finite
Element Method [58]. The assumed form of the electric potential was also applied by Ke et
al. [50] and Liu et al. [51] to study the vibrations of the nonlocal piezoelectric nanoplates.
Therefore, the combination distributions of the half-cosine and linear variation on the
electric potential are adopted to analyze the vibrations of the GNPL reinforced functionally

gradient nonlocal piezoelectric composite microplate

&)(x,y,z,t) = —COS(BZ) (I)(x, v, t)+ 2ZhVo el (15)

where V, is the external electric voltage, B=mn/h, (I)(x, y,t) and Q represents

respectively the distribution of the electric potential in the mid-plane and the natural
frequency of the GNPL reinforced functionally graded piezoelectric composite microplate.
Then the electric fields of the k-th GNPL reinforced nonlocal piezoelectric layer are

obtained as

00 _ om0
E=-= cos(B )ax’ (16a)
0519
E = & cos(B )ay, (16b)
E :—@z—ﬁ sin(Bz)q)—zhﬂe’Qf. (16¢)

: 0z
Therefore, the strain energy Il of the GNPL reinforced functionally graded

piezoelectric composite microplate is expressed as

N
1 Zn+l
1, = EL E j (csﬁgxx +o0,6, +20,€ +20, 6 +20 ¢, )(n)dsz
n=1 *n

1 £ <R (e
- L Z J' | (DE, +D,E, + D.E.) dzdd

1 0 () (0) ) 0 M ) )
:—L(Na +Ng, +2N e +20¢e " +20¢e '+ Me +Me +2Mxy8xy) dA

X7 xx xy~xy X7 xz yZyz yZyy
(n)

1 [~ (o o o { . )/ }
- D_cos(Bz)— + D, cos(Bz)—— D_| Bsin + 20N dzdd, (17
ZIZI { eosn) L D, cosf LoD peinfg« S | ddd, (1
where A is the domain of the mid-plane for the GNPL reinforced functionally gradient

piezoelectric composite microplate, N, and N are the normal resultants, N  is the

xy

twisting shear force
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(18a)

xx? yyo >

N.N.N, | I 6.0

Zy

O, and Q, are the shearing forces

0..0,}= ZN: _[k [o...0,.], 2. (18b)

M, and M arethe bending moments, A/  is the twisting moment

.m.m ZI [o...0,.0,], 2. (18¢)

The kinetic energy I1, of the GNPL reinforced functionally gradient piezoelectric

composite microplate is calculated by
1 72 72 /72 ' ) 2 2
I, =EJ'A(11U FIP L+ 1,0+ L0 )dA, (19)

where the inertia terms [, (i =0, 2) are defined as

N Zp+l
I = _[ Zpdz, (i=0,2). 20)
The work done by the Winkler elastic foundation is denoted by 11,
1, =—%jk,W2dA, @1)
A

where £k, is the elasticity coefficient of the Winkler elastic foundation.

Based on Hamilton’s principle, we have
J' (811, +811, —8T1 Wr=0. 22)
0

The nonlinear partial differential governing equations of motion for the GNPL

reinforced functionally gradient piezoelectric composite microplate are established as

ON,,
oU : N, + =1 U, (23a)
ox Oy
ON,6 ON, N
oV : L —2=1V, (23b)
oy ox

00, .
sw: NN ) Oy Oy 0,00 0 i (a3
ox ox oy 6y oy ox ox 0Oy
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oM. oM,

8¢ x4 ~0. =1L, 23d

(Px ax ay Qx 3(px ( )
oM, oM, )

O, > o -0, =0L%,, (23¢)

COS(BZ)+

COS(BZ)+D Bsm(Bz)} dz=0. (23f)

v 2%

It is worth noticed that equations (23a)-(23f) are the classical nonlinear partial
differential governing equations of motion for the piezoelectric FSDT plates. However, the
definitions of the stress resultants are novel here. Substituting the nonlocal constitutive

equation (13) into equation (18), the novel stress resultants are yielded as

2 2
N, —(e,a, ) V’N, = 4,| — oy l(a—Wj + A4, a—V+l aw ~N,, (24a)
ox ox oy 2\ oy
N, —(e,a, Y V’N, = 4,| — ou l[aWj + A, | — .1 aW ~-N,, (24b)
ox Ox oy 2 6y !
N, —(ea,) V’N,, = 4 CLCUSNCLCI (24c)
! 6y ox Ox Oy
22 a(P a(P
Mx_(eoao) VM,=D,—+D,——+E;¢, (24d)
ox oy
o0, op,
M, (e ) V?M, =D, 4D, oy B (24¢)
d¢p, 09,
Mxy - (eOaO )2VzMxy = D66( a(;)} + a_):) ] (24f)
ow 0
0, (eoao) v’ 0.=k A44( (ij_ksz_(l)a (24g)
Oox ox
ow 0
Q (eoao) V? Q =k A44( (Pyj_ksEM_(I)’ (24h)
oy oy
Zjé(l)s([&z) (e, V2D, Wiz = E ((px +a—Wj+XH@, (24i)
: Oox Oox

N
Zk+1 aW a .
ZICOS(BZ)[Dy - (eoaO )ZVZD), ]dz = Els[q)y + EJ + X, _(I) ) (24))
k=

Zk
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Zk+1 . a(Pv
ZIBSIH(BZ)[D eoao VD]d =E; 6(5; E3IE_X33¢’ (24k)

Z

where the shear correction factor k£, =5/6 and

_ 2 Zj e, 4z
{ J Zj e32kdz

the coefficients [A], [B], [D], [E] and [X ] are respectively given in the Appendix A.

(25)

Combining equations (23) and (24), the novel nonlinear partial differential governing
equations of the motion are rewritten for the GNPL reinforced functionally gradient

piezoelectric composite microplate

o’U oW o*W o’V oW o'W
1 2 + 2 12 +
ox ox Ox Ox0y Oy OxOy
v, 82U oV aWaW aWaW
oy’ 6x6y oy 8x8y ox oy’

] w(LU) . (262)

(62U oW aZWJ
12

o’U oW o*w
+ + 2
Ox0y  Ox OxOy

A 2 + 2
oy Oy Oy

U 0V oW o'W oW o'W
+ Agq +—+ —+

oxoy Ox oy Ox Ox OxOy

] =L,, (1)), (26b)

: 0
Z+Z Lnol(Noa—Vz/_ j (aW (pyJ
X
82W 0 .
+ A55 2 (px (l) 24 (I) m)l (k W) nol (IIW) H (26C)
ox ax

2 82 2 82
D“a—(z)‘4-D]2i+D66 0 (zx+ Py +E31@
ox Ox0y oy Ox0y ox

ow 0 .
- ASS( + (ij + K E s ¢ =L,,[¢,), (26d)
ox ox

2 52 2 82
D,2(3&+D22 (pzy + D, o0, + (sz +E32@
Ox0y oy oxoy  Ox oy

ow ) }
_A44(E+(Pyj+KSE245:Lnol([l(py)7 (266)
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2 2 a
E G_VE/JF% +E, 6—?+& +E31@+E @
ox ox oy ox

oy 2 oy
82(1) 82(|)
+X118x2 +X22 ayz _X33¢:07 (261)

with L, =1—[(eoa0)2V2] and nonlinear items Z, and Z, which are given in the
Appendix A.

Adopting the following dimensionless parameters, we have

{C,&}={i l}, {%V’W}={£ 7 K} n=Su g = (27a)

a, b, h, h, h, h,, b,,
—_ 4 = D A
i -, D, = —, {11313}2 — =0 (27b)
AIIO AlthM 1, IthM
E ea — ka,’
4 :—Mtha Ly=pyhy, n=""", k = LM (27¢)
1-vy, Ay 4
_ _ _ X (I)Z X (I)Z X ¢2
{X11’X229X33}:{A 11}102’14 22h 02’ A33 0 , (27d)
110" 11070 110
- = = = E. b E. b E,b E
{E31aE329E24aE15}:{ 3170 , 32%0 , 2470 , 15%Y0 , (276)
AlthM AlthM AlthM AlthM

— = N. . N _
{NXO’NyO}: _xo’_yo ’ (I):ia (I)O = AHO ’ T:L ﬂ. (27f)
A A o \ X33 a\ I,

The dimensionless form of the nonlinear partial differential governing equation (25) is
illustrated in the Appendix B.

In the present analyses, the electric potential is assumed to be zero at the four edges of
the GNPL reinforced functionally graded piezoelectric composite microplate and three
distinct boundary conditions are given, including the SSSS, CCCC and CCSS.

The SSSS boundary conditions represent that the GNPL reinforced functionally graded
piezoelectric composite microplate is simply supported at the four edges, which are

expressed in the dimensionless form

520 5. %% 05 %, =<
u=v=w=¢,=6=0, D, o +leza—&+nE3l¢:O,(C=0,l), (28a)
u=v=w=¢, =¢=0, Dlza_c'”‘Dzza_Ej"'nEzzd):Oa(&ZO,I)- (28b)

The CCCC boundary conditions denote that the GNPL reinforced functionally graded
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piezoelectric composite microplate is clamped at the four edges, which are expressed in the

dimensionless form
u=v=w=¢ =¢,=¢=0,(5=01 and £=0,). (29)
The CCSS boundary conditions demonstrate that the GNPL reinforced functionally

graded piezoelectric composite microplate is clamped at two adjacent edges, simply

supported at other two adjacent edges, which are expressed in the dimensionless form

u=v=w=0,=¢,=6=0,(5=0, £=0), (30a)
_ — 0p, .= 00, — —
u=v=w=0¢,=¢=0, D, G(PC +AD;, ag +nE;9=0,(5=1), (30b)
_ — 0 — 0¢, — -
u=v=w=¢ =6¢=0, Dlzaig+7“D228_g+nE3z¢:Oa(ézl)- (30c)

3. Solution Procedure

Except for a few especial cases, the nonlinear partial differential equations of motion
can not be solved analytically. Bellman et al. [60] firstly introduced the differential
quadrature (DQ) method to transform the nonlinear partial differential equations of motion
into a set of algebraic equations or ordinary differential equations. Quan and Chang [61]
introduced a Lagrange interpolation polynomial to efficiently and accurately obtain the
explicit formulations for calculating the weighting coefficients on the discretization of the
first-order and the second-order derivatives in a single domain. Shu [62] further developed
some simple algebraic formulations to compute the weighting coefficients in a single
domain and multi-domains and applied them into engineering fields. Due to the convenient
and flexibility of the DQ method, some excellent results have been reported in a number of
application studies [35,36,50,51,63-66].

In this section, we employ the DQ method to discretize the nonlinear partial differential
governing equations of motion for the linear and nonlinear vibrations of the GNPL

reinforced functionally gradient piezoelectric composite microplate. The unknown

displacement components (v, v, w, ¢,, ¢, and ¢) and the ni-th and n-th partial

derivatives with respectto { and & are discretized in the domain by Ny and N> grid points

respectively along the (- and ¢ - axes
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v, 1.0,.0,.0] ZZI 5t (G B T V0 (658, T, (6,006, ),

m=1 n=1
o (G Ers DD (1 &5 T B (G 6o D), (31a)
o o S e
oo e { UV, W, 0., 0,9 ‘c Lt ;;C

(€ TV (G & s (G B Db s (G Th 0, e (G DB (Gos 7)) (31D)

where / () and ln(ﬁ) are respectively the Lagrange interpolation polynomials along the
¢ - and the ¢ -axes, C,' and C’, respectively are the corresponding weight

coefficients.

For the (-axis, the Lagrange interpolation polynomials / (C) and the corresponding

weight coefficients C,! are respectively given as

zm(c)=$§8)%, 90)=] [€-¢). 8"@)=] [ -¢). (322)
cW = 8U(c,) L (i,m=12,.,N,, i#m) (32b)
"G g,y T

(”1_1)

clm) = k[c,g"l-”c;;) _CCTJ (bm=12,,N, izm, n>2), (320)

cim =—Z ™ (i,m=12,..,N,,n >1). (32d)

m=1
The derivation along the ¢ -axis is similar to equation (31), which will not be
demonstrated here for brevity. Therefore, the nonlinear partial differential governing
equations of motion for the GNPL reinforced functionally gradient nonlocal piezoelectric

composite microplate can be represented by a group of nonlinear algebraic expressions

n[z REND 3 }

m=1
+A12 7\’ lm j}’l mn _]}’l tn zm ]n mn A }\‘ ]n ln
m=1 n=1 m=1 n=l n=l1
+>\’§ z tm jl’l mn : jn m Z Z lm jn mn z lm mj z jll in
m=1l n=1 m=1 n=l
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=I_11;iij_l[ Z m1uny+”27\‘2z jn ln]’ (333)

m=1 n=1

zﬂ[xzic;z) LY ,nzcm }
n=1

n=1

+Au[xzz ISTIRE) YELt) ) yCilst ]A[z o),

m=1 n=1 m=1 m=1 n=1

N, N, N,
3 e, 23 3 e + 2y cthn, 3 Y ctct j
m=1 n=1 m=1 n=1
( Zc i, + MZKZZCE?"’}J : (33b)
Z+22+Z44[7L2i +}WIZ n(Pme"'Ass(Z W +nz (me,}
n=l1

N, N,
_K [ ISZClm (I)mj + E247\’ZZC117 m} IEIWI] + lz](uzzcl(ri)wm/ + Mz}\‘zzcj(i)wmj
m=1 n=1

I
NI

m=1

+NX0[ Zc Zc w +p2x2zz ]

o m=1 n=1
i, ;3( ;Z wmn+p2732C w, - N, xznzz;cﬁ,?wmj

=L [ Zc W +p2>82 @y J (33¢)

n=1

Dll zm (Px ,mj + DIZ}\‘ZZCW jn (py mn + 5 [7\’22 jn (Pr in + XZZ im j}’l (py an
m=1 n=1 m=1 n=l
Ny Ny
+ E3lnz Cl(i’:’l)d) 55 (nz Ctm mj + nz(px,ijJ + KSElan Cl(}il)q)mj
m=1 m=1
=L, - [ Z 0, + WZ cp] : (33d)

Dzzk2 Z C,n Pt Dlzkz Z /n (Px mn 1366 (i Ci(mZ)(Py,mj + }“i i Cl'(rb)cj(‘i)(l)x,mn}
m=1

m=1 n=1 m=1 n=l
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NZ NZ NZ
+ Eznkz Cﬁ%m - Z44(117“2 C_ﬁ,ﬂ)wm + nz(Py,g/J + KSEMT]?”Z C5‘111)$in
n=1 n=1 n=1
N] NZ
= L6, - l{uz D R, R ch] : (33¢)
m=1 n=1
— |1
EIS[FZ mj Z (px m/}+E24[ Z Z (p} lnj

n=1 n=1

+E31 Z tm¢mj+E32 Z ¢m+Xll_Z im mj

n=1 m=1

+X22_2 C,(‘Z)_m _)?33 i =0, (330)

n=l1
where the over dots represent the partial derivative with respect to the dimensionless time
7, and the discretized forms of Z, and Z, are rewritten in the Appendix C.

Similarly, the discretized expressions for the boundary conditions in equations (28)-
(30) are given in the Appendix D. The matrix form of the differential governing equations
for the linear and nonlinear vibrations of the GNPL reinforced functionally gradient

nonlocal piezoelectric composite microplate is expressed as

(K, +K, )d+Md=0, (34)

a=tu, 0 b o Voo o 112N =128, 9)

where the expressions of the displacement vectors {uy.} ,{vl./.} , {w} , {(px,l./.} , {(py,y.} ,

i
{64./.} are given in the Appendix E, M is the mass matrix, K, and Ky, are
respectively the linear and nonlinear stiffness matrices, and M, K; and Ky, are all
6N,N, x6N,N, matrices.
The dynamic displacement vector d can be expanded in the form of

d=d’e¢", (36)
where o= Qam is the dimensionless natural frequency of the GNPL reinforced
functionally gradient piezoelectric composite microplate, d* indicates the vector of the
vibration mode shape for the GNPL reinforced functionally gradient piezoelectric

composite microplate and i* = —1.

Substituting equation (36) into equation (35) yields the nonlinear eigenvalue equations
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(K, +Ky )d -o’Md =0. (37)

A direct iterative technique [51] is introduced to solve equation (37) for the
dimensionless natural frequencies and the relevant mode shapes of the GNPL reinforced
functionally gradient nonlocal piezoelectric composite microplate. Neglecting the nonlinear

stiffness matrix K, , the linear eigenvalue and matching eigenvector are obtained. The
obtained eigenvector is employed to solve the transverse vibration amplitudes w,___ and to
calculate the nonlinear stiffness matrix K, . Anew eigenvalue and the related eigenvector

are computed by using the eigenvalue equation (37). Repeating the steps to the relative error

between the eigenvalues calculated by two consecutive iterations is within 10,

4. Numerical Results and Discussions

The numerical results of the linear and nonlinear vibrations are obtained for the GNPL
reinforced functionally gradient nonlocal piezoelectric composite microplate subjected to
an external voltage in this section. Three different boundary conditions are considered,
including SSSS, CCCC and CCSS. Table 1 demonstrates the piezoelectric capabilities of
the PVDF. The effects of the nonlocal coefficient p, elasticity coefficient k, of the

Winkler elastic foundation, external electric voltage 7, total layers N and properties of the

GNPL reinforcements, including o, Vot and a_,/h on the linear and nonlinear

gp! gpl >

frequencies of the GNPL reinforced functionally gradient piezoelectric composite
microplate are analyzed in detail.

Unless otherwise stating, the geometrical characteristics of the GNPL reinforced

functionally gradient piezoelectric composite microplate are respectively /s, =5um and
a, =b,, =50 um. The rectangular GNPL reinforcement has the length a,,= 5 nm, width
b,,= 2.5 nm and thickness #,,= 0.3 nm. The GNPL volume fraction is ¥, =1.0%, the
nonlocal coefficient is p=0.1, the piezoelectric multiFple [35,36] is oo =100x10° and
the external voltage V| is assumed to be zero. In addition, the elastic properties of the

GNPL nanofillers and PVDF are respectively [5,36]
E.=1010GPa, v,=0.186, p,=1062.5kg/m’,

E, =144GPa, v, =0.290, p,, =1920.0kg/m".
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Setting the number of discrete points to be N, and N, along the (- axis and §&-
axis, which equal to the same value of N, the convergence of the DQ method is checked
in Table 2. The dimensionless nonlinear frequency ratios ®,/®, of the X pattern
composite microplate under CCCC boundary conditions are listed with different vibration
amplitude W, /h,, . Obviously, the results tend to converge when N, >13. To ensure the
accuracy and the efficiency of the calculation simultaneously, we select N, =13 in the

following analyses.

Because there are no available literature to discuss the linear and nonlinear dynamic
behaviors of the GNPL reinforced functionally gradient nonlocal piezoelectric micro- and
nano- plate, we reduce our research works to the vibrations of the nonlocal PVDF composite
microplate and macroscopic GNPL reinforced functionally gradient piezoelectric plate to
validate our method and results. Table 3 lists the comparisons of the dimensionless linear
frequencies for a nonlocal piezoelectric composite microplate [50] with different geometric
parameters and different nonlocal parameters under SSSS boundary conditions. Table 4

gives the influence of the nonlocal parameters on the nonlinear frequency ratios ®,, /o,

of a lead zirconium titanate (PZT-4) microplate, which was also reported by Liu et al. [51].
Table 5 provides the dimensionless nonlinear frequencies of a macroscopic GNPL
reinforced functionally gradient piezoelectric plate with different GNPL volume fractions
under CCCC boundary conditions, and gives a comparison with Mao et al.’s results [35]. It
is illustrated that the present solutions have a great agreement with the currently other results.

Figure 3 plots the effects of the total number N for the GNPL reinforced piezoelectric

layers on (a) the dimensionless linear vibration frequency , and (b) the dimensionless
nonlinear vibration frequency ®,, of the GNPL reinforced functionally gradient

piezoelectric composite microplate under different boundary conditions and different GNPL

distribution patterns. For the U pattern, ®, and ®,, are independent of the total number

N. 1t is because the U pattern GNPL reinforced piezoelectric microplate is homogeneous,
which is independent to the total number N. However, the total number N has significant
influences on the dimensionless linear vibration frequency and nonlinear vibration
frequency of the X and O pattern microplates in which the difference between the GNPLs
distributing in the middle layers and the GNPLs distributing in the top and bottom layers
increases with the increasing total number N. In the X pattern, with the increasing total
number N, more GNPLs are distributed in the top and bottom layers, which is better for
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increasing the vibration frequencies [16]. In the O pattern, with the increasing total number
N, more GNPLs are distributed in the middle layers, which reduces the stiffness of the

microplate [16]. Moreover, for a fixed total volume fraction ¥, , the difference becomes

smaller with the increasing total number N, especially when the total number is N >10.

Hence, both ®, and ®,, increase distinctly first and then grow slowly for the X pattern.
However, both ®, and ®, decrease significantly first and then decrease lightly for the O
pattern. As a result, both ®, and ®, nearly remain unchanged in the X and O patterns

when the total number is N >10. In the following analysis, we use the total number
N =10. For different boundary conditions, it is seen that the GNPL reinforced functionally
gradient piezoelectric composite microplates with CCCC boundary conditions have the

highest ®, and ®,, followed by the CCSS and SSSS boundary conditions.

Figure 4 gives the effect of the GNPLs piezoelectric multiple o on the dimensionless
linear vibration frequency ®, for the GNPL reinforced functionally gradient piezoelectric
composite microplate under different boundary conditions and different GNPL distribution
patterns. Increasing the GNPLs piezoelectric multiple o leads to an increase of the

dimensionless linear vibration frequency , for all different kinds of GNPL distributions

and boundary conditions. As same as Figure 3, the GNPL reinforced piezoelectric composite

microplate with the CCCC boundary conditions have the highest ®, among all different

kinds of boundary conditions.
In Figure 5, only the CCCC boundary conditions are considered to examine the

influence of the nonlocal coefficients i on the dimensionless linear frequency , for the

GNPL reinforced functionally gradient piezoelectric composite microplate. For a certain

GNPL distribution form, , declines gradually with the increasing nonlocal coefficients
p . In the X pattern, for instance, ®, decrease from around 1.35to 0.98 when p increase

from 0 to 0.2. It is proved that ignoring the nonlocal effect may cause the errors or faults for
researching the vibration behaviors of the GNPL reinforced functionally gradient
piezoelectric composite microplate. As discussed above, the GNPL reinforced functionally
gradient piezoelectric composite microplate with the X pattern has the biggest
dimensionless linear frequency. The dimensionless linear frequency of the GNPL reinforced
functionally gradient piezoelectric composite microplate with the U pattern is bigger than

that of the microplate with the O pattern. For the sake of brevity, only the GNPL reinforced
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functionally gradient piezoelectric composite microplate under the CCCC boundary
conditions with the optimum pattern, for example the X Pattern, is considered in the next
studies.

The effects of the elastic coefficient &, of the Winkler elastic foundation on the
dimensionless linear frequency , for the GNPL reinforced functionally gradient
piezoelectric composite microplates are shown in Figures 6 and 7 respectively with different
nonlocal coefficients (pu=0.00, 0.05 and 0.10) and different GNPL volume fractions

(V,, =0.0%, 0.5% and 1.0%). On the one hand, for a certain p and a certain V_ , the

gpl

dimensionless linear frequency ®, increases with the increasing k, since the increasing
k, implies the enhancement of the system stiffness. On the other hand, for a certain £,
the dimensionless linear frequency ®, decreases with the increasing nonlocal coefficients
p but increases with the increasing GNPL volume fractions V.

/h_, of the GNPL nanofillers on the

gp!

The effects of the length-to-thickness ratio a

gpl

dimensionless linear frequency ®, for the GNPL reinforced functionally gradient

piezoelectric composite microplates are represented in Figures 8 and 9 respectively with

different nonlocal coefficients (pn=0.00, 0.05 and 0.10) and different GNPL volume

fractions (V,,, =0.0%, 0.5% and 1.0%). As expected, the dimensionless linear frequency
o, increases with the decreasing nonlocal coefficients p and the increasing GNPL
volume fractions V,,. Moreover, the dimensionless linear frequency o, increases with

increasing the length-to-thickness ratio a,, /4, . The same phenomenon has been found

in the macroscopical GNPL reinforced functionally gradient piezoelectric plate [35]. The
GNPLs with the thinner thickness and the larger surface are better for improving the
vibration responses of the GNPL reinforced functionally gradient piezoelectric composite
microplate.

Figure 10 manifests the influence of the external voltage V, on the dimensionless
linear frequency ®, forthe GNPL reinforced functionally gradient piezoelectric composite

microplate with varying GNPLs piezoelectric multiples o . On the one hand, the

dimensionless linear frequency ®, increases with the increasing GNPL piezoelectric

multiples o . On the other hand, the negative and positive external voltages can respectively

decrease and increase the linear dimensionless linear frequency ,.
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Figure 11 illustrates the effect of the external voltage ¥, on the nonlinear frequency
ratio ®,,/®, for the GNPL reinforced functionally gradient piezoelectric composite
microplates with varying GNPL piezoelectric multiples o . It is seen that the nonlinear
frequency ratio ®,,/®, decreases with increasing GNPL piezoelectric multiples o.

Figure 12 presents the influence of the GNPLs piezoelectric multiple o on the
nonlinear frequency ratio ,/®, for the GNPL reinforced functionally gradient
piezoelectric composite microplate with the vibration amplitude w,, /A = 0.4 and
different nonlocal coefficients (1 =0.00, 0.05 and 0.10). It can be seen that the nonlinear
frequency ratio ®,,/®, decreases with increasing the GNPL piezoelectric multiple o for
a given nonlocal coefficient p. However, for a certain GNPL piezoelectric multiple o,
the nonlinear frequency ratio ®,,/®, is not monotonously increasing or decreasing with
increasing the nonlocal coefficients . There is a critical range of the GNPL piezoelectric
multiple o, below which the nonlinear frequency ratio ®,,/®, increases with increasing
the nonlocal coefficients p, upon which ®,,/®, decreases with increasing the nonlocal
coefficients p . It is because the small size effect is different with varying GNPL

piezoelectric multiples o, which represents the piezoelectric characteristics of the GNPLs.

Figures 13-16 respectively illustrate the effects of the nonlocal coefficients p, the

GNPL volume fractions ¥, the elastic coefficient k, of the Winkler elastic foundation

and the GNPL length-to-thickness ratio a_, /A, , onthenonlinear frequency ratio ®,,/ ®,

gpl © Tgpl
for the GNPL reinforced functionally gradient piezoelectric composite microplate. For all

of these situations, the nonlinear frequency ratio ®,/®, rises with growing vibration
amplitude w__ /h when the hard spring exists for the system. Furthermore, the nonlinear
frequency ratio ®,,/®, decreases with the growth of the nonlocal coefficients p, GNPL
volume fractions ¥V, and elastic coefficient k, of the Winkler elastic foundation, and

increases with the improvement of the length-to-thickness ratio a_,/h_,. Meanwhile, it is

gp! gpl *

observed in Figure 16 that the influence of the length-to-thickness ratio a,, /4, on the

gpl
nonlinear frequency ratio ®, /®, becomes smaller when the length-to-thickness ratio

increases.
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5. Conclusions

This paper investigates the linear and nonlinear vibrations of the GNPL reinforced
functionally gradient piezoelectric composite microplate which is resting on the Winkler
elastic foundation and subjected to an external voltage in the framework of the nonlocal
constitutive relation, von Karman geometric nonlinearity and Hamilton’s principle. The
modified parallel model Halpin Tsai and the rule of mixture are respectively used to
calculate the effective Young’s modulus and other elastic and piezoelectric properties of the
microplate respectively. Three varying distribution forms of the GNPLs are considered in
the GNPL reinforced functionally gradient piezoelectric composite microplate. The DQ
method and iteration progress are numerically employed to investigate the small size effect
as well as the influences of the external voltage, the physical and geometrical characteristics
of the GNPLs and the elasticity coefficient of the Winkler elastic foundation on the vibration
responses of the GNPL reinforced functionally gradient piezoelectric composite microplate
under various boundary conditions. The results demonstrate that the small size effect cannot
be ignored when we investigate the vibration behaviors of the GNPL reinforced functionally
gradient piezoelectric composite microplate. Some conclusions are given.

(1) The X Pattern is the optimum distribution form for enhancing the stiffness of the
GNPL reinforced functionally gradient piezoelectric composite microplate. The influence
of the piezoelectric multiple for the GNPL reinforced functionally gradient piezoelectric
composite microplate on the nonlinear frequency ratio is much depended on the small size
effect.

(2) The nonlocal coefficients can not only effect the linear and nonlinear vibration
characteristics of the GNPL reinforced functionally gradient piezoelectric composite
microplate significantly, but also can ignore which terms introducing some errors or faults
for researching the vibration of the microplate.

(3) Both increasing the external voltage and the elastic coefficient of the Winkler elastic
foundation can improve the stiffness of the GNPL reinforced functionally gradient
piezoelectric composite microplate.

(4) The research results also manifest that the GNPLs have great potential value for
promoting the applications of the GNPL reinforced functionally gradient piezoelectric

composite microplate.
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Appendix A

The coefficients in equation (24) are respectively given as
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The nonlinear terms Z, and Z, in equation (26) are given as
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Appendix B

(A2)

The dimensionless forms of the nonlinear partial differential equation (26) are given as
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Appendix C

The discretized forms of Z, and Z, in equation (33) are rewritten as
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Appendix D

The discretized expressions for the boundary conditions in equations (28)-(30) are
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expressed as follows. For the SSSS boundary conditions, we have

N,
W, =0,,,=9,=0, ZCI(IL)(px,mj =0,(£=0),
m=1

N,
Wi, :(PJ’»NLi :¢N1.i =0, ZC](\Z)m(Px,mj = Oﬂ (C; :1)5

m=1

N,
w,=0,,=¢,=0, ZCI(::)(Py,m =0, (£=0),
n=1

N,
Wy, =0, =0, =0, ) CUL0,,=0.(5=1). (1)
n=1

For the CCCC boundary conditions, we have
W, =0, =0,,,=0,=0,(C=0),
Wy = Punyy =@ =, =0, (6=1),
Wi =0,,=9,,=0,=0,(E=0),
Wiy, = Piv, =@y, =y, =0, (E=1). (D2)
For the CCSS boundary conditions, we have

Wi =01 =@y :(I)lj =0,(£=0),

N,
lej :(py’Nlj :¢Nlj :O’ ZC](\}I)m(Px,mj = 0, (g :1)5

m=1

Wi =@ =Py =¢,=0,(£=0),

N,
Wi, =@, =, =0, Y CiL0,, =0, (E=1). (D3)
n=1

Appendix E

The unknown displacement vectors {u, |, {v,f, {w;/» 1®.,)» 19, 10,f in
equation (35) are given as
Ly
{Vij

{Wij}: {Wllalea"'owlNzawzlowzza“'>W2N2»"'aWNllelea"'aWNlNz}a

{ullﬁulzﬂ'“’ulNz9”21’”229""”2N29'“7uN,l7uN12"“’uN1N2}’

}: {Vu"’lzs"'a"wzsvzlsvzzo"':VzNz="'»VN119VN129"'3VN1N2}a
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{(px,ij}: {(Px,lle(Px,lza"'a(Px,lNz 5P @iz 5 Prow, s 5 P v 15 Py, 207> Py, }a
{(Py,ij}: {(Py,lla(Py,lza'"’(Py,lNza(Py,zn(Py,zz»"'e(Py,zNz 5P NPy N2 Py N, }a
{(I)g;}: {(I)ll’(l)lZ’“"(I)lNz5¢215¢225“"¢2N2"">¢N11>(|)N12"”>(|)N1N2 } (ED)
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Table Captions

Table 1
Table 2

Table 3

Table 4

Table 5

Piezoelectric properties of the PVDF are shown.
The convergence of the discretization in the DQ method N, is indicated.
The dimensionless linear frequencies are obtained for a nonlocal piezoelectric

microplate with the SSSS boundary conditions, different geometrical parameter

and different nonlocal parameter n.

The effect of the nonlocal parameter on the nonlinear frequency ratio ®,, /®, is
given for a PZT-4 microplate.

The dimensionless nonlinear frequencies are given for a macroscopic GNPL

reinforced functionally gradient piezoelectric plate with the CCCC boundary

conditions and different GNPL volume fractions.
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Table 1

€1u €3.m €24.m €is.m Kim Koom Kazm

(crm?)  (c/m®)  (c/m?)  (ci/m®)  (C/vm)  (Clvm)  (C/Vm)

50.54 13.21 -12.65 -15.93 0.5385 0.6638 0.5957
1073 1073 x1073 107 107 107 107
Table 2
w. /h, =02 w. /h,=04 w.. /h, =006
NO

o,/ o, o,/ o, o, /o,

5 0.9976 0.9903 0.9779

7 1.0081 1.0316 1.0677

9 1.0069 1.0268 1.0575

11 1.0074 1.0287 1.0615

13 1.0073 1.0283 1.0608

15 1.0073 1.0284 1.0611

17 1.0073 1.0284 1.0611

Table 3
a, =10h,, a, =40h,,
@,

Ke et al. [50] Present Ke et al. [50] Present
u=0 0.6068 0.6068 0.1570 0.1570
n=0.1 0.5545 0.5545 0.1435 0.1435
n=0.2 0.4536 0.4536 0.1174 0.1174
n=0.3 0.3641 0.3641 0.0943 0.0943
n=0.4 0.2976 0.2976 0.0770 0.0770

u=0.5 0.2491 0.2491 0.0645 0.0645
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Table 4

W/ =03 Wi /1y =0.6 W /By =09
8 Liuetal. [SI] Present Liuetal [51] Present Liuetal.[51] Present
0 1.0536 1.0536 1.1930 1.1930 1.3813 1.3813
0.05 1.0550 1.0550 1.1967 1.1967 1.3860 1.3860
0.10 1.0590 1.0590 1.2069 1.2069 1.3977 1.3977
0.15 1.0654 1.0654 1.2226 1.2226 1.4145 1.4145
Table 5
Ve =0.25% Vi =0.50% Vi =0.75%
o Mao et al. [35] Present Mao etal. [35] Present Mao etal. [35] Present
U 1.4290 1.4293 1.7623 1.7628 2.0432 2.0437
X 1.5328 1.5331 1.9279 1.9284 2.2564 2.2568
O 1.3093 1.3096 1.5624 1.5629 1.7803 1.7809
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Figure Captions

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

A GNPL reinforced functionally graded piezoelectric composite microplate
subjected to an external electric potential resting on the Winkler elastic
foundation is shown.

The GNPL distribution patterns along the thickness direction are demonstrated,
(a) U pattern, (b) X pattern, (c) O pattern.

The effects of the total number N are shown on (a) the dimensionless linear
vibration frequency, (b) the dimensionless nonlinear vibration frequency of the
GNPL reinforced functionally gradient piezoelectric composite microplate
under different boundary conditions and different GNPL distribution patterns.
The effect of the GNPLs piezoelectric multiple on the dimensionless linear
vibration frequency is shown for the GNPL reinforced functionally gradient
piezoelectric composite microplate under different boundary conditions and
different GNPL distribution patterns.

The effect of the nonlocal coefficients on the dimensionless linear frequency is
shown for the GNPL reinforced functionally gradient piezoelectric composite
microplate.

The effect of the elastic coefficient of the Winkler elastic foundation on the
dimensionless linear frequency is given for the GNPL reinforced functionally
gradient piezoelectric composite microplate with different nonlocal coefficients.
The effect of the elastic coefficient of the Winkler elastic foundation on the
dimensionless linear frequency is obtained for the GNPL reinforced
functionally gradient piezoelectric composite microplate with different GNPL
volume fractions.

The effect of the length-to-thickness ratio of the GNPL nanofillers on the
dimensionless linear frequency is demonstrated for the GNPL reinforced
functionally gradient piezoelectric composite microplate with different nonlocal
coefficients.

The effect of the length-to-thickness ratio of the GNPL nanofillers on the
dimensionless linear frequency is given for the GNPL reinforced functionally
gradient piezoelectric composite microplate with different GNPL volume

fractions.
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Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

The effect of the external voltage on the dimensionless linear frequency is
illustrated for the GNPL reinforced functionally gradient piezoelectric
composite microplate with varying GNPLs piezoelectric multiple.

The effect of the external voltage on the nonlinear frequency ratio is shown for
the GNPL reinforced functionally gradient piezoelectric composite
microplates with varying GNPL piezoelectric multiples.

The effect of the GNPLs piezoelectric multiple on the nonlinear frequency
ratio is given for the GNPL reinforced functionally gradient piezoelectric

composite microplate with the vibration amplitude w_ /h = 0.4 and

different nonlocal coefficients.

The effect of the nonlocal coefficients on the nonlinear frequency ratio is
obtained for the GNPL reinforced functionally gradient piezoelectric
composite microplate.

The effect of the GNPL volume fractions on the nonlinear frequency ratio is
illustrated for the GNPL reinforced functionally gradient piezoelectric
composite microplate.

The effect of the elastic coefficient of the Winkler elastic foundation on the
nonlinear frequency ratio is shown for the GNPL reinforced functionally
gradient piezoelectric composite microplate.

The effect of the GNPL length-to-thickness ratio on the nonlinear frequency
ratio is given for the GNPL reinforced functionally gradient piezoelectric

composite microplate.
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