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Abstract 
 

This paper investigates the small-scale effect on the linear and nonlinear vibrations of 

the graphene nanoplatelet (GNPL) reinforced functionally gradient piezoelectric composite 

microplate based on the nonlocal constitutive relation and von Karman geometric 

nonlinearity. The GNPL reinforced functionally gradient piezoelectric composite microplate 

is resting on the Winkler elastic foundation and is subjected to an external electric potential. 

The parallel model of Halpin Tsai is used to compute the effective Young’s modulus of the 

GNPL reinforced functionally gradient piezoelectric composite microplate. The Poisson’s 

ratio, mass density and piezoelectric properties of the GNPL reinforced functionally 

gradient piezoelectric composite microplate are calculated by using the rule of mixture. 

Hamilton’s principle is adopted to obtain the higher-order nonlinear partial differential 

governing equations of motion for the GNPL reinforced functionally gradient piezoelectric 

composite microplate. The partial differential governing equations of motion are reduced to 

a system of the nonlinear algebraic eigenvalue equations by using the differential quadrature 

(DQ) method and are solved by an iteration progress. The efficiency and accuracy of the 

present approach are verified by comparing with the existed results. Both uniformly and 

functionally distributing graphene nanoplatelets (GNPLs) are considered to investigate the 

effects of the GNPL concentration, external voltage, nonlocal parameter, geometrical and 

piezoelectric characteristics of the GNPLs as well as the elasticity coefficient of the Winkler 

elastic foundation on the linear and nonlinear dynamic behaviors of the GNPL reinforced 

functionally gradient piezoelectric composite microplate with various boundary conditions. 

The numerical results clearly manifest that the GNPLs can significantly enhance the 

structural stiffness of the micro-electro-mechanical system (MEMS). 

 

Keywords:  Linear and nonlinear vibrations; GNPL reinforced functionally gradient 

piezoelectric composite microplate; nonlocal theory; small-scale effect  
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1. Introduction 
 

The graphene nanoplatelets (GNPLs) have attracted considerable industrial and 

academic attentions because of their excellent mechanical, thermal and electrical properties 

[1-3]. The Young's modulus of the epoxy nanocomposites with 0.1% weight fraction of the 

graphene nanoplatelet (GNPL) reinforcements is increased to 131% compared with the pure 

epoxy [4]. The storage modulus, stress at the break and Young’s modulus of the PVDF 

matrix are respectively increased to 124%, 97% and 121% by adding 0.75% volume fraction 

of the GNPLs [5]. With the addition of graphite, the electrical conductivity of the epoxy 

nanocomposites obtained an increase of 12 times [6].  

In the last two decades, functionally graded materials (FGMs) are very popular for 

enhancing the static and dynamic characteristics of the structures [7,8] even in the 

environment with the high temperature due to their continuous and smooth manner [9]. 

Zhang and his co-authors organized a serial valuable work to explore the nonlinear dynamic 

behaviors of the functionally graded material (FGM) structures, including the FGM plate 

[8,10-13] and FGM shell [14] under different operating conditions. Recently, Yang’s group 

[15] introduced the GNPL reinforced functionally gradient multilayer composites, in which 

the GNPLs meet a layer mode along the thickness direction and also made a series of 

valuable research about the static and dynamic behaviors of the GNPL reinforced 

functionally gradient beams and plates using the classical continuum theories [15-17]. Their 

results illustrated that a small amount of GNPLs spreading in the polymer matrix can 

significantly enhance the static and dynamic responses of the GNPL reinforced functionally 

gradient beams and plates. Shen and his co-authors [18-20] took into account the interaction 

of the varying temperature and foundation excitation to investigate the linear and nonlinear 

behaviors of the GNPL reinforced functionally gradient structures through the third-order 

shear deformation theory. Kiani [21] investigated the large amplitude free vibration of the 

graphene sheet reinforced laminated plates based on the finite elements, the third-order 

shear deformation theory and non-uniform reasonable B-spline shape functions.  

The piezoelectric materials have been widely used in the smart structures and 

electromechanical systems [22,23] because of their excellent electro-mechanical coupling 

behaviors. Song et al. [24] achieved the active control of carbon nanotube strengthen 

composite cylindrical shells using the piezoelectric patches. Zhang et al. [25] investigated 

the 1:2 internal resonance of the composite laminated piezoelectric rectangular plate. Zhang 
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and Hao [26] studied the global bifurcations and multi-pulse chaotic dynamics of a 

composite laminated piezoelectric rectangular plate with four-edge simply supported. 

Zhang and his coauthors analyzed the chaotic dynamic behaviors of the laminated 

composite piezoelectric rectangular plate [27] and beam [28]. Selim et al. [29] proposed the 

position of the piezoelectric sensor to control the vibrations of the carbon nanotube 

reinforced composite plate. Zhang et al. [30] conducted the active flutter control of the 

cylindrical nanocomposite under the supersonic airflow and the thermal environments. 

Zhang et al. [31] found that the dynamic characteristics of the piezoelectric plate are 

particularly sensitive to the forcing and parametric excitations. Lu et al. [32] investigated 

the nonlinear vibrations of the deploying cantilevered composite laminated plate under 

combined the aerodynamic load and piezoelectric excitation.  

Many opening literatures demonstrated that the GNPL reinforcements can strengthen 

the dielectric, mechanical, piezoelectric, pyroelectricity properties and structural stiffness 

of the piezoelectric composite structures [5,33-34]. Mao et al. studied the linear and 

nonlinear vibrations [35] and the buckling and postbuckling behaviors [36] of the GNPL 

reinforced PVDF composite macroplates. They indicated that the GNPL nanofillers can 

significantly improve the static and dynamic behaviors of the PVDF composite microplates. 

Guo et al. [37] considered von Karman geometric nonlinear relationship of the composite 

laminated plates with the graphene skin to analyze their dynamic behaviors. Xu et al.’s 

experiments [38] found that the suspended graphene layers have the positive 

piezoconductive effect. This effect is closely relevant to the number of graphene layers. 

Abolhasani et al. [39] prepared the graphene reinforced polyvinylidene fluoride (PVDF) 

composite nanofibers successfully and firstly investigated their polymorphism, morphology, 

crystallinity and electrical outputs experimentally. According to the present research, there 

is a great potential value for the GNPLs using in the fields of flexible electronics and sensing 

technology [40], especially for the micro- and nano- electromechanical systems (MEMS 

and NEMS). 

For the micro- and nano- structures, the experimental studies observed the small size 

effects on the mechanical properties [41-43]. The classical elasticity theory is unable to 

explain the size effects since it does not involve a material length scale. To model and 

analyze the small-sized mechanical structures, many size-dependent theories which can 

capture the size effects were proposed and developed [44-48]. One of the well-known 

models is the nonlocal elasticity theory [48], which includes both the scale effects and the 

long-range atomic interactions. Reddy [49] developed the nonlocal theory to analyze the 
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nonlinear bending of the isotropic nanoplates with the classical and shear deformations 

based on von Karman nonlinearity. Ke and his group [50,51] discussed the linear and 

nonlinear vibrations of the piezoelectric nanoplates with various boundary conditions under 

the effects of the multi-field coupling, including the thermo-electro-mechanical and electro-

mechanical through the nonlocal theory. With the governing equations of the nonlocal plate 

model, Zhang et al. [52-54] employed the element-free KP-Ritz method to solve the natural 

frequencies [52], nonlinear deflections [53] and buckling loads [54] of the single-layered 

graphene nanosheets. 

The references involving the small size effects of the graphene reinforced composite 

structures are very limited. Only Sahmani and his colleagues [55,56] considered the 

nonlocal size effects to investigate the nonlinear bending and instability behaviors of the 

GNPL reinforced functionally graded porous micro- and nano-beams [55] and shells [56]. 

Moreover, there is no public report to research the static and dynamic behaviors of the GNPL 

reinforced piezoelectric composite structures by considering the influence of the small size.  

This paper investigates the small-scale effect on the linear and nonlinear vibrations of 

the GNPL reinforced functionally graded piezoelectric composite microplate, which is 

resting on the Winkler elastic foundation and subjected to an external electric potential, 

based on the nonlocal constitutive relation and von-Karman geometric nonlinearity. The 

GNPLs are assumed to be respectively uniformly and graded distributing in the PVDF 

matrix. The parallel model of Halpin Tsai is introduced to compute the effective Young’s 

modulus of the GNPL reinforced functionally graded piezoelectric composite microplate. 

The Poisson’s ratio, mass density and piezoelectric properties of the GNPL reinforced 

functionally graded piezoelectric composite microplate are deduced by using the rule of 

mixture. The higher-order nonlinear partial differential governing equation of motion for 

the GNPL reinforced functionally graded piezoelectric composite microplate is established 

by Hamilton’s principle. The differential quadrature (DQ) method and the iteration progress 

are utilized to solve the nonlinear partial differential governing equation of motion for the 

GNPL reinforced functionally graded piezoelectric composite microplate. The effects of the 

external voltage, nonlocal parameter, GNPL distributing pattern and concentration, 

geometric and piezoelectric characteristics of GNPLs, elasticity coefficient of the Winkler 

elastic foundation as well as the boundary conditions on the linear and nonlinear vibration 

characteristics are studied for the nonlocal GNPL reinforced functionally graded 

piezoelectric composite microplate in detail. 
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2．Theoretical Formulation 

 

Figure 1 demonstrates a GNPL reinforced functionally graded piezoelectric composite 

microplate which is subjected to an external electric potential φ̂   and is rested on the 

Winkler elastic foundation in the Cartesian coordinate system. The length, width and 

thickness of the GNPL reinforced functionally graded piezoelectric composite microplate 

respectively are a, b and h. The GNPL reinforced functionally graded piezoelectric 

composite microplate consists of N GNPL reinforced piezoelectric layers with equal 

thickness Nhh M /=∆  , where N is an even number. Both the uniform and the graded 

distributing forms of the GNPLs are explored, as shown in Figure 2. In each GNPL 

reinforced piezoelectric layer, the GNPLs distribute uniformly. For the U pattern, the 

concentration of the GNPL reinforced piezoelectric layer keeps same along the thickness of 

the GNPL reinforced piezoelectric composite microplate. However, for the X and O patterns, 

the concentration respectively increases and decreases symmetrically and linearly from the 

middle layer to the top and bottom layers. In Figure 2, the varying concentration is expressed 

by the different colors of the GNPL reinforced piezoelectric layers, in which the darker color 

represents the bigger GNPL volume fraction. As seen in Figure 2, the top and bottom layers 

of the X pattern are darker than the middle layers, which means that either sides have more 

GNPL reinforcements than the middle layers. Inversely, the middle layers have the darker 

color for the O pattern microplate.   

Assuming the integral volume fractions gplV , ∗NV  and ∗V  of the GNPLs for the 

GNPL reinforced functionally graded piezoelectric composite microplate are respectively 

the maximum and minimum volume fractions in the X and O patterns. We have the 

following equation 

gplVNV ⋅
+

=∗

2
1

2 .                          (1) 

Since the content of the GNPLs in the X and O patterns varies linearly layer by layer, 

the volume fractions of the GNPLs in the k-th layer of the GNPL reinforced functionally 

graded piezoelectric composite microplate are expressed as 

for the X pattern 

*1
2

VkNVk 





 −+= , when 

2
Nk ≤ ,                   (2a) 
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*

2
VNkVk 






 −= , when 

2
Nk ≥ ,                    (2b) 

and for the O pattern 

*VkVn = , when 
2
Nk ≤ ,                        (3a) 

( ) *1 VkNVk −+= , when 
2
Nk ≥ .                    (3b) 

Moreover, the GNPL volume fraction of the k-th GNPL reinforced piezoelectric layer 

is equal to gplV  for the U pattern. 

The GNPLs are easier to disperse into the composite when the content of the GNPLs 

is less than 1% [57]. In addition, the experimental results given by Layek et al. [5] 

manifested that the GNPL reinforcements tend to parallelly disperse into the PVDF matrix 

when the GNPL content is not higher than 1%. The parallel model of Halpin Tsai is valid 

when we calculate the Young’s modulus of the novel material [5]. The PVDF composite 

microplate considered in the present paper is reinforced by the perfectly bonded rectangular 

GNPLs with the length gpla , width gplb  and thickness gplh . Besides, we have %1≤gplV . 

The Young’s modulus nE  of the k-th GNPL reinforced piezoelectric layer is expressed as   

 M
nL

nL
gpl

gpl

k E
V

V
h
a

E
η−

η+
=

1
3
2

1
,                         (4) 

where 

                         gpl

gpl

M

G

M

G

L

h
a

E
E

E
E

3
2

1

+

−
=η ,                            (5) 

and the subscripts “M” and “G” respectively indicate the PVDF matrix and GNPLs.  

The Poisson’s ratio ν  , mass density ρ  , piezoelectric constant ime   and dielectric 

constant imκ  of the k-th GNPL reinforced piezoelectric layer are calculated by the mixed 

law  

)1( kMkGk VV −ν+ν=ν ,                        (6a) 

)1( kMkGk VV −ρ+ρ=ρ ,                        (6b) 

)1(,,, kMimkGimkim VeVee −+= ,                      (6c) 

 )1(,,, kMimkGimkim VV −κ+κ=κ .                     (6d) 
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According to the first-order shear deformation plate theory (FSDT), the 

displacement field ),,,(1 tzyxu  , ),,,(2 tzyxu   and ),,,(3 tzyxu   of an arbitrary point 

along the x, y and z directions are respectively expressed as 

            

( ) ( ) ( )tyxztyxUtzyxu x ,,,,,,,1 ϕ+= ,  

                   

(7a) 

     

( ) ( ) ( )tyxztyxVtzyxu y ,,,,,,,2 ϕ+= , 

         

         (7b) 

( ) ( )tyxWtzyxu ,,,,,3 = ,

                           

(7c) 

where ( )tyxU ,,  , ( )tyxV ,,   and ( )tyxW ,,   are the displacement components on the mid-

plane of the GNPL reinforced functionally graded piezoelectric composite microplate,

( )tyxx ,,ϕ  and ( )tyxy ,,ϕ  are respectively the cross section rotations about the y  and x  

axes, and t  is time. 

Based on von-Karman large deformation theory, the relationship between the strain 

and displacement is written as 
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z ,                          (8) 

where xxε  and yyε  are respectively the normal strains along the x and y axes, xyε2 , 

yzε2  and xzε2  are separately the shear strains along the xOy, yOz and xOz planes, and 

we have 


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and 
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To investigate the linear and nonlinear vibrations of the GNPL reinforced functionally 

graded piezoelectric composite microplate, the extended Eringen’s nonlocal elasticity 

theory [48] is employed. The stress at a certain point x in the body not only depends on the 

strain of this tiny point, but also relies on the electric field and stress field of other points 

x′  around the reference point x.  

The nonlocal integral constitutive relations of a homogeneous and isotropic 

piezoelectric solid can be written as [50,51] 

( ) ( ) ( )[ ] xdxEexQxx nnijnlijnlij ′′−′ετ−′α=σ φ

Λ∫
)(, ,              (10a) 

( ) ( ) ( )[ ] xdxExexxD nnijnlinli ′′κ−′ετ−′α= φ

Λ∫
)(, ,            (10b) 

where Λ  represents the volume of the piezoelectric solid, ijσ  is the stress component, 

ijε  indicates the strain component, iD  and ( )
iE φ respectively represent the components of 

the electrical displacement and electric field, ijnlQ , nije  and nijκ  respectively denote the 

elastic constant, piezoelectric constant and dielectric constant, ( )τ−′α ,xx  is the nonlocal 

attenuation function, in which xx −′  is the Euclidean distance, lae /00=τ  is the scale 

modulus which merges the small scale factor, 0e  , 0a   and l are separately the material 

coefficient which is always obtained experimentally, internal and external natural lengths of 

the nanostructures. 

Ignoring the body force density, the nonlocal integral constitutive relations are 

rewritten as equivalent differential form [50,51]  

ijij uρ=σ , ,                             (11a) 

0, =iiD ,                              (11b) 

,
ˆ

i iE = −φ ,                             (11c) 

where equations (11a)-(11c) are respectively the kinematic equation, Maxwell equation and 
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relation between electric potential and electric field, iu   and ρ   are respectively the 

components of the displacement and mass density. 

Under the assumption on each GNPL reinforced piezoelectric layer is homogeneous 

and isotropic, the nonlocal constitutive relations of the k-th GNPL reinforced piezoelectric 

layer are rewritten as  

( ) )(22
00

φ−ε=σ∇−σ nijnnlijnlijij EeQae ,                 (12a) 

( ) )(22
00

φκ−ε=∇− nnijnlinlii EeDaeD ,                 (12b) 

where 00ae   is the scale coefficient revealing the size effect on the response of the 

structures in the nano- and micro-sizes, and 2∇  is the Laplace operator. 

Therefore, the constitutive equations of the k-th GNPL reinforced nonlocal 

piezoelectric layer for the GNPL reinforced functionally graded piezoelectric composite 

microplate are approximated as 
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where 

 ( ) ( ) 22211 1 k

n
kk

EQQ
ν−

== ,                       (14a) 

( ) 212 1 k

kk
k

EQ
ν−

ν
= ,                          (14b) 

 ( ) ( ) ( ) ( )k

kk
kkk

EQQQ
ν+

ν
===

12665544 .                   (14c) 

Wang and Wang et al. [58,59] reported that the distribution of the electric potential in 

the flexural direction is a half-cosine distribution when a uniform moment is applied to the 

piezoelectric structures. They assumed the electric potential as a combination of a half-

cosine and linear variation and verified that this assumption satisfies the Maxwell static 
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electricity equation, namely, the sinusoidal variation of the potential, by using Finite 

Element Method [58]. The assumed form of the electric potential was also applied by Ke et 

al. [50] and Liu et al. [51] to study the vibrations of the nonlocal piezoelectric nanoplates. 

Therefore, the combination distributions of the half-cosine and linear variation on the 

electric potential are adopted to analyze the vibrations of the GNPL reinforced functionally 

gradient nonlocal piezoelectric composite microplate 

( ) ( ) ( ) ti

h
zVtyxztzyx Ω+φβ−=φ e2,,cos,,,ˆ 0 ,                  (15) 

where 0V   is the external electric voltage, h/π=β  , ( )tyx ,,φ   and Ω   represents 

respectively the distribution of the electric potential in the mid-plane and the natural 

frequency of the GNPL reinforced functionally graded piezoelectric composite microplate.  

Then the electric fields of the k-th GNPL reinforced nonlocal piezoelectric layer are 

obtained as 
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x
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cos ,                       (16b) 

( ) ti
z h
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E Ω−φββ−=
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−= e2sin
ˆ

0 .                  (16c) 

Therefore, the strain energy sΠ   of the GNPL reinforced functionally graded 

piezoelectric composite microplate is expressed as 
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where A is the domain of the mid-plane for the GNPL reinforced functionally gradient 

piezoelectric composite microplate, xN  and yN  are the normal resultants, xyN  is the 

twisting shear force 
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xQ  and yQ  are the shearing forces 
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xM  and yM  are the bending moments, xyM  is the twisting moment 
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k
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=

+

σσσ=
1

)(

1

,,,, .               (18c) 

The kinetic energy kΠ  of the GNPL reinforced functionally gradient piezoelectric 

composite microplate is calculated by 

dAIIWIVIUI yx
A

k )(
2
1 2

3
2

3
2

1
2

1
2

1 ϕ+ϕ+++=∏
⋅

∫  ,              
 
(19) 

where the inertia terms iI  ( 2,0=i ) are defined as  

∑∫
=

+

ρ=
N

n

z

z
n

i
i

n

n

dzzI
1

1

, ( 2,0=i ).
 
                       (20) 

The work done by the Winkler elastic foundation is denoted by FΠ  

dAWk
A

lF
2

2
1 ∫−=∏ ,

                         
(21) 

where lk  is the elasticity coefficient of the Winkler elastic foundation. 

Based on Hamilton’s principle, we have 

( ) 0
0

=∏δ−∏δ+∏δ∫ dt
t

sFk .
                      

(22) 

The nonlinear partial differential governing equations of motion for the GNPL 

reinforced functionally gradient piezoelectric composite microplate are established as 

Uδ :                        UI
y

N
x

N xyx 
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∂

∂
+

∂
∂

,                         (23a) 

Vδ :                        VI
x
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∂

∂
,                         (23b) 
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Q
x
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x l
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∂
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,   (23c) 
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xδϕ :                     xx
xyx IQ

y
M

x
M

ϕ=−
∂

∂
+

∂
∂

3 ,                      (23d) 

yδϕ :                    yy
xyy IQ

x
M

y
M
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∂

∂
+
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3 ,                      (23e) 

δφ :     ( ) ( ) ( )
( )
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






ββ+β

∂

∂
+β

∂
∂∑∫

=

+

dzzDz
y

D
z

x
D

n

N

n

z

z
z

yx
n

n

.  (23f) 

It is worth noticed that equations (23a)-(23f) are the classical nonlinear partial 

differential governing equations of motion for the piezoelectric FSDT plates. However, the 

definitions of the stress resultants are novel here. Substituting the nonlocal constitutive 

equation (13) into equation (18), the novel stress resultants are yielded as  
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where the shear correction factor 6/5=sk  and 
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the coefficients [ ]A , [ ]B , [ ]D , [ ]E  and [ ]X  are respectively given in the Appendix A. 

Combining equations (23) and (24), the novel nonlinear partial differential governing 

equations of the motion are rewritten for the GNPL reinforced functionally gradient 

piezoelectric composite microplate 
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with ( )[ ]22
001 ∇−= aeLnol  and nonlinear items 1Z   and 2Z   which are given in the 

Appendix A. 

Adopting the following dimensionless parameters, we have  
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The dimensionless form of the nonlinear partial differential governing equation (25) is 

illustrated in the Appendix B. 

 

In the present analyses, the electric potential is assumed to be zero at the four edges of 

the GNPL reinforced functionally graded piezoelectric composite microplate and three 

distinct boundary conditions are given, including the SSSS, CCCC and CCSS. 

The SSSS boundary conditions represent that the GNPL reinforced functionally graded 

piezoelectric composite microplate is simply supported at the four edges, which are 

expressed in the dimensionless form 

0=φ=ϕ=== ywvu , 0311211 =φη+
ξ∂

ϕ∂
λ+

ζ∂
ϕ∂ EDD yx , ( 1,0=ζ ),      (28a) 

0=φ=ϕ=== xwvu , 0322212 =φη+
ξ∂

ϕ∂
λ+

ζ∂
ϕ∂ EDD yx , ( 1,0=ξ ).      (28b) 

The CCCC boundary conditions denote that the GNPL reinforced functionally graded 
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piezoelectric composite microplate is clamped at the four edges, which are expressed in the 

dimensionless form 

0=φ=ϕ=ϕ=== yxwvu , ( 1,0=ζ  and 1,0=ξ ).            (29) 

The CCSS boundary conditions demonstrate that the GNPL reinforced functionally 

graded piezoelectric composite microplate is clamped at two adjacent edges, simply 

supported at other two adjacent edges, which are expressed in the dimensionless form 

0=φ=ϕ=ϕ=== yxwvu , ( 0=ζ , 0=ξ ),               (30a) 

0=φ=ϕ=== ywvu , 0311211 =φη+
ξ∂

ϕ∂
λ+

ζ∂
ϕ∂ EDD yx , ( 1=ζ ),       (30b) 

0=φ=ϕ=== xwvu , 0322212 =φη+
ξ∂

ϕ∂
λ+

ζ∂
ϕ∂ EDD yx , ( 1=ξ ).      (30c) 

 

3. Solution Procedure 
 

Except for a few especial cases, the nonlinear partial differential equations of motion 

can not be solved analytically. Bellman et al. [60] firstly introduced the differential 

quadrature (DQ) method to transform the nonlinear partial differential equations of motion 

into a set of algebraic equations or ordinary differential equations. Quan and Chang [61] 

introduced a Lagrange interpolation polynomial to efficiently and accurately obtain the 

explicit formulations for calculating the weighting coefficients on the discretization of the 

first-order and the second-order derivatives in a single domain. Shu [62] further developed 

some simple algebraic formulations to compute the weighting coefficients in a single 

domain and multi-domains and applied them into engineering fields. Due to the convenient 

and flexibility of the DQ method, some excellent results have been reported in a number of 

application studies [35,36,50,51,63-66]. 

In this section, we employ the DQ method to discretize the nonlinear partial differential 

governing equations of motion for the linear and nonlinear vibrations of the GNPL 

reinforced functionally gradient piezoelectric composite microplate. The unknown 

displacement components ( u  , v  , w  , xϕ  , yϕ   and φ  ) and the n1-th and n2-th partial 

derivatives with respect to ζ  and ξ  are discretized in the domain by N1 and N2 grid points 

respectively along the ζ - and ξ - axes  
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where )(ζml  and ( )ξnl  are respectively the Lagrange interpolation polynomials along the 

ζ  - and the ξ  -axes, 1n
imC   and 2n

jnC   respectively are the corresponding weight 

coefficients.  

For the ζ -axis, the Lagrange interpolation polynomials ( )ζml  and the corresponding 

weight coefficients 1n
imC  are respectively given as 
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The derivation along the ξ  -axis is similar to equation (31), which will not be 

demonstrated here for brevity. Therefore, the nonlinear partial differential governing 

equations of motion for the GNPL reinforced functionally gradient nonlocal piezoelectric 

composite microplate can be represented by a group of nonlinear algebraic expressions 
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where the over dots represent the partial derivative with respect to the dimensionless time 

τ , and the discretized forms of 1Z  and 2Z  are rewritten in the Appendix C. 

Similarly, the discretized expressions for the boundary conditions in equations (28)-

(30) are given in the Appendix D. The matrix form of the differential governing equations 

for the linear and nonlinear vibrations of the GNPL reinforced functionally gradient 

nonlocal piezoelectric composite microplate is expressed as  

( ) 0=++ dMdKK NLL
 ,                       (34) 

{ } { } { } { } { } { }{ }T
ij

T
ijy

T
ijx

T
ij

T
ij

T
ij wvu φϕϕ= ,,,,, ,,d , 1,,2,1 Ni = , 2,,2,1 Nj = ,    (35) 

where the expressions of the displacement vectors { }iju ,{ }ijv , { }ijw , { }ijx,ϕ , { }ijy ,ϕ , 

{ }ijφ   are given in the Appendix E, M   is the mass matrix, LK   and NLK   are 

respectively the linear and nonlinear stiffness matrices, and M  , LK   and NLK   are all 

2121 66 NNNN ×  matrices. 

The dynamic displacement vector d  can be expanded in the form of 
tiω= e*dd ,                            (36) 

where 11010 / AIaΩ=ω  is the dimensionless natural frequency of the GNPL reinforced 

functionally gradient piezoelectric composite microplate, d* indicates the vector of the 

vibration mode shape for the GNPL reinforced functionally gradient piezoelectric 

composite microplate and 12 −=i .  

Substituting equation (36) into equation (35) yields the nonlinear eigenvalue equations  
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( ) 02 =ω−+ **
NLL ddKK M .                      (37) 

A direct iterative technique [51] is introduced to solve equation (37) for the 

dimensionless natural frequencies and the relevant mode shapes of the GNPL reinforced 

functionally gradient nonlocal piezoelectric composite microplate. Neglecting the nonlinear 

stiffness matrix NLK , the linear eigenvalue and matching eigenvector are obtained. The 

obtained eigenvector is employed to solve the transverse vibration amplitudes maxw  and to 

calculate the nonlinear stiffness matrix NLK . A new eigenvalue and the related eigenvector 

are computed by using the eigenvalue equation (37). Repeating the steps to the relative error 

between the eigenvalues calculated by two consecutive iterations is within 10-4.  

 

4. Numerical Results and Discussions 
 

The numerical results of the linear and nonlinear vibrations are obtained for the GNPL 

reinforced functionally gradient nonlocal piezoelectric composite microplate subjected to 

an external voltage in this section. Three different boundary conditions are considered, 

including SSSS, CCCC and CCSS. Table 1 demonstrates the piezoelectric capabilities of 

the PVDF. The effects of the nonlocal coefficient µ  , elasticity coefficient lk   of the 

Winkler elastic foundation, external electric voltage 0V , total layers N and properties of the 

GNPL reinforcements, including α  , gplV   and gplgpl ha /  , on the linear and nonlinear 

frequencies of the GNPL reinforced functionally gradient piezoelectric composite 

microplate are analyzed in detail.   

Unless otherwise stating, the geometrical characteristics of the GNPL reinforced 

functionally gradient piezoelectric composite microplate are respectively m5 µ=Mh  and 

m50 µ== MM ba . The rectangular GNPL reinforcement has the length gpla = 5 nm, width 

gplb = 2.5 nm and thickness gplh = 0.3 nm. The GNPL volume fraction is %0.1=gplV , the 

nonlocal coefficient is 1.0=µ  , the piezoelectric multiFple [35,36] is 310100×=α   and 

the external voltage 0V   is assumed to be zero. In addition, the elastic properties of the 

GNPL nanofillers and PVDF are respectively [5,36]  

GPa1010=GE , 186.0=νG , 3/5.1062 mkgG =ρ , 

GPa44.1=ME , 290.0=νM , 3/0.1920 mkgM =ρ . 
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Setting the number of discrete points to be 1N  and 2N  along the ζ - axis and ξ - 

axis, which equal to the same value of 0N , the convergence of the DQ method is checked 

in Table 2. The dimensionless nonlinear frequency ratios lnl ωω /   of the X pattern 

composite microplate under CCCC boundary conditions are listed with different vibration 

amplitude Mhw /max . Obviously, the results tend to converge when 130 ≥N . To ensure the 

accuracy and the efficiency of the calculation simultaneously, we select 130 =N  in the 

following analyses.  

Because there are no available literature to discuss the linear and nonlinear dynamic 

behaviors of the GNPL reinforced functionally gradient nonlocal piezoelectric micro- and 

nano- plate, we reduce our research works to the vibrations of the nonlocal PVDF composite 

microplate and macroscopic GNPL reinforced functionally gradient piezoelectric plate to 

validate our method and results. Table 3 lists the comparisons of the dimensionless linear 

frequencies for a nonlocal piezoelectric composite microplate [50] with different geometric 

parameters and different nonlocal parameters under SSSS boundary conditions. Table 4 

gives the influence of the nonlocal parameters on the nonlinear frequency ratios lnl ωω /  

of a lead zirconium titanate (PZT-4) microplate, which was also reported by Liu et al. [51]. 

Table 5 provides the dimensionless nonlinear frequencies of a macroscopic GNPL 

reinforced functionally gradient piezoelectric plate with different GNPL volume fractions 

under CCCC boundary conditions, and gives a comparison with Mao et al.’s results [35]. It 

is illustrated that the present solutions have a great agreement with the currently other results. 

Figure 3 plots the effects of the total number N for the GNPL reinforced piezoelectric 

layers on (a) the dimensionless linear vibration frequency lω  and (b) the dimensionless 

nonlinear vibration frequency nlω   of the GNPL reinforced functionally gradient 

piezoelectric composite microplate under different boundary conditions and different GNPL 

distribution patterns. For the U pattern, lω  and nlω  are independent of the total number 

N. It is because the U pattern GNPL reinforced piezoelectric microplate is homogeneous, 

which is independent to the total number N. However, the total number N has significant 

influences on the dimensionless linear vibration frequency and nonlinear vibration 

frequency of the X and O pattern microplates in which the difference between the GNPLs 

distributing in the middle layers and the GNPLs distributing in the top and bottom layers 

increases with the increasing total number N. In the X pattern, with the increasing total 

number N, more GNPLs are distributed in the top and bottom layers, which is better for 
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increasing the vibration frequencies [16]. In the O pattern, with the increasing total number 

N, more GNPLs are distributed in the middle layers, which reduces the stiffness of the 

microplate [16]. Moreover, for a fixed total volume fraction gplV , the difference becomes 

smaller with the increasing total number N, especially when the total number is 10≥N . 

Hence, both lω  and nlω  increase distinctly first and then grow slowly for the X pattern. 

However, both lω  and nlω  decrease significantly first and then decrease lightly for the O 

pattern. As a result, both lω  and nlω  nearly remain unchanged in the X and O patterns 

when the total number is 10≥N  . In the following analysis, we use the total number 

10=N . For different boundary conditions, it is seen that the GNPL reinforced functionally 

gradient piezoelectric composite microplates with CCCC boundary conditions have the 

highest lω  and nlω  followed by the CCSS and SSSS boundary conditions.    

Figure 4 gives the effect of the GNPLs piezoelectric multiple α  on the dimensionless 

linear vibration frequency lω  for the GNPL reinforced functionally gradient piezoelectric 

composite microplate under different boundary conditions and different GNPL distribution 

patterns. Increasing the GNPLs piezoelectric multiple α   leads to an increase of the 

dimensionless linear vibration frequency lω  for all different kinds of GNPL distributions 

and boundary conditions. As same as Figure 3, the GNPL reinforced piezoelectric composite 

microplate with the CCCC boundary conditions have the highest lω  among all different 

kinds of boundary conditions.  

In Figure 5, only the CCCC boundary conditions are considered to examine the 

influence of the nonlocal coefficients µ  on the dimensionless linear frequency lω  for the 

GNPL reinforced functionally gradient piezoelectric composite microplate. For a certain 

GNPL distribution form, lω  declines gradually with the increasing nonlocal coefficients

µ . In the X pattern, for instance, lω  decrease from around 1.35 to 0.98 when µ  increase 

from 0 to 0.2. It is proved that ignoring the nonlocal effect may cause the errors or faults for 

researching the vibration behaviors of the GNPL reinforced functionally gradient 

piezoelectric composite microplate. As discussed above, the GNPL reinforced functionally 

gradient piezoelectric composite microplate with the X pattern has the biggest 

dimensionless linear frequency. The dimensionless linear frequency of the GNPL reinforced 

functionally gradient piezoelectric composite microplate with the U pattern is bigger than 

that of the microplate with the O pattern. For the sake of brevity, only the GNPL reinforced 
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functionally gradient piezoelectric composite microplate under the CCCC boundary 

conditions with the optimum pattern, for example the X Pattern, is considered in the next 

studies. 

The effects of the elastic coefficient lk   of the Winkler elastic foundation on the 

dimensionless linear frequency lω   for the GNPL reinforced functionally gradient 

piezoelectric composite microplates are shown in Figures 6 and 7 respectively with different 

nonlocal coefficients ( 00.0=µ  , 0.05 and 0.10) and different GNPL volume fractions 

( %0.0=gplV , 0.5% and 1.0%). On the one hand, for a certain µ  and a certain gplV , the 

dimensionless linear frequency lω  increases with the increasing lk  since the increasing 

lk  implies the enhancement of the system stiffness. On the other hand, for a certain lk , 

the dimensionless linear frequency lω  decreases with the increasing nonlocal coefficients 

µ  but increases with the increasing GNPL volume fractions gplV .  

The effects of the length-to-thickness ratio gplgpl ha /  of the GNPL nanofillers on the 

dimensionless linear frequency lω   for the GNPL reinforced functionally gradient 

piezoelectric composite microplates are represented in Figures 8 and 9 respectively with 

different nonlocal coefficients ( 00.0=µ  , 0.05 and 0.10) and different GNPL volume 

fractions ( %0.0=gplV , 0.5% and 1.0%). As expected, the dimensionless linear frequency 

lω   increases with the decreasing nonlocal coefficients µ   and the increasing GNPL 

volume fractions gplV . Moreover, the dimensionless linear frequency lω  increases with 

increasing the length-to-thickness ratio gplgpl ha / . The same phenomenon has been found 

in the macroscopical GNPL reinforced functionally gradient piezoelectric plate [35]. The 

GNPLs with the thinner thickness and the larger surface are better for improving the 

vibration responses of the GNPL reinforced functionally gradient piezoelectric composite 

microplate. 

Figure 10 manifests the influence of the external voltage 0V   on the dimensionless 

linear frequency lω  for the GNPL reinforced functionally gradient piezoelectric composite 

microplate with varying GNPLs piezoelectric multiples α  . On the one hand, the 

dimensionless linear frequency lω   increases with the increasing GNPL piezoelectric 

multiples α . On the other hand, the negative and positive external voltages can respectively 

decrease and increase the linear dimensionless linear frequency lω .  
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Figure 11 illustrates the effect of the external voltage 0V  on the nonlinear frequency 

ratio lnl ωω /   for the GNPL reinforced functionally gradient piezoelectric composite 

microplates with varying GNPL piezoelectric multiples α  . It is seen that the nonlinear 

frequency ratio lnl ωω /  decreases with increasing GNPL piezoelectric multiples α . 

Figure 12 presents the influence of the GNPLs piezoelectric multiple α   on the 

nonlinear frequency ratio lnl ωω /   for the GNPL reinforced functionally gradient 

piezoelectric composite microplate with the vibration amplitude hw /max   = 0.4 and 

different nonlocal coefficients ( 00.0=µ , 0.05 and 0.10). It can be seen that the nonlinear 

frequency ratio lnl ωω /  decreases with increasing the GNPL piezoelectric multiple α  for 

a given nonlocal coefficient µ . However, for a certain GNPL piezoelectric multiple α , 

the nonlinear frequency ratio lnl ωω /  is not monotonously increasing or decreasing with 

increasing the nonlocal coefficients µ . There is a critical range of the GNPL piezoelectric 

multiple α , below which the nonlinear frequency ratio lnl ωω /  increases with increasing 

the nonlocal coefficients µ , upon which lnl ωω /  decreases with increasing the nonlocal 

coefficients µ  . It is because the small size effect is different with varying GNPL 

piezoelectric multiples α , which represents the piezoelectric characteristics of the GNPLs. 

Figures 13-16 respectively illustrate the effects of the nonlocal coefficients µ  , the 

GNPL volume fractions gplV , the elastic coefficient lk  of the Winkler elastic foundation 

and the GNPL length-to-thickness ratio gplgpl ha /  on the nonlinear frequency ratio lnl ωω /  

for the GNPL reinforced functionally gradient piezoelectric composite microplate. For all 

of these situations, the nonlinear frequency ratio lnl ωω /   rises with growing vibration 

amplitude hw /max  when the hard spring exists for the system. Furthermore, the nonlinear 

frequency ratio lnl ωω /  decreases with the growth of the nonlocal coefficients µ , GNPL 

volume fractions gplV   and elastic coefficient lk   of the Winkler elastic foundation, and 

increases with the improvement of the length-to-thickness ratio gplgpl ha / . Meanwhile, it is 

observed in Figure 16 that the influence of the length-to-thickness ratio gplgpl ha /  on the 

nonlinear frequency ratio lnl ωω /   becomes smaller when the length-to-thickness ratio 

increases. 
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5. Conclusions 
 

This paper investigates the linear and nonlinear vibrations of the GNPL reinforced 

functionally gradient piezoelectric composite microplate which is resting on the Winkler 

elastic foundation and subjected to an external voltage in the framework of the nonlocal 

constitutive relation, von Karman geometric nonlinearity and Hamilton’s principle. The 

modified parallel model Halpin Tsai and the rule of mixture are respectively used to 

calculate the effective Young’s modulus and other elastic and piezoelectric properties of the 

microplate respectively. Three varying distribution forms of the GNPLs are considered in 

the GNPL reinforced functionally gradient piezoelectric composite microplate. The DQ 

method and iteration progress are numerically employed to investigate the small size effect 

as well as the influences of the external voltage, the physical and geometrical characteristics 

of the GNPLs and the elasticity coefficient of the Winkler elastic foundation on the vibration 

responses of the GNPL reinforced functionally gradient piezoelectric composite microplate 

under various boundary conditions. The results demonstrate that the small size effect cannot 

be ignored when we investigate the vibration behaviors of the GNPL reinforced functionally 

gradient piezoelectric composite microplate. Some conclusions are given. 

(1) The X Pattern is the optimum distribution form for enhancing the stiffness of the 

GNPL reinforced functionally gradient piezoelectric composite microplate. The influence 

of the piezoelectric multiple for the GNPL reinforced functionally gradient piezoelectric 

composite microplate on the nonlinear frequency ratio is much depended on the small size 

effect.  

(2) The nonlocal coefficients can not only effect the linear and nonlinear vibration 

characteristics of the GNPL reinforced functionally gradient piezoelectric composite 

microplate significantly, but also can ignore which terms introducing some errors or faults 

for researching the vibration of the microplate. 

(3) Both increasing the external voltage and the elastic coefficient of the Winkler elastic 

foundation can improve the stiffness of the GNPL reinforced functionally gradient 

piezoelectric composite microplate. 

(4) The research results also manifest that the GNPLs have great potential value for 

promoting the applications of the GNPL reinforced functionally gradient piezoelectric 

composite microplate. 
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Appendix A 
 

The coefficients in equation (24) are respectively given as 
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The nonlinear terms 1Z  and 2Z  in equation (26) are given as 
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Appendix B 
 

The dimensionless forms of the nonlinear partial differential equation (26) are given as 
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Appendix C 
 

The discretized forms of 1Z  and 2Z  in equation (33) are rewritten as 
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Appendix D 
 

The discretized expressions for the boundary conditions in equations (28)-(30) are 
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expressed as follows. For the SSSS boundary conditions, we have 

011,1 =φ=ϕ= jjyjw , ( ) 0
1

1
,

1
1 =ϕ∑

=

N

m
mjxmC , ( 0=ζ ), 

0
111 , =φ=ϕ= jNjNyjNw , ( ) 0

1

1

1
,

1 =ϕ∑
=

N

m
mjxmNC , ( 1=ζ ), 

011,1 =φ=ϕ= iixiw , ( ) 0
2

1
,

1
1 =ϕ∑

=

N

n
inynC , ( 0=ξ ), 

0
222 , =φ=ϕ= iNiNxiNw , ( ) 0

2

2

1
,

1 =ϕ∑
=

N

n
inynNC , ( 1=ξ ).            (D1) 

For the CCCC boundary conditions, we have 
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Appendix E 
 

The unknown displacement vectors { }iju  , { }ijv  , { }ijw  , { }ijx,ϕ  , { }ijy ,ϕ  , { }ijφ   in 

equation (35) are given as 

{ } { }
211122

,,,,,,,,,,,, 212222111211 NNNNNNij uuuuuuuuuu = , 

{ } { }
211122

,,,,,,,,,,,, 212222111211 NNNNNNij vvvvvvvvvv = , 

{ } { }
211122

,,,,,,,,,,,, 212222111211 NNNNNNij wwwwwwwwww = , 
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{ } { }
211122 ,2,1,2,22,21,1,12,11,, ,,,,,,,,,,,, NNxNxNxNxxxNxxxijx ϕϕϕϕϕϕϕϕϕ=ϕ  , 

{ } { }
211122 ,2,1,2,22,21,1,12,11,, ,,,,,,,,,,,, NNyNyNyNyyyNyyyijy ϕϕϕϕϕϕϕϕϕ=ϕ  , 

{ } { }
211122

,,,,,,,,,,,, 212222111211 NNNNNNij φφφφφφφφφ=φ  .      (E1) 
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Table Captions 

 
Table 1  Piezoelectric properties of the PVDF are shown. 

Table 2  The convergence of the discretization in the DQ method 0N  is indicated. 

Table 3  The dimensionless linear frequencies are obtained for a nonlocal piezoelectric 

microplate with the SSSS boundary conditions, different geometrical parameter 

and different nonlocal parameter n. 

Table 4  The effect of the nonlocal parameter on the nonlinear frequency ratio lnl ωω /  is 

given for a PZT-4 microplate.  

Table 5  The dimensionless nonlinear frequencies are given for a macroscopic GNPL 

reinforced functionally gradient piezoelectric plate with the CCCC boundary 

conditions and different GNPL volume fractions. 
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Table 1 

Me ,31

( )2/ mC  

Me ,32

( )2/ mC  

Me ,24

( )2/ mC  

Me ,15

( )2/ mC  

M,11κ

( )VmC /  

M,22κ

( )VmC /  

M,33κ

( )VmC /  

50.54 

×10-3 

13.21 

×10-3 

-12.65 

×10-3 

-15.93 

×10-3 

0.5385 

×10-9 

0.6638 

×10-9 

0.5957 

×10-9 

 

 

Table 2 

0N  
2.0/max =Mhw  4.0/max =Mhw  6.0/max =Mhw  

lnl ωω /  lnl ωω /  lnl ωω /  

5 

7 

0.9976 0.9903 0.9779 

1.0081 1.0316 1.0677 

9 1.0069 1.0268 1.0575 

11 1.0074 1.0287 1.0615 

13 1.0073 1.0283 1.0608 

15 1.0073 1.0284 1.0611 

17 1.0073 1.0284 1.0611 

 

 

Table 3 

lω  
MM ha 10=  MM ha 40=  

Ke et al. [50] Present Ke et al. [50] Present 

0=µ   0.6068      0.6068      0.1570   0.1570 

1.0=µ   0.5545      0.5545      0.1435   0.1435 

2.0=µ   0.4536      0.4536      0.1174   0.1174 

3.0=µ   0.3641      0.3641      0.0943   0.0943 

4.0=µ   0.2976      0.2976      0.0770   0.0770 

5.0=µ   0.2491      0.2491      0.0645   0.0645 
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Table 4 

µ  
3.0/max =Mhw  6.0/max =Mhw  9.0/max =Mhw  

Liu et al. [51] Present Liu et al. [51] Present Liu et al. [51] Present 

0 1.0536 1.0536 1.1930 1.1930 1.3813 1.3813 

0.05 1.0550 1.0550 1.1967 1.1967 1.3860 1.3860 

0.10 1.0590 1.0590 1.2069 1.2069 1.3977 1.3977 

0.15 1.0654 1.0654 1.2226 1.2226 1.4145 1.4145 

 

 

Table 5 

nlω  
%25.0=gplV  %50.0=gplV  %75.0=gplV  

Mao et al. [35] Present Mao et al. [35] Present Mao et al. [35] Present 

U 1.4290 1.4293 1.7623 1.7628 2.0432 2.0437 

X 1.5328 1.5331 1.9279 1.9284 2.2564 2.2568 

O 1.3093 1.3096 1.5624 1.5629 1.7803 1.7809 
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Figure Captions 

 
Figure 1 A GNPL reinforced functionally graded piezoelectric composite microplate 

subjected to an external electric potential resting on the Winkler elastic 

foundation is shown. 

Figure 2  The GNPL distribution patterns along the thickness direction are demonstrated, 

(a) U pattern, (b) X pattern, (c) O pattern. 

Figure 3  The effects of the total number N are shown on (a) the dimensionless linear 

vibration frequency, (b) the dimensionless nonlinear vibration frequency of the 

GNPL reinforced functionally gradient piezoelectric composite microplate 

under different boundary conditions and different GNPL distribution patterns.  

Figure 4  The effect of the GNPLs piezoelectric multiple on the dimensionless linear 

vibration frequency is shown for the GNPL reinforced functionally gradient 

piezoelectric composite microplate under different boundary conditions and 

different GNPL distribution patterns. 

Figure 5  The effect of the nonlocal coefficients on the dimensionless linear frequency is 

shown for the GNPL reinforced functionally gradient piezoelectric composite 

microplate. 

Figure 6  The effect of the elastic coefficient of the Winkler elastic foundation on the 

dimensionless linear frequency is given for the GNPL reinforced functionally 

gradient piezoelectric composite microplate with different nonlocal coefficients. 

Figure 7 The effect of the elastic coefficient of the Winkler elastic foundation on the 

dimensionless linear frequency is obtained for the GNPL reinforced 

functionally gradient piezoelectric composite microplate with different GNPL 

volume fractions. 

Figure 8 The effect of the length-to-thickness ratio of the GNPL nanofillers on the 

dimensionless linear frequency is demonstrated for the GNPL reinforced 

functionally gradient piezoelectric composite microplate with different nonlocal 

coefficients. 

Figure 9 The effect of the length-to-thickness ratio of the GNPL nanofillers on the 

dimensionless linear frequency is given for the GNPL reinforced functionally 

gradient piezoelectric composite microplate with different GNPL volume 

fractions. 
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Figure 10 The effect of the external voltage on the dimensionless linear frequency is 

illustrated for the GNPL reinforced functionally gradient piezoelectric 

composite microplate with varying GNPLs piezoelectric multiple. 

Figure 11 The effect of the external voltage on the nonlinear frequency ratio is shown for 

the GNPL reinforced functionally gradient piezoelectric composite 

microplates with varying GNPL piezoelectric multiples. 

Figure 12  The effect of the GNPLs piezoelectric multiple on the nonlinear frequency 

ratio is given for the GNPL reinforced functionally gradient piezoelectric 

composite microplate with the vibration amplitude hw /max   = 0.4 and 

different nonlocal coefficients. 

Figure 13 The effect of the nonlocal coefficients on the nonlinear frequency ratio is 

obtained for the GNPL reinforced functionally gradient piezoelectric 

composite microplate. 

Figure 14 The effect of the GNPL volume fractions on the nonlinear frequency ratio is 

illustrated for the GNPL reinforced functionally gradient piezoelectric 

composite microplate. 

Figure 15 The effect of the elastic coefficient of the Winkler elastic foundation on the 

nonlinear frequency ratio is shown for the GNPL reinforced functionally 

gradient piezoelectric composite microplate. 

Figure 16 The effect of the GNPL length-to-thickness ratio on the nonlinear frequency 

ratio is given for the GNPL reinforced functionally gradient piezoelectric 

composite microplate. 
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