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ABSTRACT 

In this paper, we consider captive mode travelers (those who have no other choices but rely on 

one specific travel mode for daily commuting trips) in a multi-modal network equilibrium 

(MMNE) problem. Specifically, the dogit model is adopted to account for captive mode 

travelers in the modal split problem, and the path-size logit (PSL) model is used to capture route 

overlapping effects in the traffic assignment problem. The dogit-PSL MMNE model is 

formulated as an equivalent entropy-based mathematical programming (MP) problem, which 

admits solution existence and uniqueness. Three numerical examples are provided. The first 

example examines the effects of mode captivity and route overlapping on network 

performances and observes that accounting for captive mode travelers would produce different 

equilibrium states and hence the network performance indicators. The second example applies 

the dogit-PSL MMNE model for evaluating the exclusive bus lane (EBL) expansion plans, in 

which a consistent synthetic proportional index is proposed. Numerical results show that 

considering mode captivity may cause substantial differences (up to 50 percent of odds in the 

given scenarios) in EBL line expansion decisions. The third example implements the dogit-PSL 

MMNE model in the Seoul network to show the applicability of the dogit-PSL MMNE model 

in a real-size multi-modal system. 

 

Keywords: Captive mode traveler; dogit model; multi-modal network equilibrium; exclusive 

bus lane; synthetic proportional index 
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1.  INTRODUCTION 

Choice captivity has long been recognized in the travel choice problems, particularly for the 

mode choice behavior (Gaudry and Dagenais, 1979; Gaudry, 2015), where some travelers rely 

on one specific mode of transportation (i.e., captive to one mode), and do not have the freedom 

to select all travel modes according to social, economic, and physical constraints. Mode 

captivity has been reported in different cities with significant proportions around the world. 

McCarthy (1997) reported that more than 48 percent of the American inter-city passengers were 

captive to the auto mode. Similar results were found for intra-city transport in other cities 

around the world (Beimborn et al., 2003; Saleh and Al-Atawi, 2015). The transit market 

observed similar situations, about 70 percent transit riders according to the 1995 Nationwide 

Personal Transportation Survey in the USA (Polzin et al, 2000) and 51 percent motorized trips 

in Johannesburg, South Africa (Venter, 2016) were captive to the public transit system. 

The captive mode travelers, according to Swait and Ben-Akiva (1986) and Ergün et al. 

(1999), are less sensitive to changes in the level of service (e.g., travel time) of other modes 

and have a significant impact on the travel mode market segmentation (Lee and Cunningham, 

1996; Krizek and El-Geneidy, 2007). As a result, ignoring mode captivity has the risk of over-

estimating model parameters, misrepresenting and misinterpreting transportation policies 

(Williams and Ortuzar, 1982; Swait and Ben-Akiva, 1987; Van Exel and Rietveld, 2001; Habib 

and Weiss, 2014), while accounting for captive mode travelers would significantly improve the 

accuracy of mode share predictions (Srinivasan et al., 2007; Venter, 2016). 

In fact, the captive choice behavior has been considered in other dimensions in the combined 

travel choice framework, such as captive destination choice due to enforced work trips (Chu, 

1990, 2011, 2018), captive departure time choice (Chu, 2009) and car ownership decision (Chu, 

2016). However, captivity in mode choice, through which the concept of captivity was first 

introduced into the transportation domain, has seldom been considered in the combined travel 

choice framework. To fill this gap, this paper considers the captive mode choice behavior in the 

combined travel choice problem. Specially, we consider the multi-modal network equilibrium 

(MMNE) problem to investigate the impacts of mode captivity on the mode and route choices. 

The following provides a brief review of the research related to the MMNE problems, in 

terms of consideration of mode captivity, improvements on the mode and route choice models, 

and applications to motivate the present study and highlight the contributions of this study. 

The MMNE model is often adopted to analyze travelers’ mode and route choices under 

congestion (Szeto et al., 2012). More specifically, the MMNE model is particularly suitable for 

analyzing transportation networks involving multiple travel modes, since it can resolve the 

inconsistency issue of the 4-step sequential transportation planning approach. Early efforts 

focused on the modeling of MMNE problems and assumed deterministic route choice and 

stochastic mode choice, which are captured respectively by the user equilibrium (UE) model 
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and random utility maximization (RUM) model (Florian, 1977; Florian and Nguyen, 1978; 

Abdulaal and LeBlanc, 1979; Cantarella, 1997; Boilé and Spasovic, 2000). Based on these early 

works, later efforts were paid to improve the MMNE model in terms of route and /or mode 

choice models, and applications.  

At the route choice level, the first efforts were paid to overcome the inconsistency between 

the UE-based route choice and RUM-based mode choice in the above MMNE models, 

Oppenheim (1995) and Wu and Lam (2003) applied the MNL model for both mode and route 

choices. Some efforts focused on integrating advanced discrete choice models for capturing 

travelers’ complex route behavior. Meng and Liu (2012) and Wang et al. (2018a) applied 

respectively, the multinomial probit (MNP) model and the paired combinatorial logit (PCL) 

model, to capture the correlation among routes.  

At the mode choice level, García and Marín (2005) and Yao et al. (2018) adopted the nested 

logit (NL) model to consider mode similarity; Liu et al. (2018) took the cross nested logit (CNL) 

model to describe the mode choice with rail-based park-and-ride option. Notably, 

Kitthamkesorn et al. (2016) adopted respectively the NL model and the CNL model to capture 

the mode similarity and route overlapping and ensure the in-between consistency in the 

meantime. Further, Kitthamkesorn and Chen (2017) integrated the nested weibit (NW) mode 

choice model and the path-size weibit (PSW) route choice model to allow mode-specific and 

route-specific perception variances consistently. 

In terms of applications, these MMNE models were applied for optimal network design 

problems (Liu et al, 2018; Wang et al., 2015), exclusive bus lane setting and bus operation 

optimization problems (Yao et al., 2012, 2015, 2018), optimal toll design problems (Meng and 

Liu, 2012) and transportation strategy evaluation problems (Kitthamkesorn et al., 2016; 

Kitthamkesorn and Chen, 2017; Li et al., 2015). A summary of research on the multi-modal 

network equilibrium problems is presented in Table 1.  
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Table 1. Selected research on the multi-modal network equilibrium models 

Improvement 
perspectives Reference Mode 

captivity Model Remark 

Initiating efforts Florian (1977), Florian and Nguyen 
(1978), Abdulaal and LeBlanc (1979), 
Cantarella (1997) and Boilé and 
Spasovic (2000) 

No MNL-UE Focus on the modeling of the MNL-UE MMNE problem 

Improvements on 
route choice model 

Oppenheim (1995) No MNL-MNL Provide an MP formulation for the MNL-MNL MMNE problem 

Wu and Lam (2003) No MNL-MNL Provide a VI formulation for the MNL-MNL MMNE problem 
Meng and Liu (2012) No Binary Logit-MNP Apply the Binary-Logit-MNP MMNE model in the cordon-based toll 

design problem 
Wang et al. (2018a) No MNL-PCL Develop and apply the MNL-PCL MMNE model for sensitivity-

analysis based critical parameter analysis and uncertainty analysis etc. 
Improvements on 
mode choice 
model 

Yao et al. (2012; 2015) No MNL-UE Apply the MNL-UE MMNE model in the optimization of exclusive 
bus lane (EBL) and bus operation frequency 

Yao et al. (2018) No NL-UE Consider NL-based mode choice among solo driving, bus, and ride-
sharing, and apply the NL-UE MMNE model in the optimization of 
EBL settings (whether to share or not) and bus operation frequencies 

García and Marín (2005) No NL-UE Consider NL-based mode and transfer choice 
Liu et al. (2018) No CNL-UE Consider CNL-based mode and transfer choice, and apply the CNL-

UE MMNE model in the rail-based park and ride design 
Improvements on 
both mode and 
route choice 
models 

Kitthamkesorn et al. (2016) No NL-CNL Capture both the modal and route similarity by respectively the NL  
and CNL models, apply the NL-CNL MMNE model in the evaluation 
of different “go-green” promotion policies 

Kitthamkesorn and Chen (2017) No NW-PSW Consider cost-based perception variances and modal and route 
similarity, apply the NW-PSW MMNE model in the evaluation of go-
green versus go-grey mode promotion policies 
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One limitation of the above MMNE models is that they all assume full availability of all 

travel modes for every traveler. However, as aforementioned, some travelers are captive to one 

travel mode for most daily trips due to social, economic, and physical issues. Few studies 

consider mode captivity in the combined travel choice problems, only one paper (to the best of 

our knowledge) focuses on algorithm development for solving an MMNE problem with 

considering captive mode traveler and route overlapping (Ryu et al., 2018). In this paper, we 

consider the captive mode travelers in the MMNE problem by adopting the dogit model 

(Gaudry and Dagenais, 1979) to consider the captive mode choice behavior, and the path-size 

logit (PSL, Ben-Akiva and Bierlaire, 1999) model to represent the route choice behavior with 

route overlapping consideration. Specifically, a mathematical programming (MP) formulation 

is proposed for the dogit-PSL MMNE model, together with proofs of equivalence and solution 

uniqueness. Numerical examples are carried out to investigate the impacts of mode captivity 

and route overlapping on equilibrium network states and performances. 

Also, in viewing that public transportation is playing a critical role in the multi-modal urban 

transportation system, particularly for some densely populated Asian cities like Hong Kong, 

public transit takes up most of the daily travel demand (Transport Department, 2018), it would 

be problematic to ignore public transportation or the captive mode travelers. Hence, it is 

interesting and necessary to investigate the impacts of mode captivity (structure) on the 

optimization of public transportation strategies. An application of the dogit-PSL MMNE model 

on evaluating the exclusive bus lane (EBL) expansion plans is carried out under different 

scenarios. A consistent synthetic proportional index is defined to quantify the relative 

improvement of network total travel time (TTT) and emission after the expansion operation. 

Numerical results show that considering mode captivity in the MMNE problem produces 

substantially different estimations of the impacts of EBL expansion policies, and significantly 

increase the chances (up to 50 percent of odds) of making different EBL line expansion 

decisions in the given settings.  

The paper contributes to the literature in two aspects: 

(1) We consider captive mode travelers in a multi-modal network equilibrium (MMNE) 

model, and formulate it as an equivalent mathematical programming problem with a unique 

solution; the MMNE model is applied to evaluate the EBL expansion choices, in which a 

weighted synthetic index is proposed to quantify the proportional improvements of the two-

dimensional network performance indices, which ensures consistent dominance relationship 

with the collective network performance indices but avoid the dimensional effect. 

(2) We apply the MMNE model with captive mode travelers to a real-size multi-modal 

network with 107,434 O-D pairs and a total of 2.9 million daily trips. The numerical example 

demonstrates the applicability of the proposed model, and also the impacts of captive mode 

travelers on the combined mode and route choices. 
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The study proceeds as follows. Section 2 provides a brief review of the dogit and PSL models, 

follows with an equivalent MP formulation for the dogit-PSL MMNE problem in Section 3. 

Sections 4 provides a path-based solution algorithm for solving the MMNE problem. In Section 

5, three numerical examples are provided to examine the impacts of captive mode travelers and 

route overlapping on network equilibrium, to show an application on evaluating exclusive bus 

lane expansion plans and the applicability of the algorithm for the real-size network. The paper 

concludes with discussions in Section 6. 

2. METHODOLOGICAL BACKGROUND 

This section provides background on the dogit model and the PSL model, which are adopted 

for accommodating the captivity effect in the modal split problem and the route overlapping 

effect in the traffic assignment problem, respectively. 

2.1. Notation 

The following notation is used in the model formulation: 

Indices 

A Set of all links 

M Set of all modes 

IJ Set of origin-destination (O-D) pairs 
mr
ijA  Set of links on route m

ijr R∈  in mode m∈Mij between O-D pair ij∈IJ 

Mij Set of modes between O-D pair ij∈IJ 
m
ijR  Set of routes in mode m∈Mij between O-D pair ij∈IJ 

Parameters 
m
ijη  Captivity parameter for mode m∈Mij between O-D pair ij∈IJ 

ˆm

ijη  Scaled captivity parameter for mode m∈Mij between O-D pair ij∈IJ defined by 

ˆ , ,m m

ij ij m ijη ζη= ∀
 

ζ Scale parameter for the system mode captivity level 

qij
 Travel demand between O-D pair ij∈IJ 
maC  

The capacity of link a∈A in mode m∈M 
al  

Length of link a A∈  

mr
ijL  

Length of route r∈Rij between O-D pair ij∈IJ 

,α β  Parameters of the Bureau of Public Roads link travel time function 

mra
ijδ  Path-link-mode incidence indicator for link a∈ mr

ijA  and route r∈Rij
m in mode m∈Mij 

between O-D pair ij∈IJ 
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mr
ijϖ  The path-size factor for route m

ijr R∈  in mode m∈Mij between O-D pair ij∈IJ 

m
ijΨ  The exogenous utility of mode m∈Mij between O-D pair ij∈IJ 

m
ijθ  Dispersion parameter for route choice in mode m∈Mij between O-D pair ij∈IJ 

um
ijθ  Dispersion parameter of route choice in mode m∈Mij under nest u between O-D pair 

ij∈IJ 

γij Scale parameter for mode choice between O-D pair ij∈IJ 
u
ijφ  

Scale parameter for mode nest u between O-D pair ij∈IJ in the nested logit modal 

split model 

TTTϑ  Dimensionless weight parameter of network TTT 

,τΓ  Parameters for the self-regulated averaging line search scheme 

Intermediate Variables 
m

ijP  Choice probability of mode m∈Mij between O-D pair ij∈IJ 

mr
ijP  Choice probability of route m

ijr R∈  in mode m∈Mij between O-D pair ij∈IJ 

mah  Travel cost (time) of link a A∈  in mode m∈M 

m
ijU  Deterministic (observable) utility of mode m∈Mij between O-D pair ij∈IJ 

m
ijV

 
Expected perceived disutility of mode m∈Mij between O-D pair ij∈IJ 

mr
ijw  Expected travel cost on route m

ijr R∈  in mode m∈Mij between O-D pair ij∈IJ 

λij Dual variable for the demand conservation constraint between O-D pair ij∈IJ 
m
ijϕ  Dual variable for the flow conservation constraint in mode m∈Mij between O-D pair 

ij∈IJ 

TTT, E Network total travel time and total emission 
AEP
model

iSI

 

Synthetic impact of taking an alternative expansion plan AEPi in model ‘model’ 

Decision Variables 
m
ijq  Travel demand of mode m∈Mij between O-D pair ij∈IJ 

mr
ijf  Traffic flow on route m

ijr R∈  in mode m∈Mij between O-D pair ij∈IJ 

mav  Traffic flow on link a∈A in mode m∈M 

2.2. Dogit Model 

Gaudry and Dagenais (1979) originally proposed the dogit model to permit flexibility in 

handling choice among the captive choice sets where each consists of a single-choice alternative 

and the full choice set which contains all the choice alternatives under consideration. The dogit 

mode choice probability can be expressed as 
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( ) ( )

( )

exp exp

1 exp

m m n
ij ij ij ij ij

n Mijm
ij

n n
ij ij ij

n M n Mij ij

U U

P

U

γ η γ

η γ

∈

∈ ∈

+

=
 
 +
 
 

∑

∑ ∑
 , ,m M ij IJ∀ ∈ ∈        (1) 

where m
ijU  is the deterministic utility of mode m between origin and destination (O-D) pair ij, 

γij is the scale parameter for mode choice and 0m
ijη ≥  is the captivity parameter of mode m 

between O-D pair ij. Rearranging Eq. (1) yields 

Captive share Choice share Logit Assignment

exp( )1( 1)
1 1 exp( )

ij ij ij

m m
ij ij ijm

ij n n n
ij ij ij ij

n M n M n M

U
P

U
η γ

η η γ
∈ ∈ ∈

= ⋅ +
+ +∑ ∑ ∑
 

, ,ijm M ij IJ∀ ∈ ∈ .     (2) 

The first term on the right-hand side of Eq. (2) denotes the share of travelers who are captive to 

mode m, and the second term represents the share of choice travelers choosing mode m, which 

is the product of the proportion of all choice travelers and the multinomial logit (MNL) 

probability of choosing mode m.  

 
Fig. 1. The MNL and dogit modal splits 

Fig. 1 uses two pie charts to compare the MNL and dogit modal split processes. In the MNL 
model, travelers have access to all travel modes and split following the MNL model. While in 
the dogit model, trip demand of a mode (e.g., m) consists of two parts, the travelers who are 

Captive mode  users Choice mode  users

exp( )
1 1 exp( )

ij ij ij

m m
ij ij ij ijm

ij ij n n n
ij ij ij ij

n M n M n M

m m

q U
q q

U
η γ

η η γ
∈ ∈ ∈

= +
+ +∑ ∑ ∑

 

(2) Dogit modal split 

Choice 
travelers 

1
ij

ij
n
ij

n M

q
η

∈

+ ∑

1
ij

m
ij

ij n
ij

n M

q
η

η
∈

+ ∑

Captive mode m 
users: 

Captive mode 1 
users 

Mode m users: 

exp( )
1 exp( )

ij ij

m
ij ij ij

n n
ij ij ij

n M n M

q U
U

γ
η γ

∈ ∈

+ ∑ ∑

Choice mode m users: 

Choice mode 1 users 

… 

… 

MNL modal split 

… 

… 

(1) MNL modal split 

1
1 exp( )

exp( )
ij

ij ij
ij ij n

ij ij
n M

U
q q

U
γ
γ

∈

=
∑

Mode 1 users: 
exp( )

exp( )
ij

m
ij ijm

ij ij n
ij ij

n M

U
q q

U
γ
γ

∈

=
∑

Mode m users: 

…  
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captive to mode m determined by the mode captivity parameters (i.e., (1 )
ij

m n
ij ij ij

n M
q η η

∈

+ ∑ ), and 

the choice travelers who select mode m following the MNL modal splits (i.e., 

exp( )
1 exp( )

ij ij

m
ij ij ij

n n
ij ij ij

n M n M

q U
U

γ
η γ

∈ ∈

+ ∑ ∑ ). 

Note that, there are different ways for the discrete choice modeling of captive mode choice 
behavior, such as adding an implicit availability indicator to the utility function (Cascetta and 
Papola, 2001), parameterizing mode captivity as a function of random constraints (Swait et al., 
1987), or modeling the probabilistic availability of a choice with a threshold-based cut-off 
function (Martínez et al., 2009). However, most of these discrete choice models do not have a 
close-form choice probability and are hard to be incorporated in the entropy-based mathematical 
programming network equilibrium models. Therefore, we choose the dogit model to describe 
the captive mode choice behavior in the joint mode-route choice problem. 

2.2.1. An illustrative numerical example 

In this section, we present an illustrative numerical example to show the dogit modal split 
process and also its sensitivity with respect to (w.r.t.) mode captivity parameter and mode travel 
time, by comparing to those of the MNL model. In the one origin-destination (O-D) network, 
two travel modes are considered, i.e., auto and bus. The total travel demand is set to 1, and the 
auto and bus travel times are set to 8.150 and 12.205 time units, respectively. The deterministic 
modal utility is defined as the negative of mode travel time. The O-D scale parameter is set to 
0.1, and the auto and bus captivity parameters are set respectively to 0.3 and 0.7, which means 

half of the total trip demand are captive to one travel mode (i.e., 
0.3 0.7 =0.5

1 0.3 0.7
+

+ +
). 

Fig. 2 shows the dogit modal split process. Compared to the MNL modal split as presented 
in Fig. 2-1, the dogit model (Fig. 2-2) groups the total travel demand into three classes for the 
two-mode case, i.e., the captive auto travelers, captive bus travelers, and choice travelers. The 
trip demand for each mode consists of two parts, i.e., the captive trip demand and the choice 
ones following the MNL modal split. In the current case, the auto and bus modes have 
respectively 0.15 and 0.35 captive trip demand, leaving only 50 percent of the total trip demand 
who can freely choose between auto and bus. As a consequence, the total auto trip demand is 
0.15+0.5*0.6=0.45, significantly smaller than the MNL modal split prediction (i.e., 0.6). Fig. 2 
shows that, considering the captive mode travelers may produce different modal split 
predictions. 

In Fig. 3, we examine the sensitivity of dogit modal split w.r.t. mode captivity parameter. We 
vary the auto captivity parameter from 0 to 1 at an interval of 0.1, while keeping the sum of the 
two mode captivity parameters being equal to 1 at the same time. As Fig. 3 depicted, the MNL 

modal split shows no response to the change of auto captivity parameter Auto
ijη . At the same 

time, the total dogit auto flow increases along with Auto
ijη , among which the choice auto demand 
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is unaffected, while the captive auto demand increases w.r.t. Auto
ijη . Hence, when the total size 

of captive mode travelers is fixed, increasing the captivity parameter of one mode would 
increase the total travel demand of that mode by adding more captive mode travelers. 

(2-1) MNL Modal Split

Note:  1. O-D dispersion parameter γ=0.1;
           2. Auto and bus mode travel times Vmode are set to 8.150 and 12.205 time units, respectively;
           3. Auto and bus captivity parameters are respectively set to 0.3 and 0.7.

O-D demand  q=1

BusAuto

Autoexp{ }

exp{ }n
n

V

V

γ

γ

−

−∑
Busexp{ }

exp{ }n
n

V

V

γ

γ

−

−∑

Auto =0.6q Bus =0.4q

O-D demand  q=1

MNL modal 
split

Captive travelers Choice travelers

0.15
Auto Bus

0.3

1 0.3 0.7+ +

0.7

1 0.3 0.7+ +

1

1 0.3 0.7+ +

Autoexp{ }

exp{ }nn

V

V

γ

γ

−

−∑
Busexp{ }

exp{ }nn

V

V

γ

γ

−

−∑
Bus Auto

0.35 0.5*0.4 0.5*0.6
Bus =0.55q

Auto =0.45q

MNL

(2-2) Dogit Modal Split

 
Fig. 2. Comparison of the MNL and dogit modal splits 

  
Fig. 3. Changes in auto mode flow w.r.t. captivity parameter 

In Fig. 4, we further examine the sensitivity of dogit modal split w.r.t. mode travel time. We 
vary the auto travel time from 3.150 to 13.150 at an interval of 1.0 and keep the bus travel time 
unchanged. As the auto travel time increases, the MNL auto flow decreases from 0.7 to less 
than 0.5, so does the dogit auto flow. However, the latter decreases slower than the MNL auto 
flow from 0.5 to about 0.4, among which the captive auto flow shows no response to the changes 
in auto travel time. Therefore, we may conclude that increasing the travel time of one mode 
would decrease the dogit travel demand of that mode, however, less significantly than the MNL 
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prediction. To put it in another way, the captive mode travelers would bring down the sensitivity 
of dogit modal split w.r.t. mode travel time changes. 

Note that we use presumed input parameters to demonstrate the impacts of mode captivity 
and mode travel costs on the modal splits. When examining and comparing the validities of 
different models, care must be taken, a fair comparison of model validities should be conducted 
based on the same given household survey data, and the comparison should include both 
parameter estimation and prediction.  

 
Fig. 4. Changes in auto mode flow w.r.t. auto travel time 

2.3. PATH-SIZE LOGIT MODEL 

The path-size logit model was developed by Ben-Akiva and Bierlaire (1999) to handle the route 

overlapping problem. The conditional PSL route choice probability in mode m is expressed as 

|
exp( )

exp( )

mr m mr

ij ij ijr m
ij mk m mk

ij ij ij
k Rij

w
P

w

ϖ θ

ϖ θ
∈

−
=

−∑ , , ,m
ij ijr R m M ij IJ∀ ∈ ∈ ∈ ,       (3) 

where mr
ijw  is the travel cost (time) on route r in mode m between the O-D pair ij, m

ijθ  is the 

dispersion parameter, and (0,1]r
ijϖ ∈  is the path-size factor defined by 

1
mr
ij

m
ij

a

mr
ij mr mka

a A
ij ij

k R

l

L
ϖ

δ∈

∈

= ∑
∑ ,  , ,m

ij ijr R m M ij IJ∀ ∈ ∈ ∈ ,        (4) 

with al  and mr
ijL  are respectively the lengths of link a and route r in mode m between O-D 

pair ij, mr
ijA  is the set of links on route r in mode m between O-D pair ij, and {0,1}mra

ijδ =  is 
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a binary path-link-mode incidence indicator. The path-size factor mr
ijϖ  measures the degree of 

route r being shared (overlapped) by other routes in mode m between O-D pair ij. It is defined 

as an average of the inverse of the number of each link on route r being used by other routes in 

the same mode between the same O-D pair, i.e. 1
m
ij

mka

ij
k R

δ
∈
∑  ( mr

ija A∀ ∈ ), weighted by the ratio 

of the length of each link over that of route r in mode m between O-D pair ij, i.e. 
mrmra

ij ijl L  (

mr
ija A∀ ∈ ). Routes with a heavy overlap with others have small values of mr

ijϖ . The following 

uses a loop-hole network to illustrate the effect of route overlapping for the sake of 

completeness. 

 The loop-hole network is presented in Fig. 5, in which route 1 uses link 2 and shares link 

1 with route 2, route 3 uses a separate link 4, the basic settings of the loop-hole network is 

presented in Table 2. The link free-flow travel speed is set to 1 km/minute; then we have the 

link free-flow travel time (FFTT) is equal to the link length. We vary the length of link 1 from 

18 to 0 at an interval of -1 and investigate the route choice probability as a function of route 

path-size factor and link FFTTs. The route choice dispersion parameter is set to 1.2.  

 Route choice probabilities in the MNL and PSL models are shown in Fig. 6. In the MNL 

model, all three routes have the same route FFTT and accordingly, the equal route choice 

probability. Comparatively, by considering route overlapping in the PSL model, the overlapped 

routes (i.e., routes 1 and 2) have smaller choice probabilities than those in the MNL model. As 

the path size factor of route 1 increases (i.e., being less overlapped with other routes as a result 

of smaller x), we have larger choice probabilities for route 1 in the meantime. 

 

D
2

3
1

4

O A  

Fig. 5. The loop-hole network 

 

Table 2. Settings of the loop-hole network 

Aspects Auto 

Link 1 2 3 4 

Length (kilometer) x 18-x 18-x 18 

FFTT (minute) x 18-x 18-x 18 



 14 / 43 

 

 

Fig. 6. Route choice probability under different PSF values 

2.4. Joint Choice Probability 

Based on the dogit mode choice probability in Eq. (1) and the conditional PSL route choice 

probability in Eq. (3), we have the joint mode-route choice probability as follows: 

( ) ( )

( )

|=

exp exp
exp( )

=
exp( )

1 exp m
ij

mr m r m
ij ij ij

m m n
ij ij ij ij ij mr m mr

n Mij ij ij ij
mk m mk
ij ij ijn n

k Rij ij ij
n M n Mij ij

P P P

U U
w

w
U

γ η γ
ϖ θ
ϖ θ

η γ

∈

∈
∈ ∈

⋅

+
−

− 
 +
 
 

∑
⋅
∑

∑ ∑

.       (5) 

The joint mode-route choices are determined simultaneously. In the mode choices, the captive 

mode travelers constitute a constant share for each mode, while the choice travelers split across 

different modes according to the MNL probability, as a function of deterministic modal utility 
m
ijU  and the mode choice scale parameter ijγ . Given the mode choice between each O-D pair, 

travelers determine their mode-specific route choice probabilities according to the PSL 

probability in Eq. (3), as a function of mode-specific route travel cost mr
ijw , the path-size factor 

mr
ijϖ  in Eq. (4) and the route choice dispersion parameter m

ijθ . The conditional route choice 

connects to the marginal mode choice by affecting the deterministic modal utility 
m m m
ij ij ijU V= Ψ − , particularly the inclusive disutility part, i.e., the expected modal perceived 

travel cost or the log-sum term 
1= log exp( )

ij

m mk m mk
ij ij ij ijm

k Rij

V wϖ θ
θ ∈

−
−∑ , which then affects the 

marginal mode choice probabilities. In the deterministic modal utility m
ijU , m

ijΨ  is the 
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exogenous utility of mode ijm M∈  between O-D pair ij IJ∈  to account for the attributes 

which are not considered in m
ijV  or mk

ijw , e.g., fare, convenience and comfort, etc. 

Remark. In the joint dogit-PSL model, two types of input parameters need to be estimated 

by fitting the model (or other models) to some dataset, i.e., the captivity parameter for each 

mode and the scale or dispersion parameters for mode and route choices. We may generally 

have two ways to estimate these two types of input parameters. In the first approach, we may 

use a two-stage method to firstly estimate the mode captivity and scale parameters and then 

evaluate the dispersion parameter for route choices. In this case, the mode captivity consists of 

both captivity by choice (i.e., latent/implicit mode captivity) and captivity by force (Jacques et 

al., 2013). We could treat the mode captivity parameters (Swait and Ben-Akiva, 1986, 1987; 

Beimborn et al., 2003; Habib and Weiss, 2014) and the scale parameters for mode choice (Habib 

and Weiss, 2014) as a function of independent variables, such as private vehicle availability, 

transit connectivity, walk/bicycle access to a transit station, occupation, number of vehicles 

owned, age, trip length, trip purpose etc. Hence in the first stage, we may estimate the mode 

captivity and scale parameters independently. In the second stage, we take the mode captivity 

parameters and travelers’ mode-route choice data as input and estimate the dispersion 

parameters for the route choices. The benefits of estimating the mode captivity parameters 

independently are that we can parameterize these parameters and consider complex behavioral 

or econometric factors that bear managerial meanings. The cost is that we need more data (both 

individual econometric data and travel diary data or mode-route choice data) to conduct the 

two-stage estimations, run the risk of obtaining inconsistent or unreasonable results. 

In the second approach, we may jointly estimate the two types of parameters based on the 

combined mode-route choice data. The mode captivity parameters are treated the same as other 

parameters to estimate (McCarthy, 1997; Gaudry and Wills, 1979; Gaudry, 1980, 1981). The 

methods of maximum likelihood estimate or ordinary least square can be applied for these 

estimations. For the evaluation of combined travel choice model with captive behaviors, Dr. 

Chu has conducted a series of modeling and calibration studies, including captive destination 

choice due to compulsory work trips (Chu, 1990, 2011, 2018), captive departure time choice 

(Chu, 2009) and car ownership decisions (Chu, 2016), in the combined travel choice framework. 

The second approach assures better consistency between the mode and route choice predictions 

and has less input data requirement; however, at the loss of behavioral richness. 

3. MATHEMATICAL PROGRAMMING FORMULATIONS 

In this section, an equivalent MP formulation for the dogit-PSL MMNE model is developed. 

Before presenting the MMNE formulation, three assumptions are made as follows. 
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Assumption 1. The mode networks are independent from each other. Thus, the travel time 

of mode m on link a is a function of the mode flow mav  on link a only. 

Assumption 2. The link-mode travel time is a monotonically increasing function of its own 

mode flow. 

Assumption 3. The path-size factor is a function of the free-flow travel cost. 

3.1. DOGIT-PSL MULTI-MODAL NETWORK EQUILIBRIUM MODEL 

Based on the dogit mode choice model (1) - (2) and the PSL traffic assignment model (3)- (4), 

an equivalent MP formulation for the dogit-PSL MMNE model is presented as follows: 

( ) ( )

1 2 3 4 5 6

0

1
1+

* ln

1 l
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ma mr mra
ij i

ij

i

j
ij IJ r Rijm

ij ij ij

m
ij ij

j

v f

ma mr mr
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ij IJ m M ij IJ m Mij
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ijm
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ij

m M

q q qq
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η θ∈ ∈ ∈
∈

∈

  
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− −  
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  (6.1) 

s.t.  

ij

m
ij ij

m M
q q

∈

=∑ , ij IJ∀ ∈ ,                     (6.2) 

m
ij

mr m
ij ij

r R

f q
∈

=∑ ,  ,ijm M ij IJ∀ ∈ ∈ ,                      (6.3) 

0m
ijq ≥ ,  ,ijm M ij IJ∀ ∈ ∈ ,                               (6.4) 

0mr
ijf ≥ ,  , ,m

ij ijr R m M ij IJ∀ ∈ ∈ ∈ ,                    (6.5) 

where mr
ijf  is the flow on route r in mode m between O-D pair ij, mav  is the flow on link a in 

mode m, mah  is the travel cost on link a in mode m, and m
ijΨ  is the exogenous utility of mode 

m between O-D pair ij. In Eq. (6.1), Z1 is the well-known Beckmann transformation, Z2 captures 

the stochastic perception error in route choices, Z3 uses a path-size factor to penalize the 

overlapping among routes, Z4 and Z5 are entropy terms related to respectively the mode choice 

of choice travelers and that of all travelers to account for the captive mode travelers in the mode 

split problem. In fact, we omit the constant entropy term for the mode choice of captive mode 

travelers since their mode choices are fixed. Z6 handles the exogenous mode attractiveness. Eqs. 

(6.2) and (6.3) are flow conservation constraints and Eqs. (6.4) and (6.5) are non-negative 
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constraints. The MP formulation (6.1)- (6.5) has some qualitative properties, as stated in the 

following two propositions:  

Proposition 1. The MP formulation in Eqs. (6.1)- (6.5) gives the route choice solution of the 

PSL model and the mode choice solution of the dogit model. 

Proof. The Lagrangian of the objective function Eq. (6.1) w.r.t. the flow conservation 

constraints Eqs. (6.2)- (6.3) is defined by 

( )( )m m mmr
ijij ij ij ij ij

m m rij ij
L Z q q f qλ ϕ= + − −+∑ ∑ ∑∑ ∑  (7) 

where ijλ  and m
ijϕ  denote the dual variables for the flow conservation constraints in Eq. (6.2) 

and Eq. (6.3), respectively.  

(1) Take the partial derivative of the Lagrangian L w.r.t. the mode-route flows mr
ijf , we 

have 

1 10 ln ln 0mr mr mr m
ij ij ij ijmr m m

ij ij ij

L w f
f

ϖ ϕ
θ θ

∂
= ⇒ + − + =

∂
 (8) 

exp{ } exp{ }mr m m mr m mr
ij ij ij ij ij ijf wθ ϕ ϖ θ⇒ = − −

. (9) 

Then, we have the O-D mode flow by summing Eq. (9) over r 

exp{ } exp{ }
m m
ij ij

m mr m m mr m mr
ij ij ij ij ij ij ij

r R r R

q f wθ ϕ ϖ θ
∈ ∈

= = − −∑ ∑ . (10) 

Dividing Eq. (9) by Eq. (10) gives the mode-route choice probability ( | )r m
ijP : 

( )
( | ) exp{ }exp{ } exp{ }

exp{ } exp{ } exp
j

mr m mrmr m m mr m mr
ij ij ijij ij ij ij ij ijr m

ij m m mij mr m mr mk m mk
r k Rij ij ij ij ij ijij ij i

wf w
P q

w w

ϖ θθ ϕ ϖ θ

θ ϕ ϖ θ ϖ θ∈

−− −
= = =

− − −∑ ∑
. (11) 

(2) In a similar way, we get the partial derivative of Lagrangian L w.r.t. qij
m 

1 1 10 ln ln =0
1

m
ij ijm m m m

ij ij ij ij ijm n m
ij ij ij ij ijn Mij

qL q q
q

η
λ ϕ

γ η γ θ
∈

 ∂  = ⇒ − + − + − −Ψ
 ∂ +
 ∑

. (12) 

Rearranging Eq. (10) gives 

( )1/ ln 1 / ln exp{ }
m
ij

m m m m m mr
ij ij ij ij ij ij

r R

q wθ ϕ θ θ
∈

− ⋅ + = − ⋅ −∑ . (13) 

Let 1 / ln exp{ }m
ij

m m m mr
ij ij ij ijr RV wθ θ

∈
= − ⋅ −∑  be the expected perceived mode travel cost between 

O-D pair ij, plug m
ijV  into Eq. (11) and resort gives 

1

exp ( )
1 exp( )

ij

m mm
ij ij ijij ijm

ij n
ij ij ijn M

Vq
q

γη
η γ λ

∈

−
+

 Ψ − =
+∑

. (14) 

Dividing Eq. (14) by its sum over ijm M∈  gives the dogit mode choice probability 
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exp ( )1
1 1 exp ( )

ij ij ij

m mm m
ij ij ijij ijm

ij n n m m
ij ij ij ij ij ijn M n M m M

Vq
P

q V

γη
η η γ∈ ∈ ∈

 Ψ − = = +
+ +  Ψ − ∑ ∑ ∑

. (15) 

This completes the proof. □ 

Proposition 2. The dogit-PSL MMNE model yields a unique solution. 

Proof. For the proof of Proposition 2, we need to prove the convexity of the objective function 

in Eq. (6.1) w.r.t. mode-route flow variables and the convexity of the feasible region. For the 

latter, it is easy to have the convexity of the feasible region under the linear equality constraints 

in Eqs. (6.2) and (6.3); the nonnegative constraints Eqs. (6.4) and (6.5) will not affect the 

convexity of the feasible region. For the objective function, taking the Hessian of Z1 +Z2 +Z3 in 

Eq. (6.1) w.r.t. the mode-route flow variables gives 

( )2
1 2 3

1 0; ,

0 ;

mra m mr
ma ma ij ij ij

a A
mr ns

ij ij

dh dv f m n r sZ Z Z
f f otherwise

δ θ
∈

 ⋅ + ⋅ > = =∂ + + = 
∂ ∂ 

∑
, (16) 

which implies the positive definite matrix from Assumptions 1 and 2. The Hessian matrix of 

the Z4 +Z5 +Z6 w.r.t. the modal demand variables can be expressed as 

( )2
4 5 6

1 1 1 1 0;

1+

0 ;otherwise
ij

m m m
ijij ij ijm

ij ijl
m n ij
ij ij l M

m n
qZ Z Z q q

q q

ηγ θ
η

∈

 ⋅ − ⋅ > =
∂ + +  −= 

∂ ∂ 



∑ . (17) 

Setting m
ij ijγ θ<  implies the positive definite matrix. Thus, the dogit-PSL MMNE model has a 

unique solution. This completes the proof. □ 

4. SOLUTION ALGORITHM 

In this section, we provide a path-based partial linearization algorithm (e.g., Yang et al., 2013) 

combined with a self-regulated averaging (SRA) line search strategy (Liu et al., 2009) for 

solving the dogit-PSL MMNE problem. The partial linearization method belongs to the descent 

direction algorithm for solving continuous optimization problems (Patriksson, 1994). It applies 

the dogit probability to determine the auxiliary mode flow and uses the PSL probability to 

determine the conditional route choice probabilities. The procedure of the partial linearization 

algorithm is presented as follows: 

Step 0. Initialization. Initialize the route-mode flow pattern 
, | |

(0) ( ) m
ij m ij

mr
ij R

f f
∑

=  ( | |m
ijR  is 

the cardinality of route set m
ijR ), the link-mode flow 0( , )mav a m= ∀ , the mode captivity 

parameter between each O-D pair ( , )m
ij m ijη ∀ , the route choice and mode choice dispersion 

parameters ( , )m um
ij ij m ijθ θ ∀,  and ( )ij ijγ ∀  and the convergence criterion ε, set iter=0; 
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Step 1. Update mode-specific link and route travel times ( , )mah a m∀  and ( , , )mr
ijw r m ij∀ , 

compute generalized mode travel cost between each O-D pair ( , )m
ijV m ij∀ ; 

Step 2. Determine the search direction. Compute the auxiliary flow pattern 

,
| |

ˆ ( ) ( ) m
ij

ij m

mr
ij R

f iter f= ∑
, define the search direction as the difference between the current flow pattern 

and the auxiliary flow pattern ˆ( ) ( ) ( )f iter f iter f iter= − ; 

Step 3. Compute the stepsize ( )iterς ; 

Step 4. Update network state according to ( 1) ( ) ( ) ( )f iter f iter iter f iterς+ = + ⋅ ; 

Step 5. Convergence check. If ,
ˆRMSE= ( ) ( ) | |m

ij m ijf iter f iter R− ∑ ≤ ε, stop the 

algorithm and output the current flow pattern; otherwise, turn to Step 1. 

In Step 3, we adopt the SRA line-search scheme to determine the step size. The SRA scheme 

is a modification of the method of successive average (MSA) approach to achieve a flexible 

stepsize sequence. It does not need to calculate the objective function or its derivative; instead, 

it relies on the residual errors between the current flow pattern and auxiliary flow pattern to 

determine the step size. When the residual error becomes larger, the SRA stepsize decreases 

faster; otherwise, it decreases slower. The SRA stepsize is specified by 

( ) 1 ( )iter iterς κ= , 

where 

ˆ ˆ( 1) , 1,if ( ) ( ) ( 1) ( 1) (18)
( )

ˆ ˆ( 1) , 1,if ( ) ( ) ( 1) ( 1) . (19)

iter f iter f iter f iter f iter
iter

iter f iter f iter f iter f iter

κ
κ

κ τ τ

 − + Γ Γ > − ≥ − − −= 
− + < − < − − −

 

There are other line search schemes for determining an effective step-size, such as the golden 

section (Sheffi, 1985), bisection (Sheffi, 1985), quadratic interpolation (Maher, 1998), Armijo’s 

rule (Armijo, 1966), etc. Comprehensive comparison studies refer to Chen et al. (2014) and 

Karoonsoontawong and Lin (2015). Note that, since the above algorithm is path-based, a 

separate route generation method may be required for real-world applications to avoid the path 

enumeration problem, such as the column generation procedure (Dantzig, 1963; Damberg et al., 

1996). 

5. NUMERICAL EXAMPLES 

This section provides three numerical examples to demonstrate the impacts of captive mode 

travelers on the equilibrium network performances and the evaluation of exclusive bus lane 

(EBL) expansion plans. The first example uses a loop-hole network to examine the effect of 

mode captivity and route overlapping on network performances. The second numerical example 

applies the dogit-PSL MMNE model to the bi-criteria EBL line expansion evaluation problem 
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under two mode captivity scenarios. The third numerical example uses the Seoul network to 

show the applicability of the dogit-PSL MMNE model in a real-size multi-modal network. 

5.1. Numerical Example I: Loop-hole Network 

The first numerical example uses a multi-modal loop-hole network (Fig. 7) to investigate the 

impacts of mode captivity, route overlapping, scale and dispersion parameters on network 

performances, including system total travel time (TTT) and network emission from the 

managers’ perspective. Three modes are considered, i.e., auto, transit, and bicycle. The auto 

network consists of three routes among which the first two routes overlapping on link 1. The 

transit and bicycle networks consist of respectively one dedicated route. The network settings 

are given out in Table 3. Consider an area where people’s average income is relatively low; 

many people have no access to private cars and are captive to either transit or bicycle for their 

daily commuting trips. Among them, the sizes of captive transit and bicycle users are more 

significant than that of the captive car users, as listed in the last row of Table 3. 

Composite network A D2
3

1O
4

6

5

DO
5

A D2
3

1O
4

DO

6

Auto network

Bus network

Metro network

 
Fig. 7. The multi-modal loop-hole network 

 Table 3. Characteristics of the multi-modal loop-hole network 

Aspects Auto Transit Bicycle 

Link 1 2 3 4 5 6 

Length (kilometer) x 18.0-x 18.0-x 18.0 18.0 25.0 

FFTT ( ) (minute) x 18.0-x 18.0-x 18.0 18.0 25.0 

Capacity ( maC ) (vpm for auto; ppm for transit) 75.0 75.0 75.0 75.0 100.0 - 

Exogenous attractiveness 0 2.5 7.5 

Captivity parameter 0.2 0.5 0.3 

 

In the network, the length of Link 1 (denoted by x) may vary whereby we can manipulate the 

route overlapping level. The lengths of Link 2 and 3 are set to 18.0-x. Thus Route 1 and 2 are 

equal to 18.0. The free-flow speed is set to 1 kilometer per minute on each link in each mode. 

0
mah
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Then, the link free-flow travel time (FFTT) in each mode equals the link length. Both the auto 

travel time and the transit delay (results from the onboard and off-board passengers; Caliper 

Corporation, 2004) are assumed to follow the Bureau of Public Roads (BPR) function: 

( )( )0 1ma ma ma mah h v C
β

α= + . (20) 

where 0.15α =  and 4β =  for auto, and 0.5α =  and 2β =  for transit. The bicycle users 

have a fixed travel time of 25 minutes with an exogenous attractiveness of 7.5 units, which 

comes from lower travel costs, lower carbon footprints, other social benefits like monetary 

subsidies, and healthier travel choices. Similarly, an extra 2.5 units of exogenous attractiveness 

is assumed for the transit mode. The total O-D demand is set to 120 travelers per minute. The 

route dispersion parameter and mode scale parameter are set to 1.5 and 1.2, respectively. 

Among the two network performance indicators, the network TTT is defined by 

m

ma ma

a Am M
TTT v h

∈∈

= ⋅∑∑ . (21) 

Without loss of generality, we consider the carbon monoxide (CO) emission as a major 

source of network emission for evaluation, 
ma ma

m M a A
E v e

∈ ∈

= ⋅∑ ∑ , (22) 

where mae  is the macroscopic link-based vehicular CO emission function suggested by 

Wallace et al. (1998), 

0.2038 exp(0.7962 / )ma ma ma mae h L h= ⋅ ⋅ ⋅ . (23) 

Further, the transit system is assumed to run on electricity to highlight its potential in reducing 

CO emissions. Therefore, the CO emissions produced by the transit mode are ignored, and the 

auto mode becomes the unique source of CO emissions. In fact, guidelines have been published 

to accelerate the deployment of new energy buses in major cities in China (General Office of 

the State Council, 2014; Ministry of Transport et al., 2015). 

5.1.1. Network performance under different model assumptions 

This example compares the equilibrium network performances in different models, including 

the MNL-MNL and dogit-MNL MMNE models as base references, the MNL-PSL, and NL-

PSL MMNE models to consider route and mode correlations, and the dogit-PSL MMNE model 

to consider mode captivity and route overlapping. The NL model is adopted to model the mode 

choice for having a bi-level tree structure as the dogit model. In the NL-PSL MMNE model, 

we group the two motorized modes (i.e., auto and transit) into one nest, while the bicycle mode 

has its independent nest. The nest scale parameters u
ijφ  (u ∈ {motorized, non-motorized}) are 

respectively set to 0.85 and 1 for the motorized and non-motorized mode nests, the dispersion 
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parameter for route choice ( m
ijθ ) and the scale parameter for mode choice ( ijγ ) are set 

respectively to 1.5 and 1.2 for all modes and O-D pairs. In the base case, the length of Link 1 

(x) is set to 8 kilometers. 

Table 4. Statistics of equilibrium network performances in each model 

 Mode MNL-MNL MNL-PSL NL-PSL Dogit-MNL Dogit-PSL 

Modal split 

Auto 42.8 40.3 38.3 36.0 (12)* 34.5 (12) 

Transit 44.2 44.7 44.4 47.6 (30) 48.1 (30) 

Bicycle 33.1 35.1 37.3 36.4 (18) 37.5 (18) 

TTT 2,469.9 2,486.3 2,500.6 2,512.0 2,522.1 

Emission 347.7 327.3 311.1 293.1 285.1 
* () refers to the number of captive mode travelers assigned to a travel mode. 

Table 4 presents the equilibrium network performances in each model. Among the MMNE 

models that do not consider mode captivity (i.e., MNL-MNL, MNL-PSL, and NL-PSL), the 

MNL-MNL MMNE model has the most significant auto users and smallest transit and bicycle 

users. The MNL-PSL MMNE model observes a shift from auto usage to transit and bicycle 

after considering route-overlapping in the auto network. Further considering the similarity of 

the two motorized modes, the NL-PSL MMNE model observes fewer auto users after some 

motorized travelers switching to the independent bicycle mode. Recall that the auto mode is 

assumed the only source of emission, the network emission changes in the same manner along 

with the size of auto users in each model. In the meantime, the network TTT shows an opposite 

changing momentum when compared to that of the network emission among the three models. 

As for the models that consider mode captivity (i.e., dogit-MNL and dogit-PSL MMNE 

models), the captivity pattern plays a significant role in shaping the network performances. In 

these two models, the auto mode has the smallest captivity parameter among the three modes, 

and attracts fewer users than its counterpart in the MNL-MNL(\PSL) MMNE model and hence 

leads to lower network emissions. Considering route overlapping produces similar impacts on 

the network performances as those happened to the MNL-PSL MMNE model relative to the 

MNL-MNL MMNE model, thus omitted here. When compared to the NL-PSL MMNE model, 

we observe different impact patterns. The NL model assigns fewer users to the modes in a nest 

by penalizing their mode attractiveness, while the dogit model affects the modal splits by 

assigning more captive mode travelers to modes with more significant captivity parameters. 

5.1.2. Impacts of mode captivity and route overlapping on the network performances 

The dogit-PSL MMNE model captures two effects, i.e., captivity in the mode choice and route-

overlapping in the route choice. By imposing a scalar ζ on the mode captivity parameters (i.e., 
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ˆ , ,m m

ij ij m ijη ζη= ∀ ) and varying the length x of link 1, we may connect the dogit-PSL MMNE 

model with some existing MMNE models demonstrated in Section 5.1.1:  

(1) when ζ=0 and x>0, the dogit-PSL MMNE model degenerates to the MNL-PSL MMNE 

model; 

(2) when ζ and x are equal to 0, the dogit-PSL MMNE model collapses to the MNL-MNL 

MMNE model; 

(3) when ζ>0 while x=0, the dogit-PSL MMNE model reduces to the dogit-MNL MMNE 

model; and  

(4) when ζ increases to infinity, the dogit-PSL MMNE model approaches to the multi-

modal traffic assignment problem with each mode having a fixed travel demand. 

To examine the coupling effects of the length x of the overlapping link and the mode captivity 

scalar ζ, we vary x from 0 to 16 with an interval of 2 (when x=18, Routes 1 and 2 reduce to a 

single route), and ζ from 0 to 3.0 with an interval of 0.5. 

Fig. 8 displays the modal splits w.r.t. the combinations of x and ζ. As x increases, the auto 

routes 1 and 2 get more overlapped with each other, which reduces the attractiveness of the auto 

mode and leads to fewer auto users. When scaling up the network captivity level with a larger 

ζ value, the transit and bicycle modes with larger captivity parameters attract more travelers. In 

the meantime, it is observed that the modal split results are bounded by the MNL-PSL, Dogit-

MNL and MNL-MNL MMNE models as three special cases. In Fig. 9, we present the network 

performance indicators under different combinations of x and ζ. Among them, the network TTT 

increases along with x and /or ζ; while the network emission, exhausted merely by the auto 

mode, declines along with larger x and /or ζ with fewer auto shares. 

 
Fig. 8. Modal split w.r.t. x and ζ in the dogit-PSL MMNE model 
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(1) Network TTT w.r.t. x and ζ  (2) Network emission w.r.t. x and ζ 

Fig. 9. Network performance indicators w.r.t. x and ζ in the dogit-PSL MMNE model 

5.1.3. Impacts of scale and dispersion parameters on the network performances 

In this section, we examine the impacts of mode choice scale and route choice dispersion 

parameters on the network TTT and total emissions. The scale parameter ijγ  varies from 0.6 

to 1.4 with an interval of 0.1, and the dispersion parameter m
ijθ  varies from 1.5 to 2.3, with an 

interval of 0.1. 

Fig. 10 presents the mode flow distributions w.r.t. combinations of m
ijθ  and ijγ . For the auto 

mode, increasing the dispersion parameter m
ijθ  leads to lower auto mode flow, while changing 

the scale parameter ijγ  produces varied effects when m
ijθ  taking different values. There exists 

a threshold for m
ijθ , below which the auto mode flow increases with ijγ  while decreases with 

ijγ  otherwise (see Fig. 10(1)). As shown in Fig. 10(3), a similar phenomenon occurs to the 

bicycle mode but with inverse changing momentum, the bicycle mode increases with m
ijθ , 

decreases with ijγ  when m
ijθ  is smaller than the threshold while increases with ijγ  when m

ijθ  

are larger than the threshold (the critical value obtained is 2.0 for the current numerical example 

with limited samplings). In the meantime, the transit flow shows consistent changing trends 

with either m
ijθ  or ijγ , i.e., the transit flow increases with m

ijθ  and decreases with ijγ . 

Fig. 11 demonstrates the network TTT and emission changes w.r.t. combinations of m
ijθ  and 

ijγ . The network TTT shows a similar trend to the bicycle mode flow, i.e., increasing with m
ijθ , 

decreasing with ijγ  when m
ijθ  is smaller than the threshold while increasing with ijγ  when 

m
ijθ  is larger than the threshold. This phenomenon can be explained by that, the bicycle mode 

has the largest average travel time and also the largest exogenous attractiveness, its mode flow 

plays a significant role in determining the network TTT. Hence the network TTT has similar 
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trends w.r.t. m
ijθ  and ijγ  to the bicycle mode. At the same time, the network emission, 

exhausted by the auto mode only, demonstrates opposite responding patterns from the network 

TTT. In fact, we also examined the MNL-PSL MMNE model and observed similar phenomena 

regarding the mode choice distribution, network TTT, and emission changing patterns w.r.t. 
m
ijθ  and ijγ . The results are omitted for the sake of space. 

 

Fig. 10. Modal splits w.r.t. m
ijθ  and ijγ  in the dogit-PSL MMNE model 

 

(1) Network TTT w.r.t. m
ijθ  and ijγ   (2) Network emission w.r.t. m

ijθ  and ijγ  

Fig. 11. Network performance indicators w.r.t. m
ijθ  and ijγ  in the dogit-PSL MMNE model 
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5.2. Numerical Example II: Application to the Exclusive Bus Lane Expansion 

Evaluation Problem 

In the second numerical example, a comparative study is conducted between the dogit-PSL 

MMNE model and three other MMNE models (i.e., MNL-MNL, MNL-PSL, and NL-PSL) in 

evaluating the exclusive bus lane (EBL) expansion plans, to show the effect of ignoring mode 

captivity on EBL expansion decisions. Two performance measures (i.e., network TTT and 

emission) are used under two scenarios to demonstrate the potential impacts of misestimating 
mode captivity on the chance of making different EBL expansion decisions.  

Setting up EBLs is regarded as a significant measure to promote bus priority, it is expected 

to enhance the attractiveness of public transit by improving the efficiency and service quality 

of the latter, thus to raise the bus ridership and to alleviate urban traffic congestion. It has 

received broad research interests in the literature, including topics on dynamic scheduling on 

EBL (Wang et al., 2018b), design of EBLs and bus frequencies (Yao et al., 2012, 2018), and 
evaluation method of EBL (Yao et al., 2015). However, none has considered the captive mode 

travelers in the EBL related studies.  

5.2.1. Basic settings 

This example aims to evaluate the EBL network expansion problem with captive mode travelers. 

An extended Nguyen-Dupius network (see Fig. 12) is adopted with three sub-networks, i.e., the 

auto, transit, and bicycle networks. The three sub-networks connect four O-D pairs, i.e., (1, 2), 

(1, 3), (4, 2) and (4, 3), with an O-D demand of 600, 600, 800 and 400 travelers per hour, 

respectively. The link characteristics of the auto network are given in Table 5. The free-flow 
speed on each auto link is set to 1km/min (or 60 km/hr). The transit network has one dedicated 

line connecting each O-D pair, which consists of EBLs with the same lengths and free-flow 

speeds as the co-lined auto links. All the transit links have a capacity of 800 persons per hour. 

Both auto and transit link travel times are assumed to follow the BPR function (Eq. 7) with 

( 0.15, 4)α β= =  for auto and ( 0.5, 2)α β= =  for transit, respectively. As for the bicycle 

network, it has the same lengths as the co-lined auto links, but with a lower and constant travel 

speed of 0.6 km/min for illustration purpose. Hence, we have constant travel time on each 

bicycle link. The mode extra attractiveness is the same as the first numerical example. 
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Fig. 12. The multi-modal Nguyen-Dupius network 

Table 5. Link characteristics of the auto network 

Link# 
Distance 

(km) 

FFTT 

(minute) 

Capacity 

(vph) 
 Link# 

Distance 

(km) 

FFTT 

(minute) 

Capacity 

(vph) 

1 3.00 3.00 400  11 5.00 5.00 350 

2 3.00 3.00 300  12 3.50 3.50 400 

3 3.75 3.75 350  13 4.25 4.25 400 

4 5.25 5.25 400  14 4.00 4.00 400 

5 3.75 3.75 350  15 4.25 4.25 350 

6 3.50 3.50 300  16 2.50 2.50 400 

7 3.00 3.00 400  17 4.25 4.25 300 

8 4.50 4.50 200  18 11.75 11.75 300 

9 6.50 6.50 200  19 6.50 6.50 400 

10 3.25 3.25 250      

 

Table 6 summarizes the two scenarios used in the second numerical example. The first 

scenario is used to investigate the effect of ignoring mode captivity on the EBL evaluation by 

comparing to three other MMNE models; while the second scenario, by comparing to the first 

scenario, is used to show the potential impacts of misestimating mode captivity pattern on the 

EBL expansion decisions. The two scenarios differ in the settings of origin and destination, 

which determine the mode captivity pattern between each O-D pair. In Scenario I, Origins 1 

and 4 are respectively a white-collar residence area and a blue-collar residence area, while 

Destinations 2 and 3 are respectively an office zone and a recreation zone. In Scenario II, the 

roles of the two origins are switched and those of the two destinations keep unchanged. The 

mode captivity settings ( Auto Transit Bicycle, ,ij ij ijη η η ) for each O-D pair each scenario are presented in 

Table 7. Generally, we assume more captive auto travelers among the white-collar residents for 
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both work and recreation journeys, while assuming more captive bus and bicycle riders for the 

blue-collar residents. 

Table 6. Description of the two scenarios 

 Origins Destinations 
Scenario I Origin 1: White-collar residence area 

Origin 4: Blue-collar residence area  
Destination 2: Office zone 
Destination 3: Recreation zone 

Scenario II Origin 1: Blue-collar residence area 
Origin 4: White-collar residence area 

Destination 2: Office zone 
Destination 3: Recreation zone 

Table 7. Mode captivity settings for each O-D pair in each scenario 

 O-D pairs 

O-D 1 O-D 2 O-D 3 O-D 4 

Scenario I (0.8, 0.5, 0.2)* (0.2, 0.2, 0.1) (0.2, 0.5, 0.3) (0.1, 0.1, 0.1) 

Scenario II (0.2, 0.7, 0.1) (0.2, 0.2, 0.1) (0.8, 0.5, 0.2) (0.1, 0.1, 0.1) 
* () gives the captivity parameter vector ( Auto Transit Bicycle, ,ij ij ijη η η ) for an O-D pair 

In each scenario, one of the four EBL lines will be expanded under a limited budget. Hence 

the four EBL lines between the four O-D pairs comprise four alternative expansion plans 

(AEPs). Capacities of the associated bus lanes in the chosen EBL line will increase by 50 

percent after the expansion operation. Other model parameters are assumed the same as the first 

numerical example, i.e., the MNL and PSL route choice models have a dispersion parameter of 

1.5, the MNL and dogit mode choice models have a scale parameter of 1.2, and the NL mode 

choice model has respectively the mode and O-D specific dispersion/scale parameters of 1.5 

and 1.2, the scale parameters for the motorized and non-motorized mode nests are respectively 

set to 0.85 and 1. 

5.2.2. Scenario I 

The mode captivity settings in scenario I are presented in Table 7. For the EBL line expansion 

problem, it is supposed that the government wants to promote transit usage through expanding 

the current EBL network to achieve a balance between transport efficiency (e.g., motorized 

mobility) and environmental sustainability (e.g., CO emission). Two typical network 

performance measures (i.e., network TTT and emission) are used for evaluating the EBL lines. 

To evaluate the potential benefit of expanding an EBL line, we consider the measure changes 

relative to the pre-expansion cases, 
AEP AEP Pre exp

Model Model Model
AEP AEP Pre exp
Model Model Model

i i

i i

TTT TTT TTT

E E E

−

−

∆ = −

∆ = −

, 1,..., 4;i =  

Model {MNL-MNL,MNL-PSL, NL-PSL,dogit-PSL}∈  

(24) 
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where AEP
Model

iTTT∆  is the change of network TTT by expanding AEPi in the ‘Model’ MMNE 

model, AEP
Model

iTTT  and Pre exp
ModelTTT −  are the network TTTs before and after expanding EBL line 

between O-D pair i in the ‘Model’ MMNE model. Similarly, AEP
Model

iE∆  is the change of network 

emission by expanding AEPi in the ‘Model’ MMNE model, as the difference between the 

network emissions before and after expanding EBL line i in the MMNE model “Model” (i.e., 
AEP
Model

iE  and Pre exp
ModelE − ). 

The relative changes for each EBL AEP in the four models are displayed in Fig. 13, it is 

observed that 
AEP3 AEP1

AEP4 AEP2

( , ) ( , )
( , ) ( , )

TTT E TTT E
TTT E TTT E

⋅ ⋅

⋅ ⋅

 ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆




 for the MNL-MNL, MNL-PSL and NL-PSL 

MMNE models, where A B  means each (non-positive) component of A is strictly smaller 

than its counterpart of B, i.e., A dominates B. For the dogit-PSL MMNE model, it is observed 

that 

AEP3 AEP1
dogit-PSL dogit-PSL

AEP3 AEP2
dogit-PSL dogit-PSL

AEP3 AEP4
dogit-PSL dogit-PSL

( , ) ( , )

( , ) ( , )

( , ) ( , )

TTT E TTT E

TTT E TTT E

TTT E TTT E

 ∆ ∆ ∆ ∆
 ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆







, i.e., AEP3 dominates the other three AEPs. The 

above observations suggested that the dogit-PSL MMNE model would support expanding 

AEP3, while the other three models would suggest AEPs 3 and 4 as effective options. 

 
Fig. 13. TTT and emission changes for each AEP and each model 

To quantify the choice probabilities of each AEP in each model, we adopt a weighted average 

of the proportional changes relative to the pre-expansion case 
AEP AEP

model model
Pre-exp Pre-exp

model model

( , )
i iTTT E

TTT E
∆ ∆  as the 

synthetic impact (SI) index of adopting AEPi  
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AEP AEP
AEP model model
model TTT TTTPre-exp Pre-exp

model model

(1 )
i i

i TTT ESI
TTT E

ϑ ϑ
∆ ∆

= + − , 1,..., 4;i =  

model {MNL-MNL,MNL-PSL, NL-PSL,dogit-PSL}∈  
(25) 

where TTTϑ  is a dimensionless weight parameter of network TTT ranging from 0 to 1. Without 

loss of generality, it is supposed that the weight parameter TTTϑ  follows a uniform distribution 

from 0 to 1, i.e., TTTϑ ~ U[0,1]. 

Remark 1: Note that we use the proportional changes 
AEP

model
Pre-exp

model

iTTT
TTT
∆  and 

AEP
model

Pre-exp
model

iE
E
∆  to eliminate 

the dimension effect. One may argue that instead of proportional changes in network indices, 

the policymaker would be concerned about the collective network indices, i.e., network TTT 

and Emission. In fact, the proportional network indices 
AEP AEP

model model
Pre-exp Pre-exp

model model

( , )
i iTTT E

TTT E
∆ ∆  will produce 

consistent suggestions with those produced based on the aggregate network indices 
AEP
mod el( , ) iTTT E . 

Proposition 3. The proportional network indices 
AEP AEP

model model
Pre-exp Pre-exp

model model

( , )
i iTTT E

TTT E
∆ ∆

 
suggest a consistent 

dominance relationship among the AEPs with those produced by the collective network indices 
AEP
mod el( , ) iTTT E . 

Proof. Proposition 3 can be proved by stating that 
AEP AEP

model model
Pre-exp Pre-exp

model model

( , )
i iTTT E

TTT E
∆ ∆

 has the same dominant 

relationship as AEP
model( , ) iTTT E . Suppose 

AEP AEP AEP AEP
model model model model

Pre-exp Pre-exp Pre-exp Pre-exp
model model model model

( , ) ( , )
i i j jTTT E TTT E

TTT E TTT E
∆ ∆ ∆ ∆

 , we have from 

Eq. (24) 
AEP Pre-exp AEP Pre-exp

model model model model
Pre-exp Pre-exp AEP AEP

model model model model
AEP Pre-exp AEP Pre-exp
model model model model mode

Pre-exp Pre-exp
model model

i j

i j

i j

TTT TTT TTT TTT
TTT TTT TTT TTT

E E E E E
E E

 − −
≤ ≤ →

− − ≤

AEP AEP
model modelAEP AEP

l model

( , ) ( , )i j
i j

TTT E TTT E
E

 →
≤

 . 

This completes the proof. □ 

Remark 2: Although Proposition 3 admits a consistent dominance relationship between the 

proportional and collective network indices, the proportional synthetic impact AEP
model

iSI  may 

generate different choice probabilities of AEPs from those based on the aggregate indices. By 

adopting a relative index, we may focus on the improvements achieved by taking an EBL AEP. 

Besides, a proportional index can alleviate the unit effect and allow us to focus on the decision-

makers’ weight preferences (i.e., TTTϑ ). 

Fig. 14 displays the synthetic impacts of expanding AEP 3 or 4 w.r.t. TTTϑ  in the four 

models. Generally, considering mode captivity may significantly affect the set of effective 
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expansion plans and hence the chance of each effective expansion plan being chosen for the 

operation. In the MNL-MNL MMNE model, AEP4 dominates AEP3 when TTTϑ  varies from 

0 to 0.3533, the reverse situation happens when TTTϑ  varies from 0.3533 to 1. This means 

AEP4 has a 35.33 percent chance of being chosen as the expansion plan, while AEP3 takes the 

remaining 64.67 percent chance. Similarly, the chances of AEP4 being chosen in the MNL-

PSL and NL-PSL MMNE models are 51.72 percent and 49.17 percent, respectively. However, 

when considering the captive mode travelers, AEP3 will dominate AEP4 across all TTTϑ  

values, i.e., AEP3 will be the only expansion plan being chosen in the dogit-PSL MMNE model. 

Hence, ignoring mode captivity may cause 35.33, 51.72, and 49.17 percent chances of making 

different expansion plan decisions in the MNL-MNL, MNL-PSL and NL-PSL MMNE models. 

 
Fig. 14. Synthetic impacts of expanding AEP 3 or 4 w.r.t. TTTϑ  in the four models 

5.2.3. Scenario II 

In scenario II, we switch the roles of the two origins and adjust the mode captivity parameters 

as listed in Table 7. O-D pair 1 has less captive auto and bicycle travelers and more captive 

transit users when compared with those in the scenario I, O-D pair 3 has more captive auto 

travelers and less captive transit and bicycle users at the same time. Other settings are the same 

as those in scenario I. 
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Table 8 presents the changes in network TTT and emission relative to the pre-expansion 

cases for the four AEPs. We may observe that 
AEP1 AEP4
dogit-PSL dogit-PSL

AEP3 AEP2
dogit-PSL dogit-PSL

( , ) ( , )

( , ) ( , )

TTT E TTT E

TTT E TTT E

 ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆




, i.e., apart 

from AEP3, AEP1 is considered as another effective expansion plan. 

Then, we turn to the SI traces w.r.t. TTTϑ . As shown in Fig. 15, AEP3 dominates AEP1 

for TTT0 0.7400ϑ≤ <  and AEP1 dominates AEP3 for TTT0.7400 1ϑ< ≤ , while AEP4 is 

dominated by both AEPs 1 and 3 for all TTTϑ  values. It implies that AEPs 1 and 3 respectively 

have 26 percent and 74 percent chances of being chosen as the expansion plan. 

Table 8. TTT and emission changes for the dogit-PSL MMNE model in Scenario II 

 AEP1 AEP2 AEP3 AEP4 
AEPiTTT

E
∆ 
 ∆ 

 -1*
921.5311
354.6805
 
 
 

 -1*
499.5150
361.5135
 
 
 

 -1*
905.7760
363.1666
 
 
 

 -1*
418.0080
341.4628
 
 
 

 

AEP

Pre-exp

iTTT
TTT
∆  -0.0173 -0.0094 -0.0170 -0.0078 

AEP

Pre-exp

iE
E
∆  -0.0352 -0.0358 -0.0360 -0.0338 

 
Fig. 15. Synthetic impacts of expanding AEPs 1, 3 and 4 in the dogit-PSL MMNE model 

The EBL line expansion suggestions for each model in each scenario are summarized in Fig. 
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model when TTT 0.5172ϑ <  or TTT0.74 1ϑ< ≤  and for the NL-PSL MMNE model when 

TTT 0.4179ϑ <  or TTT0.74 1ϑ< ≤ . The above observations imply that the MNL-MNL 

MMNE model has a 61.33 percent probability of making a different AEP suggestion from the 

dogit-PSL MMNE model, while the MNL-PSL and NL-PSL MMNE models respectively have 

77.72 percent and 75.17 percent chances of making different AEP suggestions from the dogit-

PSL MMNE model. When compared to the dogit-PSL MMNE model in Scenario I, the dogit-

PSL MMNE model in Scenario II suggests a different effective AEP when TTT0.74 1ϑ< ≤ , 

i.e., the difference in mode captivity assumption in Scenario II causes about 26 percent chances 

of making a different AEP suggestion. Hence, we may conclude that misestimating the mode 

captivity parameters may produce a significant impact on the effective AEP set and also the 

AEP choice probabilities. 

Scenario II: dogit-PSL

Scenario I: dogit-PSL

MNL-PSL

NL-PSL

MNL-MNL

Scenario 
I (II) 

0 0.2 0.4 0.6 0.8 1
ϑTTT

 

AEP1 AEP3 AEP4

0.3533

0.5172

0.4917

0.7400

 
Fig. 16. Summary of AEP suggestions in each model each scenario 

5.3. Numerical Example III: The Seoul Network 

The third numerical example adopts the Seoul network to demonstrate the applicability of the 

proposed MMNE model to a large-scale multi-modal transportation network. Seoul city has the 

largest population in South Korea with about 9.9 million people and produces 2.9 million daily 

trips according to the Metropolitan Transport Association (MTA). The Seoul network contains 

425 zones, 7,512 nodes, 11,154 links, and 107,434 O-D pairs. Among which, the auto mode 

has a total length of 2,790 km roadways, the bus mode contains 3,635 stations in 1,765 lines, 

the metro mode has 354 stations in 14 lines. We use the captivity parameters assumed in Ryu 

et al. (2018), with the sum of all captivity parameters being equal to 3.16, or a total share of 76 

percent captive mode travelers without car registration (the total car registration is about 2.4 

million). The mode-specific captivity parameters are set to 1.58, 0.63 and 0.95 for auto, bus and 

metro, respectively. 
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The travel cost functions for the three modes are listed as follows:  

Auto: 
C, C, C,( )

mr
ij

r a a
ij

a A

w h v
∈

= ∑ ; (26) 

Bus: B,

B, B, B, B( )
r

ij

r a a
ij ij

a A

w h v π
∈

= +∑ ; (27) 

Metro: M ,

M, M, M

r
ij

r a
ij ij

a A

w h π
∈

= +∑ . (28) 

where the travel times for auto and bus are flow-dependent while that for metro is flow-

independent, B
ijπ  and M

ijπ  are mode-specific parameters, consisting of access/egress time and 

fare converted to equivalent time unit. The dispersion/scale parameters for route and mode 

choices ( ,m
ij ijθ γ ) are set to (0.5, 0.2), the SRA parameters ( ,τΓ ) are set to (1.85, 0.05). The 

mode-specific exogenous attractiveness m
ijΨ  is not considered for the sake of simplicity. 

5.3.1. Convergence characteristics 

 Fig. 17 shows the root mean square error (RMSE) and step size traces under the SRA and 

MSA line search schemes. Comparing to the MSA-RMSE trace, which decreases smoothly in 

a sublinear curve, the SRA-RMSE trace decreases faster and achieves a higher accuracy level. 

In fact, the SRA algorithm achieved a smaller RMSE than the MSA algorithm after about 70 

iterations and reached the accuracy of 10E-8 in 266 iterations, whereas the MSA algorithm 

failed to reach the accuracy of 10E-4 in 1000 iterations under the base settings. The SRA-RMSE 

trace shows faster convergence speed and experiences two drastic decreases, which can be 

explained by the step size traces. In the MSA step size scheme, the denominator ( )iterκ  adds 

1 each iteration. As a result, the step size drops very fast and decreases less than 0.02 after 50 

iterations. Comparatively, the SRA step size decreases much slower by taking a small 1τ <  

in the denominator ( )iterκ  for most iterations. When the flow difference in the current two 

iterations is larger than previous two consecutive iterations (i.e., Eq. (18) is satisfied), the SRA 

line search scheme would decrease the step size faster by adding 1Γ >  in the denominator 

( )iterκ  and leads to drastic drops of the SRA-RMSE at the same time. 
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Fig. 17. RMSE and step size traces under the SRA and MSA line search schemes 

Fig. 18 shows the sensitivity of the proposed solution algorithm w.r.t. different parameters 

(i.e., m
ijθ  and ijγ , and Γ and τ). Generally, the partial linearization algorithm with the SRA line 

search scheme is robust with the combination of m
ijθ  and ijγ . In contrast, the CPU times 

demonstrate higher sensitivity to the combination of Γ and τ in the SRA stepsize scheme. 

Particularly, it is observed that adopting a smaller τ tends to ensure higher solution efficiency. 

This can be explained by that, a small τ can slow down the decrease of SRA step sizes when 

Eq. (19) establishes, which are expected in most iterations. Then, the solution efficiency is 

guaranteed with a larger SRA step size sequence. 

 

(1) Coupling effects of m
ijθ  and ijγ      (2) Coupling effects of Γ and τ   

Fig. 18. Sensitivity of the algorithm CPU time w.r.t. different parameters (RMSE=10E-8) 
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5.3.2. Impacts of mode captivity and route overlapping 

In this section, we will briefly show the mode and route flow distribution under the 

consideration of mode captivity and path-overlapping in the Seoul network. The dogit-MNL 

and MNL-PSL MMNE models are taken for comparison purposes when needed.  

 Fig. 19 presents the mode-specific and aggregate flow distribution in the dogit-PSL 

MMNE model. Among them, the auto network accommodates 44.65 percent of the total travel 

demand, of which 85.07 percent are captive to the car mode; for the bus network, it attracts 

25.79 percent of the total travel demand with 58.73 percent of them are captive bus riders; 

similarly, for the rest 29.56 percent metro riders, 77.24 percent of them are captive to the metro 

mode. Comparing to the MNL-PSL MMNE model, the dogit-PSL MMNE model predicts more 

bus and metro flow after considering the 15.14 percent of total travel demand who have only 

access to the bus mode, and another 22.84 percent of total travel demand who are captive to the 

metro mode. These captive mode travelers constitute fixed travel demand for each mode, and 

significantly affect the modal split results. When compared to the dogit-MNL MMNE model, 

considering route-overlapping in the auto network reduces the attractiveness of the auto mode 

and leads to fewer auto drivers in the dogit-PSL MMNE model. 

 

     (1) Flow distribution in the auto network   (2) Flow distribution in the bus network 

 

(3) Flow distribution in the metro network    (4) The aggregate flow distribution 

Fig. 19. Mode-specific and aggregate flow distribution in the dogit-PSL MMNE model 
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Then, we turn to the traffic assignment results and take the auto mode for example. Fig. 20 

displays the link volume/capacity (V/C) distribution in the three models. In fact, the auto link 

V/C distribution pattern can be connected to the modal split and traffic assignment results. As 

aforementioned, either considering captive mode travelers (as compared to the MNL-PSL 

MMNE model) or considering route overlapping in the auto network (as compared to the dogit-

MNL MMNE model), would reduce the auto travel demand in the dogit-PSL MMNE model. 

Consequently, we may expect more links with lower V/C ratios. This happens for the dogit-

PSL MMNE model when compared to the MNL-PSL MMNE model, particularly for the V/C 

ranges [0, 0.5) and [0.5, 1.0). However, when compared to the dogit-MNL MMNE model, there 

are slightly more congested auto links with higher V/C values in the dogit-PSL MMNE model, 

which can be explained as the synthetic effects of route overlapping effect and network 

topologies.  

 

 
Fig. 20. Link V/C distribution in each model 

6. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

This study develops a new multi-modal network equilibrium (MMNE) model that considers 
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model is applied to evaluate different exclusive bus lane expansion plans, for which a 
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under different scenario settings demonstrate that accounting for captive mode travelers would 

produce different equilibrium states and hence the network performance indicators, while 

ignorance or misestimation of mode captivity may cause substantially different evaluation of 
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The current research provides a preliminary effort to consider mode captivity in the 

combined mode-route travel choice framework, and there are many aspects deserve further 

investigation. First, empirical studies are required to examine the validity of the dogit-PSL 

MMNE model and also to estimate the mode captivity and scale/dispersion parameters. Given 

the available survey data, we may either take a two-stage estimation process by parameterizing 

the mode captivity and scale parameters as functions of independent variables or take an 

integrated one by fitting the dogit-PSL model to the joint mode-route choice data. Second, the 

study assumes a crisp definition of captivity, which is not accurate when emerging technologies 

largely increase the accessibility and affordability to shared mobility services (e.g., sharing bike 

and e-hailing service). Therefore, a possible extension of the MMNE model is to consider 

proportional captivity to a mode. Besides, the dogit-PSL MMNE model is built at the route-

level, path-based solution algorithm together with the path generation scheme that is required 

for real-size networks. Efforts are merited for better computation efficiency. Recently, Ryu et 

al. (2014) reformulated the elastic demand network equilibrium as an excess-demand problem 

and resolved it with a modified the gradient projection algorithm, Kitthamkesorn et al. (2015) 

reformulated the MMNE problem as a traffic equilibrium problem with excess-demand which 

is solvable with a modified path-based gradient projection algorithm (see also Ryu et al., 2017). 

This encourages us to develop new algorithms out of existing ones (e.g., Chen et al., 2001; Yu 

et al., 2014; Zhou et al., 2014). Other efforts could be paid to develop the link-based equivalent 

formulation or link-based solution algorithms for the MMNE problem. Potential applications 

of the dogit-PSL MMNE model include evaluation of existing transportation policies, such as 

transit-oriented development strategies and network design optimization problems with equity 

considerations. 
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