
Programming the micro-mechanical model of granular

materials in Julia

Hao Xionga, Zhen-Yu Yinb,∗, François Nicotc

aCollege of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China.
bDepartment of Civil and Environmental Engineering, The Hong Kong Polytechnic University,

Hung Hom, Kowloon, Hong Kong.
cUniversité Grenoble Alpes, IRSTEA, Geomechanics Group, ETNA, Grenoble, France

Abstract

Modelling the mechanical behaviour of granular materials using the insight of physics,

such as discrete element method (DEM), usually costs a lot of computing resources

as a result of the storing and transferring of a large amount of particle and contact

information. Unlike DEM, the micro-mechanical (MM) model, based on statistics of

directional inter-particle contacts of a representative volume of an element, imposes

a much lower computational demand while retaining granular physics. This paper

presents such a kinematic hypothesis-based MM modelling framework, programmed

by a dynamic coding language, Julia. The directional local law of a recently devel-

oped 3D-H model is selected as an example of the implementation. The entire code

of the MM model programmed by Julia is structured into several functions by which

multilevel loops are called in an order. Moreover, a global mixed-loading control

method is proposed in this study by which the stress control and strain control can

be achieved simultaneously. Using this method, conventional triaxial tests and pro-

portional strain tests are simulated to calibrate the model according to experimental

∗Corresponding author.
Email address: zhenyu.yin@polyu.edu.hk; zhenyu.yin@gmail.com (Zhen-Yu Yin)

Preprint submitted to Elsevier March 19, 2020

The following publication Xiong, H., Yin, Z. Y., & Nicot, F. (2020). Programming a micro-mechanical model of granular materials in Julia. Advances in
Engineering Software, 145, 102816 is available at https://doi.org/10.1016/j.advengsoft.2020.102816.

This is the Pre-Published Version.

© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

data. The same experiments are also simulated by DEM for comparison with the

MM model to estimate the computational efficiency and accuracy, which demon-

strates a significant advantage of the MM model. This study can be directly used for

modelling other materials by changing the directional local law and provides helpful

guidance for programming of similar multiscale approaches.

Keywords: Julia language, High-performance dynamic programming,

Micromechanics, Granular materials, Multiscale, Microstructure

1. Introduction

For several decades, granular materials (soils, pills and rice) have been considered

as continuous media with the development of continuum mechanics theory. A series

of phenomenological models have been proposed and successfully used in modelling

large-scale boundary value problems through numerical methods such as the finite

elements and finite differences methods (FEM and FDM) [29, 32, 34, 36, 44]. How-

ever, an increasing number of issues involve difficulty in their proper consideration,

such as (i) large displacement/deformation, (ii) particle trajectory descriptions, (iii)

particle breakage, (iv) crucial arching effects, (v) particle-fluid-gas interaction and

so on. Although phenomenological models could partly solve these issues by intro-

ducing new parameters, the latter lead to complex mathematical formulations and

are usually hard to understand, precisely because phenomenological models attempt

to express, in global terms, mechanisms that occur on a highly local scale.

The consideration of these kinds of issues via a discrete mechanics framework is

certainly the most convenient approach, especially because the discrete variables and

their related governing laws at the particle scale provide clear physical meaning and

have been well established. The most popular method belonging to this framework is

the so-called “discrete element method” (DEM) [8], based on the double integration

2

of the particle acceleration expressed by the second Newton’s law. The remarkable

predictive capacities of various DEM models are illustrated in many studies [11,

26, 35]. Because of its discreteness, DEM requires large computer memory and a

high-level CPU core when a great number of particles is considered, especially in

large-scale boundary value problems.

To optimise computational resources, two aspects can be improved. On one hand,

suitable numerical/analytical homogenisation techniques for upscaling from the grain

scale to the macroscopic level are desirable. In the literature, two types of micro-

mechanical (MM) models, based on either a kinematic or a static hypothesis, can

be increasingly found [5, 17, 28, 43]. For example, the CH-model proposed by [41]

is derived based on the static hypothesis; the microdirectional model and H-model

proposed by [27, 28, 37] are considered under kinematic hypothesis. Even though

the µ − GM model (developed by [30]) could be derived based on both hypotheses,

the static hypothesis is still recommended. Theoretically speaking, both could be

used. The major difference between the two is that the derivation direction of the

constitutive relationship is different. The kinematically based MM derives from strain

to stress, whereas the statically based MM is the opposite.

On the other hand, a convenient programming language also could help a lot.

For scientific researchers, the Julia language [3, 4] is a perfect choice. The Julia

language is an open source dynamic language publicly released in 2012. Hundreds

of individuals have contributed to its development since its release. One of the main

benefits to using Julia is its computational efficiency which exceeds other dynamic

languages, such as MATLAB [20] or Python [31]. It also exhibits equivalencies of

static languages, such as FORTRAN [24] or C++ [33]. With the approximate com-

putational efficiency of static languages and functions of dynamic languages, Julia

is a unique combination of both coding classes, giving the user a high-performance

3

level while still providing an interactive and constructive interface. Other advan-

tages of Julia include its flexibility and open source availability. As a relatively new

language, Julia has undergone significant changes between versions, with version 1.0

announced to be released in late 2017. Multiple publications and advances in Julia

have been made since its release in 2012. It is regret that no such MM model is

available in Julia which limits the high efficient analysis of boundary value problems

starting with grain scale.

That said, a convenient programming language could also help a great deal. For

scientific researchers, the Julia language [3, 4] is a perfect choice. Julia is an open-

source dynamic language that was publicly released in 2012. Hundreds of individuals

have contributed to its development since its release. One of the main benefits

of using Julia is its computational efficiency, which exceeds that of other dynamic

languages such as MATLAB [20] or Python [31]. It also exhibits the equivalencies

of static languages such as FORTRAN [24] or C++ [33]. With the approximate

computational efficiency of static languages and functions of dynamic languages,

Julia is a unique combination of both coding classes, giving the user a high-level

performance while still providing an interactive and constructive interface. Other

advantages include its flexibility and open source availability. As a relatively new

language, Julia has undergone significant changes between versions, with version 1.0

released in late 2017. Multiple publications and advances in Julia have been made

since its release in 2012. Unfortunately, no such MM model is available in Julia,

which limits the high-efficiency analysis of boundary value problems, starting with

grain scale.

The aim of this paper is to answer two questions: why do we develop the MM

model, and how do we program an MM model in Julia? The 3D-H model, as an

example of an MM model, is first reviewed. The basic formulation and multiscale

4

framework are introduced. Then, the entire code of the 3D-H model, which is read-

able with a clear flow chart, is shown and illustrated step by step. After calibrating

the model parameters, the model performance could be acknowledged by showing

the numerical results on both micro and macroscales under various loading paths.

Finally, the calculation efficiency and accuracy of the presented code is compared

with the DEM model.

2. A brief introduction to the 3D-H model

Generally, two types of MM models, based on either a static or a kinematic

hypothesis, can be found in the literature. The models based on the former have

been widely discussed in [43]. Those based on the latter have proven to be suitable in

modelling the mechanical behaviour of granular material [27, 28]. The 3D-H model

[37], one of the models based on the kinematic hypothesis, was initially proposed for

granular materials. It was then implemented within a finite element code to simulate

engineering problems [38, 39].

Based on the kinematic hypothesis, the 3D-H model enables the derivation of

the macrostress tensor from the macrostrain tensor according to the following steps

(Figure 1):

(1) Kinematic localisation: The mesostructure (shown in Figure 3) is a connection

between the macro- and mesoscale. The dimension of the mesostructure can be char-

acterised by the vector: ~L = [l1, l2, l3]
T , wherein l1, l2, l3 represent the lengths along

directions ~n, ~t, ~w, respectively (see Figure 4a and Figure 5a). Thus the kinematic

localisation assumption gives:

δ~L = ¯̄Pδ ¯̄ε ¯̄P−1~L (1)

5

Figure 1: General homogenization scheme of 3D-H model [6].

where δ ¯̄ε is the incremental macrostrain tensor, and ¯̄P is the rotation matrix from

global frame (~x1, ~x2, ~x3) to local frame (~n,~t, ~w) (see Figure 2).

The kinematic localisation defined by Equation 1 is a homogenisation process.

It is analogous to the usual Voigt approximation in the field of continuous media.

The reader should note that the localisation process goes from the macro- to the

mesoscale, not to the microscale, as assumed in the Voigt approximation. Moreover,

it has been widely used in granular materials, such as in [6, 27, 28].

In the 3D-H model, the hexagon strain described by the vector δ~L = [δl1, δl2, δl3]
T

is derived from the macroscopic strain tensor. Then, the term δ~L is used as the

known variable to compute the relative displacement at each contact and to compute

contact forces. δl1, δl2, δl3 are independent because 10 particles are involved in a

mesostructure, rather than simply a single contact between particles.

(2) Mesostructure behaviour: The mesostructure (Figure 3) can be decomposed

into two independent hexagon patterns: Hexagon A (Figure 4) and Hexagon B (Fig-

ure 5), both being similar. The geometrical configuration and external forces applied

6

n
z

y

x

n′
ϕ

θ

Figure 2: Global and local coordinate system transformation by employing Euler angles in 3D

conditions.

7

~n

~t

~w

~n

~t

~n

~w

Decomposition

Hexagon A Hexagon B

1

4

53

62

Fa
1

Fa
1

F2

F2

F2

F2

G2

G2

G2

G2

1

4

98

107

Fb
1

Fb
1

F3

F3

F3

F3

G3

G3

G3

G3

Figure 3: The 3D mesostructure and its decomposition procedure in the 3D-H model.

8

to the mesostructure are symmetrical; thus for each hexagon, only two grains need to

be analysed. For Hexagon A, as shown in Figure 4, only grains 1 and 2 are analysed.

The contact between grains 1 and 2 is denoted by contact 1, whereas the contact

between grains 2 and 3 is denoted by contact 2. Then, the kinematic relations read

(for Hexagon A):

δu1n = δd1

δu1t = d1δα1

δu2n = δd2

(2)

where uin and uit represent the normal and tangential relative displacements at

contact i (For Hexagon A, i = 1 or 2, for Hexagon B, i = 3 or 4), respectively. As

depicted in Figure 4a, the geometrical description for Hexagon A gives:

l1 = d2 + 2d1 cosα1

l2 = 2d1 sinα1

(3)

The force balance of grain 1 along direction ~n and of grain 2 along directions ~w and

~n, together with the moment balance of grain 2, reads:

F a
1 =2(N1 cosα1 + T1 sinα1) (4a)

F2 =N1 sinα1 − T1 cosα1 (4b)

N2 =N1 cosα1 + T1 sinα1 +G2 (4c)

G2 =T2 (4d)

where Ni and Ti represent the normal and tangential contact forces of contact i,

respectively. The elastic-perfect plastic inter-particle contact law reads, for a given

9

contact i:

δNi = knδu
i
n

δ ~Ti = min
{∥∥∥~Ti + ktδ

~uit

∥∥∥ , tanϕg (Ni + δNi)
}
×

~Ti + ktδ
~uit∥∥∥~Ti + ktδ
~uit

∥∥∥− ~Ti
(5)

After simplifying (see more details in Appendix A), the contact law (for Hexagon

A) can be rewritten as follows:

δN1 = −knδd1
δN2 = −knδd2
δT1 = B1δα1 − A1δd1 + C1

(6)

Term C1 differs from zero only during a transition from an elastic to a plastic

regime. Except in this situation, it is zero. For very small strain increments, as

considered throughout this paper, term C1 can therefore be neglected.

To obtain the incremental evolution of the external forces, δd1, δd2 and δα1

need to be expressed as a function of the mesostrain. Three equations are therefore

required. Compatibilities (Equations 8) provide two relations. The third is the

balance equation of grain 2 along direction ~n (Equation 4c). By taking the inter-

particle contact law (Equations 6) into account, we reach the following algebraic

system expressing the incremental changes in δd1, δd2 and δα1 with respect to the

incremental changes in δl1 and δl2:
2 cosα1 1 −2d1 sinα1

2 sinα1 0 2d1 cosα1

cosα1 + A1

kn
(sinα1 + 1) −1 F2−B1(sinα1+1)

kn



δd1

δd2

δα1

 =


δl1

δl2

0

 (7)

where A1, B1 are given in Appendix A.

10

Differentiating Equation 4a, Equation 4b and combining with Equations 6 gives:

δF a
1 = −kn cosα1δu

1
n + kt sinα1δu

1
t − F2δα1

δF2 = −kt cosα1δu
1
t − kn sinα1δu

1
n + F a

1 δα1

(8)

Thus, combining Equations 2, Equations 7 and Equation 8, the incremental con-

stitutive relation for Hexagon A can be expressed as follows:

1

|D|a

 Ka
11 Ka

12

Ka
21 Ka

22

 δl1

δl2

 =

 δF a
1

δF2

 (9)

where: 

Ka
11 = 2

(
F2 sinα1 − knd1cos2α1 − ktd1sin2α1

)
Ka

12 = (ktd1 sinα1 − F2)

A1

kn
sinα1 +

A1

kn
+ 3 cosα1


− cosα1 (B1 sinα1 +B1 − F2 + 2knd1 sinα1)

Ka
21 = 2 (kt − kn) d1 sinα1 cosα1 − 2F a

1 sinα1

Ka
22 = (F a

1 − ktd1 cosα1)

A1

kn
sinα1 +

A1

kn
+ 3 cosα1


− sinα1 (B1 sinα1 +B1 − F2 + 2knd1 sinα1)

|D|a =
2

kn
(B1 sinα1 + A1d1 cosα1)(sinα1 + 1)

−
2

kn
(F2 sinα1 + knd1 cos2 α1 + 2knd1)

(10)

Similarly, the incremental constitutive relation for Hexagon B can also be ob-

tained. Consequently, superimposing Hexagon A and Hexagon B, the total incre-

mental force along direction ~n is δ ~F1 = δ ~F a
1 + δ ~F b

1 . The incremental constitutive

relation of the 3D mesostructure is finally obtained.

11

d1

d2

d1

d2

d1 d1

α1

l2

l1

(a) Dimension of Hexagon A

1

4

53

62

Fa
1

Fa
1

F2

F2

F2

F2

G2

G2

G2

G2

(b) External forces

2

N2

N1

T1
G2

F2

1

Fa
1

N1

T1

N1

T1

(c) Force balance for grains 1

and 2

Figure 4: Mechanical description of Hexagon A.

d3

d4

d3

d4

d3 d3

α2

l3

l1

(a) Dimension of Hexagon B

1

4

98

107

Fb
1

Fb
1

F3

F3

F3

F3

G3

G3

G3

G3

(b) External forces

7

N4

N3

T3
G3

F3

1

Fb
1

N3

T3

N3

T3

(c) Force balance for grains 1

and 7

Figure 5: Mechanical description of Hexagon B.

12

(3) Stress averaging: Averaging the mesostress ¯̃̄σ taking place within all the

mesostructures in the specimen of volume V can be performed as follows:

¯̄σ =
1

V

∫∫∫
ω(θ, ϕ, ψ) ¯̄P−1 ¯̃̄σ(~n,~t, ~w) ¯̄P sinϕdϕdθdψ (11)

where ¯̄σ is the macro-stress tensor operating on the specimen scale. For an isotropic

specimen, the distribution function ω(θ, ϕ, ψ) is uniform with θ ∈ [0, 2π[, ϕ ∈ [0, π], ψ ∈
[0, 2π[(θ, ϕ, ψ are the Euler angles). The mesostress ¯̃̄σ(~n,~t, ~w) with respect to the

local frame can be computed from the local variables (Figure 4 and Figure 5) using

the Love-Weber formula [7, 10, 19, 21]:

σ̃11(~n,~t, ~w) = 4N1d1cos2α1 + 4T1d1 cosα1 sinα1 + 2N2d2

+4N3d3cos2α2 + 4T3d3 cosα2 sinα2 + 2N4d4

σ̃22(~n,~t, ~w) = 4N1d1sin
2α1 − 4T1d1 cosα1 sinα1

σ̃33(~n,~t, ~w) = 4N3d3sin
2α2 − 4T3d3 cosα2 sinα2

σ̃ij(~n,~t, ~w) = 0 when i 6= j

(12)

The principal components of the mesostress tensor are calculated from the in-

ternal forces acting within the mesostructure. Besides, off-diagonal components can

be simply considered as nil, because the mesostructure with respect to (~n,~t, ~w) al-

ways offsets the one with respect to (−~n,−~t,−~w) in off-diagonal components when

integrated.

Notably, the local void ratio is related to the opening angle, which is not related

to local anisotropy. The opening angle α1(2) is a geometrical parameter (Figure 4 and

Figure 5). The opening angle, together with the components l1, l2, l3, determine the

initial shape of the hexagons as well as the local void ratio of the mesostructure. For

a virgin specimen, the initial opening angle is denoted as α0. Then, α1 = α2 = α0.

13

The initial void ratio e0(~n,~t, ~w) of each mesostructure belonging to the local frame

(~n,~t, ~w) can be estimated using the initial opening angle α0 as follows:

e0 = −
4

π
cos3α0 −

6

π
cos2α0 +

4

π
cosα0 +

6

π
− 1 (13)

3. Julia-based implementation of the 3D-H model

This section illustrates some implementation aspects of the 3D-H model based

on the Julia programming language. The entire code of 3D-H model is shown in the

form of some listings. An overall flow chart for the solution process is presented,

covering all functions.

3.1. Global mixed loading control

The numerical implementation of the 3D-H model is based on a global mixed

loading control framework, in which stress, strain or a mixture of both can be used

as input. The mixed loading control adopts a strategy which combines the implicit

algorithms with a general loading control. To achieve this goal conveniently, the

loading control could be expressed by means of linearized constraints. A formula

suggested by [1] can be employed, in which the loading condition can be expressed

as:

S∆σn+1 + E∆εn+1 = ∆Xn+1 (14)

where S and E are constraint matrices given by elementary tests, as shown in Table 1

for typical loading paths, whereas ∆Xn+1= [∆x1,∆x2, · · · ,∆xi]Tn+1 is the imposed

driven vector, and i is the number of degrees of freedom. If i = 6 (as shown in

Table 1), there are 12 unknowns in Equation 14 but only 6 equations at each loading

14

step n, the relation between strain and stress increments has to be added, expressed

as:

∆σn+1 = Dep
n+1∆εn+1 (15)

where Dep
n+1 is the elastoplastic matrix. To solve Equation 14 and Equation 15,

two separate levels of the Newton iteration scheme have been proposed by [42];

the first one solves the loading condition (Equation 14), whereas the other solves the

constitutive equations (Equation 15). However, this procedure is not well adapted to

a micro-mechanical model, because of the difficulty in obtaining a consistent matrix.

This study suggests two different levels of predictor-corrector algorithms to solve

Equation 14 and Equation 15. To solve the equation of the linearized constraints,

Equation 14 can be rewritten as:

Rn+1 = S∆σn+1 + E∆εn+1 −∆Xn+1 (16)

where the residual Rn+1 = 0 contains the same solution as in Equation 14. For each

increment, 6 unknown stress increments and 6 unknown strain increments need to

be solved by Equation 16. Combining Equation 15 and Equation 16, the strain or

stress increments can first be predicted through the use of the elastic matrix De.

The obtained stress increments, used to calculate the force increments, are then

corrected to take into account the plastic condition by the local corrector which will

be presented in the following section. At the end of the kth elastic prediction, the

residuals need to be calculated:

R
(k+1)
n+1 = ∆X

(0)
n+1 −

[
S∆σ

(k+1)
n+1 + E∆ε

(k+1)
n+1

]
(17)

The relative error
∥∥∥R(k+1)

n+1

∥∥∥/∥∥∥σ(k+1)
n+1

∥∥∥ ≤ RTOL is computed at the end of each

iteration to guarantee that the constraints are fully imposed. The relative error

15

should satisfy the given tolerance RTOL set as 10−4. If this is not the case, the

residuals, viewed as correctors, are imposed as new constraints:

∆X
(k+1)
n+1 = R

(k+1)
n+1 (18)

Stress and strain are also updated after each iteration. For a displacement driven

finite element code, the strain increments at each Gauss point are given. Under this

condition, S is null in Equation 14, the constraints are strain increments; thus, no

iteration is needed to solve Equation 14.

3.2. Flow chart

This section shows the entire program of the 3D-H model implemented in the

Julia language. As an example, the drained triaxial compression test with 200 kPa

of confining pressure is considered. The program includes a main program (main.jl

shown in Listing 1) and some subroutines (such as mixload.jl, hexagon.jl and so on).

The flow chart shown in Figure 6 can be illustrated in the following steps:

1. The main program main.jl (shown in Listing 1) first reads model parameters

from the sample() function. Nt and Np are the numbers of angle subdivisions

of θ and ϕ, respectively. Note that even if the initial states of all mesostructures

are the same, their subsequent evolution might be different. Thus the dimension

of microstate variable matrices (such as state F, state d and so on) needs to be

consistent with the number of angle subdivisions. Then, the mixload() function

is invoked.

2. As shown in Listing 2, this function is mainly used to control the mixed loading,

as introduced in subsection 3.1. The loading() and stiffCC() functions are

called to generate the S, E, and Dep matrices (mentioned in Equation 14 and

16

Read input

main() sample()

mixload() stiffCC()

solveG() solve1()

solve2()strain localization

hexagon()

Ksolver()

update variables

stress averaging

compute

unbalance force

finish?

data visulization

generate CC matrix

transfer δε

n
ex

t
m

es
o-

st
ru

ct
u

re

if
n

ot
co

n
ve

rg
e

if converge

n
ex

t
L

S
T

E
P

No

Yes

Figure 6: Flow chart of 3D-H model in Julia language.

17

Equation 15), respectively. Thereafter, the target strain, stress or a mixture of

both is loaded by Nstep.

3. For each Nstep, solveG(), solve1() and solve2() are employed to estimate a suit-

able incremental strain tensor. Then, the kinematic localisation (Equation 1)

is used to compute the deformation of mesostructures δL on the mesoscale.

4. For a certain direction, δL is considered as an input of function hexagon()

(shown in Listing 7). The function Ksolver() is used to compute variables

δd1, δd2, δα2 for Hexagon A and δd3, δd4, δα3 for Hexagon B (depicted in Fig-

ure 4 and Figure 5). These variables are then used to compute incremental

local forces δN1, δN2, δT1 for Hexagon A and δN3, δN4, δT3 for Hexagon B in

terms of contact law (see detail in Appendix A). Then, all local variables are

updated.

5. When all state variables are updated, the macrostress tensor can be obtained

using stress averaging (Equation 11). Thus the residuals Rk+1
n+1 in Equation 17

are computed. If
∥∥∥R(k+1)

n+1

∥∥∥/∥∥∥σ(k+1)
n+1

∥∥∥ ≥ 10−4, steps 3-5 are repeated until the

unbalanced force converges, given a small enough value.

6. Finally, the program goes to the next LSTEP until the end of loading. The

resultant data are stored for visualisation at the end of the program.

Listing 1: main

1 include("sample.jl"); include("hexagon.jl"); include("Ksolver.jl")

2 include("loading.jl"); include("CC.jl"); include("solveG.jl")

3 include("solve1.jl"); include("solve2.jl"); include("mixload.jl")

4 global vol =1.5316e-5; const Nt=30; const Np=90; niter_max =100

5 (kn ,kt ,al0 ,phig ,d0) = sample ()

18

6 state_F=zeros(Nt ,Np , 6)

7 state_d=zeros(Nt , Np , 4)

8 state_al=zeros(Nt, Np, 2)

9 state_broken=zeros(Nt , Np)

10 for i in 1:Nt

11 for j in 1:Np

12 for k in 1:2; state_al[i,j,k]=al0; end

13 for k in 1:4; state_d[i,j,k]=d0; end

14 state_broken[i,j]=0; end; end

15 # loading

16 iso_data = mixload("iso")

17 tri_data = mixload("tri")

Listing 2: mixload

1 function mixload(method)

2 vmix0 , vmix1 , code , Nstep=loading(method)

3 dvmix = (vmix1 - vmix0) / Nstep [1]

4 dvmixit=zeros (6)

5 eps=zeros (6); deps=zeros (6); sigunb=zeros (6); sigr=zeros (6)

6 sigk=zeros (6); sigtotal=zeros (6); stiffCC=CC()

7 sig11 =[]; sig22 =[]; sig33 =[]; eps11 =[]; eps22 =[]; eps33 =[]

8 for LSTEP in 1: Nstep

9 for i in eachindex(dvmix); dvmixit[i]= dvmix[i]; end

10 for niter in 1: niter_max

11 stiffCC , dvmixit ,deps=solveG(6,code ,stiffCC ,dvmixit ,deps ,6)

12 sigk=zeros (6)

13 for i in 1:Nt; for j in 1:Np

14 sigr=hexagon(LSTEP ,deps ,i,j); sigk=sigk+sigr/vol

15 end; end

16 global vol=vol*(1-(sum(deps)))

17 eps=eps+deps

18 for i in 1:6

19 sigunb[i]=0; dvmixit[i]=0

20 if code[i]<0.5

19

21 sigunb[i] = (vmix0[i]+ dvmix[i]*LSTEP) - sigk[i]

22 dvmixit[i]= sigunb[i]; end; end

23 sum1 =0.; sum2 =0.

24 for i in 1:6

25 sum2 = sum2+sigunb[i]^2

26 sum1 = sum1+ sigk[i]^2; end

27 sum2=sqrt(sum2)/6.; sum1=sqrt(sum1)/6.

28 if niter == niter_max

29 global niter_last=niter_max; end

30 if sum2 < 0.005* sum1; global niter_last=niter; break; end

31 end

32 global data=[sig11 ,sig22 ,sig33 ,eps11 ,eps22 ,eps33]

33 end

34 return data

35 end

Listing 3: solveG

1 function solveG(NE,NU,stiff_old ,F,u,mband)

2 F_sol=zeros (6); F1=zeros (6); a1=zeros (6,6)

3 for i in 1:NE

4 F_sol[i]=F[i]; F1[i]=F[i]

5 for j in 1:NE; a1[i,j]= stiff_old[i,j]; end; end

6 for i in 1:NE

7 if NU[i]>0.5

8 for j in 1:NE; a1[i,j]=0; a1[j,i]=0; end

9 a1[i,i]=1

10 for j in 1:NE; F1[j]=F1[j] - F[i] * stiff_old[j,i]; end; end; end

11 for i in 1:NE; if NU[i]>0.5; F1[i]=F[i]; end; end

12 NE , a1 , F_sol , mband= solve1(NE , a1 , F_sol , mband)

13 NE , a1 , F_sol , u, F1 , mband = solve2(NE , a1 , F_sol , u, F1 , mband)

14 F_sol=F

15 for i in 1:NE; if NU[i]>0.5; F_sol[i]=0

16 for j in 1:NE; F_sol[i]= F_sol[i]+ stiff_old[i,j]*u[j]; end; end; end

17 return stiff_old , F,u; end

20

Listing 4: loading

1 function loading(method)

2 # stress control =0 ; strain control =1

3 sigc=2e5

4 epsa =0.1

5 if method == "iso"

6 step =500

7 control =[0, 0, 0, 1., 1., 1.]

8 initial =[0., 0., 0., 0., 0., 0.]

9 final=[sigc , sigc , sigc , 0., 0., 0.]

10 elseif method == "tri"

11 step =3000

12 control =[1., 0., 0., 1., 1., 1.]

13 initial =[0., sigc , sigc , 0., 0., 0.]

14 final=[epsa , sigc , sigc , 0., 0., 0.]

15 end

16 return initial , final , control , step

17 end

Listing 5: solve1

1 function solve1(n, A, p, mband)

2 for i in 1:n; jj=n

3 if (i+mband -1)<n; jj=i+mband -1; end

4 for j in i:jj

5 summ=A[i,j]; jj=1

6 if (j-mband +1) >1; jj=j-mband +1; end

7 for k in i-1: -1:jj; summ=summ -A[i,k]*A[j,k]; end

8 if i==j; p[i]=sqrt(summ); else; A[j,i]=summ/p[i]; end; end; end

9 return n, A, p, mband; end

Listing 6: solve2

1 function solve2(n, A, p, x, b, mband)

2 for i in 1:n

3 summ=b[i]; jj=1

21

4 if (i-mband +1) >1; jj=i-mband +1; end

5 for k in i-1:-1:jj; summ=summ -A[i,k]*x[k]; end

6 x[i]=summ/p[i]; end

7 for i in n:-1:1

8 summ=x[i]; jj=n

9 if (i+mband -1) < n; jj=i+mband -1; end

10 for k in i+1:jj; summ=summ -A[k,i]*x[k]; end

11 x[i]=summ/p[i]; end

12 return n, A, p, x, b, mband; end

Listing 7: hexagon

1 function hexagon(LSTEP ,deps ,i,j)

2 (kn ,kt ,al0 ,phig ,d0) = sample ()

3 al2=state_al[i,j,1]; al3=state_al[i,j,2]

4 d1=state_d[i,j,1]; d2=state_d[i,j,2]

5 d3=state_d[i,j,3]; d4=state_d[i,j,4]

6 Fn1=state_F[i,j,1]; Ft1=state_F[i,j,2]; Fn2=state_F[i,j,3]

7 Fn3=state_F[i,j,4]; Ft3=state_F[i,j,5]; Fn4=state_F[i,j,6]

8 ten=state_broken[i,j]

9 sigr = zeros (6)

10 l1=d2+d1*2* cos(al2); l2=d1*2* sin(al2); l3=d3*2* sin(al3)

11 if abs(Ft1)<=tan(phig)* Fn1; ela2 =1; else; ela2 =0; end

12 if abs(Ft3)<=tan(phig)* Fn3; ela3 =1; else; ela3 =0; end

13 if Ft1 <0; cp2=-1; else; cp2 =1; end

14 if Ft3 <0; cp3=-1; else; cp3 =1; end

15 theta=(i-1)*pi/Nt/2.; phi=(j-1)*pi/Np/2.

16 Pn=zeros (3 ,3); depsro=zeros (3,3)

17 if ten <.5

18 Pn=[cos(phi) 0. -sin(phi);

19 sin(theta)*sin(phi) cos(theta) sin(theta)*cos(phi);

20 sin(phi)*cos(theta) -sin(theta) cos(theta)*cos(phi);]

21 depsro =[deps [1] deps [4] deps [5];

22 deps [4] deps [2] deps [6];

23 deps [5] deps [6] deps [3];]

22

24 meps=Pn ’* depsro*Pn

25 dl1 = -l1 *meps [1,1]; dl2 = -l2 *meps [2,2]; dl3 = -l3 *meps [3,3]

26 (dd1 ,dd2 ,dal2)= Ksolver(al2 ,d1 ,Fn1 ,Ft1 ,kn ,kt ,phig ,cp2 ,dl1 ,dl2 ,ela2)

27 (dd3 ,dd4 ,dal3)= Ksolver(al2 ,d1 ,Fn3 ,Ft3 ,kn ,kt ,phig ,cp3 ,dl1 ,dl3 ,ela3)

28 dFn1=-kn*dd1; dFt1=kt*d1*dal2; dFn2=-kn*dd2

29 dFn3=-kn*dd3; dFt3=kt*d3*dal3; dFn4=-kn*dd4

30 if abs(Ft1+dFt1) < abs(tan(phig)*(Fn1 -kn*dd1))

31 ela2 =1; d1+=dd1; d2+=dd2; al2+=dal2

32 l1+=dl1; l2+=dl2; Fn1+=dFn1; Ft1+=dFt1; Fn2+=dFn2

33 else; ela2=0

34 (dd1 ,dd2 ,dal2)= Ksolver(al2 ,d1 ,Fn1 ,Ft1 ,kn ,kt ,phig ,cp2 ,dl1 ,dl2 ,ela2)

35 dFn1=-kn*dd1; dFt1=cp2*tan(phig)*(Fn1+dFn1)-Ft1

36 dFn2=-kn*dd2; d1+=dd1; d2+=dd2; al2+=dal2

37 l1+=dl1; l2+=dl2; Fn1+=dFn1; Ft1+=dFt1; Fn2+=dFn2

38 if abs(Ft1+dFt1) < abs(tan(phig)*(Fn1 -kn*dd1)); ela2 =1; end; end

39 if abs(Ft3+dFt3) < abs(tan(phig)*(Fn3 -kn*dd3))

40 ela3 =1; d3+=dd3; d4+=dd4; al3+=dal3

41 l1+=dl1; l3+=dl3; Fn3+=dFn3; Ft3+=dFt3; Fn4+=dFn4

42 else; ela3=0

43 (dd3 ,dd4 ,dal3)= Ksolver(al3 ,d3 ,Fn3 ,Ft3 ,kn ,kt ,phig ,cp3 ,dl1 ,dl3 ,ela3)

44 dFn3=-kn*dd3; dFt3=cp3*tan(phig)*(Fn3+dFn3)-Ft3

45 dFn4=-kn*dd4; d3+=dd3; d4+=dd4; al3+=dal3

46 l1+=dl1; l3+=dl3; Fn3+=dFn3; Ft3+=dFt3; Fn4+=dFn4

47 if abs(Ft3+dFt3) < abs(tan(phig)*(Fn3 -kn*dd3)); ela3 =1; end; end

48 else; sigr [1:3]=[0. , 0., 0.]; end

49 sigt1a =4* Fn1*d1*cos(al2)^2+4* Ft1*d1*cos(al2)*sin(al2)+2* Fn2*d2

50 sigt1b =4* Fn3*d3*cos(al3)^2+4* Ft3*d3*cos(al3)*sin(al3)+2* Fn4*d4

51 sigt1=sigt1a+sigt1b

52 sigt2 =4*Fn1*d1*sin(al2)^2-4*Ft1*d1*cos(al2)*sin(al2)

53 sigt3 =4*Fn3*d3*sin(al3)^2-4*Ft3*d3*cos(al3)*sin(al3)

54 sigtt=[sigt1 0 0; 0 sigt2 0; 0 0 sigt3]

55 msig=Pn*sigtt*Pn’

56 sigr [1]= msig [1 ,1]* sin(phi)

57 sigr [2]= msig [2 ,2]* sin(phi)

58 sigr [3]= msig [3 ,3]* sin(phi)

23

59 sigr [4:6]=[0. , 0., 0.]

60 if LSTEP >1

61 if (Fn1 <0)|(Fn2 <0)|(Fn3 <0)|(Fn4 <0)

62 ela2 =1.; ela3 =1.; sigt2 =0; sigt3 =0

63 sigt1a =0.; sigt1b =0.; sigr =0.5* sigr; ten =1; end; end

64 state_al[i,j,1]= al2; state_al[i,j,2]= al3; state_d[i,j,1]=d1

65 state_d[i,j,2]=d2; state_d[i,j,3]=d3; state_d[i,j,4]=d4

66 state_F[i,j,1]= Fn1; state_F[i,j,2]= Ft1; state_F[i,j,3]= Fn2

67 state_F[i,j,4]= Fn3; state_F[i,j,5]= Ft3; state_F[i,j,6]= Fn4

68 state_broken[i,j]=ten

69 return sigr; end

Listing 8: Ksolver

1 function Ksolver(al,d,Fn1 ,Ft1 ,kn,kt,phig ,cp,dl1 ,dl2 ,ela)

2 x=[0, 0, 0]

3 if ela >0.5

4 K=[2*cos(al) 1 -2*d*sin(al);

5 2*sin(al) 0 2*d*cos(al);

6 cos(al) -1 ((Fn1 -kt*d)*sin(al)-Ft1*cos(al)-kt*d)/kn]

7 L=[dl1 , dl2 , 0]; x=inv(K)*L

8 else

9 K=[2*cos(al) 1 -2*d*sin(al);

10 2*sin(al) 0 2*d*cos(al);

11 cos(al)+cp*tan(phig)*(sin(al)+1) -1 (Fn1*sin(al)-Ft1*cos(al))/kn]

12 L=[dl1 , dl2 , sin(al)*(cp*tan(phig)*Fn1 -Ft1)/kn]; x=inv(K)*L; end

13 return x; end

4. Numerical examples

This section presents some numerical examples demonstrating the performance

advantage of Julia as a development tool for MM models. As illustrated in section 3,

all simulations were carried out using in-house 3D-H model codes written in Julia. For

24

tpye of tests S E ∆Xn+1

ISO
Sij = 1, i = j

Sij = 0, i 6= j
Eij = 0 [∆x1,∆x1,∆x1, 0, 0, 0]T

ASO
Sij = 1, i = j

Sij = 0, i 6= j
Eij = 0 [∆x1,∆x2,∆x3, 0, 0, 0]T

TX-CD
Sij = 1, j = i+ 1

Sij = 0, else

Eij = 1, i = 6 j = 1

Eij = 0, else
[0, 0, 0, 0, 0,∆x1]

T

TX-CU



0 0 0 0 0 0

0 1 −1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0





1 1 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0





0

0

0

0

0

∆x1


Table 1: Constraint matrices for mixed controls

25

comparison purposes, the DEM was considered as a benchmark. The computational

accuracy and efficiency of both methods are compared in this section.

4.1. DEM model setup

The DEM employed in this study uses the soft-sphere approach originally devel-

oped by [8]. The equilibrium of individual particles is determined by the equations

shown in Equation 19. The forces and torques applied to a particle i in contact with

particle j are considered to be as follows:

mi

dvi

dt
=

∑
(Fn

ij + Ft
ij)

Ii
dωi

dt
=

∑
(Ri × Ft

ij − τ rij)

(19)

where mi, Ii, vi and ωi are, respectively, the mass, moment of inertia, translational

velocity and rotational velocity of particle i. Fn
ij and Ft

ij are the normal and tangen-

tial forces caused by interaction between particles i and j at the current time-step.

Ri is the vector between the centre of particle i and the contact point where force

Ft
ij is applied. τ rij is the torque caused by rolling friction.

An adapted Hertz-Mindlin contact model was employed. The contact force could

be decomposed into normal and tangential non-linear contact forces. They consist of

two terms, the former standing for the non-linear elastic Hertz model in the normal

direction and the linear elastic Mindlin model in the tangential direction [12, 25],

whereas the latter represents a dissipative term. It is added to account for energy

dissipation during collisions through inelastic deformation and friction. Thus the

normal and tangential forces, Fn
ij and Ft

ij, are given by:

Fn
ij = −4

3
E∗
√
R∗δnijδ

n
ij − 2

√
5
6
ψ
√
Cnm∗v

n
ij

Ft
ij = −8G∗

√
R∗δnijδ

t
ij − 2

√
5
6
ψ
√
Ctm∗v

t
ij

(20)

26

where E∗ is the equivalent Young’s modulus of the two colliding particles, defined

by 1
E∗ =

1−V2
i

Ei
+

1−V2
j

Ej
, where Vi and Vj are the Poisson’s ratios; R∗ is the equivalent

radius, defined by 1
R∗ = 1

Ri
+ 1

Rj
; m∗ is the equivalent mass, defined by 1

m∗ = 1
mi

+ 1
mj

,

vnij and vtij are the normal and tangential components of the relative velocity at the

contact; δnij is the normal contact overlap, given by |δnij| = Ri + Rj − dij, where

dij is the distance between the centres of particles; δtij is the tangential contact

overlap, given by the integral of the tangential relative velocity through the collision

time from the collision’s beginning, i.e., |δtij| =
∫ t
n
|vtij|dt, Cn = 2E∗

√
R∗δnij and

Ct = 8G∗
√
R∗δnij are the normal and tangential contact stiffness, where G∗ is the

equivalent shear modulus, defined as 1
G∗ = 2(2−Vi)(1+Vi)

Ei
+

2(2−Vj)(1+Vj)
Ej

, ψ; and ψ is the

damping ratio coefficient that is a function of the coefficient of restitution, ε, given

by ψ = ln(ε)/
√

ln2(ε) + π2.

4.2. Parameter calibration and model prediction

Consider a representative volume element (RVE) of granular assembly consisting

of spheres for the 3D-H model and the DEM model. For the latter, the sample is

considered as a cube with the size of 22× 22× 22mm3. The d50 is 1.5mm. The total

particle number is controlled to 27000. For comparison purposes, the same particle

number is selected for the 3D-H model. Although the concept of particle number does

not exist as such in this model, the concept of angle subdivision of θ and ϕ (shown in

Figure 2) could still be considered as an equivalent. For example, assuming only one

mesostructure (consisting of 10 particles) exists along each direction, 27000 particles

means that the angle subdivision of θ and ϕ can be 30 × 90 = 2700 or 45 × 60 =

2700, and so on.

An automatic parameter identification method proposed by [14–16, 40] is applied,

in order to provide the best fit to a single isotropically compressed drained triaxial

27

test confined at 200 kPa, based on the experimental data from [6, 22, 23]. This sand

(called Labenne sand) is well characterised from a geotechnical point of view and has

been adopted in many studies [2, 13, 18]. The best fit of mechanical and volumetrical

responses is shown in Figure 7. The parameters used in the 3D-H and DEM models

are reported in Table 2 and Table 3. Then, the same set of parameters is used to

predict the experimental curves at 100kPa and 300kPa, providing the performance

of the 3D-H and DEM models. It should be noted that p is mean stress defined

as p = tr(¯̄σ), q is deviatoric stress defined as q =
√

1
3
tr(¯̄σ), εa is axial strain, εv is

volumetic strain defined as εv = tr(¯̄ε).

Table 2: Parameters used in the 3D-H model

kn(N/m) kt/kn e0 ϕg(
◦) d(mm)

8.0× 105 0.6 0.45 15 1.25

Table 3: Parameters used in DEM model

E(Pa) V µs µr ρ ε d50(mm)

1.0× 108 0.25 0.8 0.15 2630 0.5 1.25

4.3. Computation efficiency and accuracy

In most MM models, the orientation subdivision significantly influences the com-

putation efficiency and accuracy. In this section, five kinds of different orientation

subdivision are selected (listed in Table 4), which corresponds to five different REV

samples with the equivalent number of particles in the DEM model.

28

1 2 3 4 5 6 7

200

400

600

800

εa (%)

q
(k
P
a)

Experiment
3D-H model

DEM

(a) Mechanical response

1 2 3 4 5 6 7
−2

−1.5

−1

−0.5

0

0.5

1

εa (%)

ε v
(%

)

Experiment
3D-H model

DEM

(b) Volumetric response

Figure 7: Parameters calibration on Labenne sand along triaxial loading path confined at 200kPa.

29

1 2 3 4 5 6 7

200

400

600

800

1,000

σc=100kPa

σc=300kPa

εa (%)

q
(k
P
a
)

Experiment
3D-H model

DEM

(a) Mechanical response

1 2 3 4 5 6 7
−2

−1.5

−1

−0.5

0

0.5

1

σc=100kPa

σc=300kPa

εa (%)

ε v
(%

)

Experiment
3D-H model

DEM

(b) Volumetric response

Figure 8: Model prediction on Labenne sand along triaxial loading path confined at 100kPa and

300kPa.

30

Table 4: Sample information summary. θ and ϕ are Euler angles shown in Figure 2.

DEM DEM-9K DEM-18K DEM-27K DEM-36K DEM-54K

3D-H model H-9K H-18K H-27K H-36K H-54K

Number of particles 9000 18000 27000 36000 54000

Number of dϕ 30 60 90 60 60

Number of dθ 30 30 30 60 90

9K 18K 27K 36K 54K
Number of particles

102

103

104

R
u

n
ti

m
e

(s
)

3D-H model

DEM

Figure 9: Comparison of computational efficiency between 3D-H model and DEM model.

31

All samples summarized in Table 4 are first subjected to isotropic compression up

to 200kPa; then, triaxial loading is applied until 10% of axial strain. This simulation

refers to the actual time taken to complete the analysis using a single thread on an

Intel Core Xeon E5-2697A @2.60GHz. Figure 9 shows the comparison of computa-

tional efficiency between the two methods. Obviously, the computation efficiency of

the MM model is much higher than that of the DEM model, which is a great advan-

tage of the former. The reason for the significant difference in run-time is that the

MM model uses a multiscale approach. In DEM, all contact information is stored and

transferred step by step. Unlike DEM, MM contains statistical ideas, which means

that contact information is expressed as a spatial distribution. For example, if some

contacts are located in the same range (which is sufficiently small), these contacts

could be represented by one contact, while the macroscopic constitutive behaviour

does not change.

4.4. Proportional loading path

The performance of the 3D-H model can be illustrated from other loading paths.

For the sake of illustration, a proportional loading path is then considered. After the

isotropic confining stage, the specimen is subsequently subjected to a proportional

strain loading path [9] defined as:

δε1 = positive constant

δε2 = δε3 (axisymmetric condition)

δε1 + 2Rδε3 = 0 (R constant for a given path)

(21)

This set of loading paths is a pure strain-controlled loading, with value R varying

in different tests. Note that when value R = 1, the volumetric change of the specimen

is imposed to be zero, corresponding to the well-known undrained (isochoric) triaxial

32

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350
36.5◦

p (kPa)

q
(k
P
a)

R=0.2
R=0.5
R=0.8
R=1

Figure 10: Mechanical response over a proportional loading path with different R values (δε2 =

δε3 = − 1
2Rδε1).

test. The test can either follow a dilatant loading path with 0 < R < 1 or a

contractant loading path with R > 1, giving advantages to the test that enables

the exploration of the model response along any direction in the incremental strain

space.

Four different R values are considered, as shown in Figure 10. The mechanical

response is presented by analysing the relation between the deviatoric stress variable

q = σ1 − σ2 and the mean stress p = (σ1 + σ2 + σ3)/3 by employing the parameters

reported in Table 2. As observed in Figure 10, most of the tests can approach the

Mohr-Coulomb line (the dashed line in Figure 10) and continuously increase the stress

until reaching the critical state. However, when the R value decreases until a critical

33

0 1 2 3 4 5 6 7 8 9
−100

0

100

200

300

400

500

600

∗
A

B

C

D E

εa (%)

q
(k
P
a)

q

−0.5

0

0.5

1

1.5

2

2.5

3

ε v
(%

)

εv

Figure 11: Mechanical and volumetric responses of 3D-H model along triaxial loading paths, con-

fined at 200kPa

value R̄ = 0.2, liquefaction can be observed whereby stresses eventually vanish.

This is a generalisation of what is observed along isochoric biaxial or triaxial paths,

where a liquefaction mechanism occurs for loose specimens. Thus the investigation

of proportional strain paths facilitates the checking of whether a certain failure mode

may occur even for dense specimens. The ability of the microdirectional model and

H-model to characterise the liquefaction has been proved [27, 28]. As expected, this

ability has been inherited by the 3D-H model.

4.5. Linking between DEM and MM: Microscopic information

34

0◦

45◦

90◦

135◦

180◦

225◦

270◦

315◦

0

5

10

0◦

45◦

90◦

135◦

180◦

225◦

270◦

315◦

0

2

4

6
0◦

45◦

90◦

135◦

180◦

225◦

270◦

315◦

0

20

40

60

0◦

45◦

90◦

135◦

180◦

225◦

270◦

315◦

0

10

20

30

40
0◦

45◦

90◦

135◦

180◦

225◦

270◦

315◦

0

5

10

15

0◦

45◦

90◦

135◦

180◦

225◦

270◦

315◦

0

20

40

60

0◦

45◦

90◦

135◦

180◦

225◦

270◦

315◦

0

20

40

60

80

0◦

45◦

90◦

135◦

180◦

225◦

270◦

315◦

0

10

20

30

0◦

45◦

90◦

135◦

180◦

225◦

270◦

315◦

0

20

40

60

Point A Point B
Point C Point D
Point E Point F

Figure 12: Angular distributions of mesoscopic variables by fixing θ = 0◦ and varying ϕ in polar

coordinates at strain states, corresponding to points A-E shown in Figure 11. In each sub-figures,

three figures are shown: the angular distribution of external force of mesostructure F1 (left col-

umn); the angular distribution of external force of mesostructure F3 (center column); the angular

distribution of opening angle α3 (right column).

35

As illustrated in the previous section, the MM model has a great advantage

in terms of saving the computation resources. This means that this model has

the potential to simulate large-scale engineering problems with millions of particles

by using the current level of computer technology, which is very difficult in DEM

based on the limitations of RAM and CPU. The question may arise: Why can DEM

reproduce complicated macroscopic behaviour with a few parameters? The answer

is: because the geometrical disorder is accounted for. This is one of the two sides

that create the complexity on the macroscopic scale. The second side (which is less

important) is the contact law. Therefore, one way to improve the MM model is for

scientific researchers to analyse and compare the microscopic behaviour of DEM,

which is impossible in phenomenological models. In this study, the triaxial loading

path with 200 kPa is selected as an example to illustrate the analysis of microscopic

information. Figure 11 shows the evolution of deviatoric stress (q) and volumetric

strain (εv) versus axial strain (εa). Six states (corresponding points A-F) are selected:

the state at the beginning of shear loading (A); the state at the end of the elastic

phase (B); the maximum contraction state (C); the state before the stress peak (D);

the state at the stress peak (E); and the state after the stress peak (F).

For the 3D-H model, the microscopic information should present a 3D sphere

(for isotropic distribution). However, as a result of the symmetric confining stresses

along σ2 and σ3, the angular distributions of mesoscopic variables are obviously

symmetric about the ~x1 direction. In other words, they are absolutely the same by

varying θ. Figure 12 shows angular distributions of mesoscopic variables by varying

ϕ with θ = 0◦ at the selected six strain states A-F. The first remark is that angular

distributions of F1, F3 and α3 are isotropic (shown as circles). This is a prerequisite

to verify that an MM model is correct. As the deviatoric strain loading that is applied

(state B), F1 becomes “peanut-like” in shape, where the direction of the maximum

36

value of F1 coincides with the loading direction. F3 shows a similar tendency but

located along the perpendicular direction. When the deviatoric strain reaches state

C, some mesostructures near ϕ = 90◦ begin to fail as empty values of α3. This will

lead to a plastic regime on the macroscale. From states D to F, the failure area

becomes larger and larger, resulting in the stress peak and even the softening regime

on the macroscopic scale. The reader should noted that a slight increase is found in

α3. This is because the mesostructure is compressed in the principal strain direction.

The nature of the change in α3 is actually the rearrangement of particles.

5. Conclusions

In this paper, the programming method of the MM model using Julia language,

in the context of computational granular materials, was presented. The following

conclusions can be drawn from the results and discussions:

1. The entire code of the 3D-H model was clearly formulated and programmed.

Each function and object is expected to be easily understood by illustrating

with a flow chart.

2. A global mixed method was presented for solving linearised mixed control con-

straint equations. The effectiveness of this method has been validated by sim-

ulating drained triaxial compression tests, in which the boundary conditions

consisted of imposing the vertical strain and the lateral stresses.

3. Both the 3D-H and DEM models can reproduce the experimental results on

Labenne sand, involving only a few parameters. In contrast to the DEM model,

where all contact information is transferred and stored, the MM model runs

faster using a multiscale approach.

37

4. The Julia language should be one of the most appropriate languages for pro-

gramming the MM model because a lot of loops need to be calculated. The

easier understanding of how objects are accessed and passed through functions

in Julia allows some implementation techniques to be used to make further

improvements to the program.

The 3D-H model belongs to the family of MM models, which use the multiscale

approach. This study could, therefore, provide guidance for similar multiscale ap-

proach programming.

Acknowledgment

The financial support for this research came from the National Natural Science

Foundation of China (No. 51579179).

Appendix A. Contact law

This elastic-perfect plastic model includes a Mohr-Coulomb criterion and can be

expressed under the following incremental formalism:

 δNi = knδu
i
n

δTi = min {‖Ti + ktδu
i
t‖ , tanϕg (Ni + knδu

i
n)} × Ti+ktδu

i
t

‖Ti+ktδuit‖ − Ti
(A.1)

where: i = 1, 2, 3, 4 denotes the identifier of contact number.

According to Equations 2, Equations A.1 can be rewritten as follows:
δNi = −knδdi
δTi = ktdiδαj elastic regime

δTi = tanϕg (Ni − knδdi) ξi − Ti plastic regime

(A.2)

38

where: ξi is the sign of Ti + ktdiδαj; j = 1 when i = 1, 2; j = 2 when i = 3, 4;

plastic regime is reached when ‖ ktdiδαj + Ti ‖> tanϕg (Ni − knδdi), otherwise it is

in elastic regime.

To facilitate the derivation, Ipi and Iei are introduced as indicator functions of the

contact state, expressed as follow:

Ipi =

 1 in plastic regime

0 in elastic regime
; Iei = 1− Ipi (A.3)

Thus, the constitutive relations can be expressed as: δNi = −knδdi
δTi = Biδαj − Aiδdi + Ci

(A.4)

where:


Ai = Ipi knξi tanϕg

Bi = Iei ktdi

Ci = Ipi (ξi tanϕgNi − Ti)

39

References

References

[1] Bardet, J., Choucair, W., 1991. A linearized integration technique for incremen-

tal constitutive equations. International Journal for Numerical and Analytical

Methods in Geomechanics 15, 1–19.

[2] Belheine, N., Plassiard, J.P., Donzé, F.V., Darve, F., Seridi, A., 2009. Nu-

merical simulation of drained triaxial test using 3d discrete element modeling.

Computers and Geotechnics 36, 320–331.

[3] Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B., 2017. Julia: A fresh

approach to numerical computing. SIAM review 59, 65–98.

[4] Bezanson, J., Karpinski, S., Shah, V.B., Edelman, A., 2012. Julia: A fast

dynamic language for technical computing. arXiv preprint arXiv:1209.5145 .

[5] Bignonnet, F., Dormieux, L., Kondo, D., 2016. A micro-mechanical model

for the plasticity of porous granular media and link with the cam clay model.

International Journal of Plasticity 79, 259–274.

[6] Cambou, B., Dubujet, P., Emeriault, F., Sidoroff, F., 1995. Homogenization for

granular materials. European journal of mechanics. A. Solids 14, 255–276.

[7] Christoffersen, J., Mehrabadi, M.M., Nemat-Nasser, S., 1981. A micromechani-

cal description of granular material behavior. Journal of Applied Mechanics 48,

339–344.

[8] Cundall, P.A., Strack, O.D., 1979. A discrete numerical model for granular

assemblies. geotechnique 29, 47–65.

40

[9] Darve, F., Servant, G., Laouafa, F., Khoa, H.D.V., 2004. Failure in geomaterials:

continuous and discrete analyses. Computer methods in applied mechanics and

engineering 193, 3057–3085.

[10] De Saxcé, G., Fortin, J., Millet, O., 2004. About the numerical simulation of

the dynamics of granular media and the definition of the mean stress tensor.

Mechanics of Materials 36, 1175–1184.

[11] Guo, N., Zhao, J., 2016. 3d multiscale modeling of strain localization in granular

media. Computers and Geotechnics 80, 360–372.

[12] Hertz, H., 1882. Ueber die beruhrung fester elastischer korper. J reine angew

Math 92, 156–171.

[13] Jardine, R., Overy, R., et al., 1996. Axial capacity of offshore piles driven in

dense sand, in: Offshore Technology Conference, Offshore Technology Confer-

ence.

[14] Jin, Y.F., Yin, Z.Y., Shen, S.L., Hicher, P.Y., 2016. Selection of sand models and

identification of parameters using an enhanced genetic algorithm. International

Journal for Numerical and Analytical Methods in Geomechanics 40, 1219–1240.

[15] Jin, Y.F., Yin, Z.Y., Wu, Z.X., Zhou, W.H., 2018. Identifying parameters of

easily crushable sand and application to offshore pile driving. Ocean Engineering

154, 416–429.

[16] Jin, Y.F., Yin, Z.Y., Zhou, W.H., Huang, H.W., 2019. Multi-objective

optimization-based updating of predictions during excavation. Engineering Ap-

plications of Artificial Intelligence 78, 102–123.

41

[17] Kruyt, N.P., Millet, O., Nicot, F., 2014. Macroscopic strains in granular mate-

rials accounting for grain rotations. Granular matter 16, 933–944.

[18] Lehane, B., Jardine, R., Bond, A.J., Frank, R., 1993. Mechanisms of shaft fric-

tion in sand from instrumented pile tests. Journal of Geotechnical Engineering

119, 19–35.

[19] Love, A.E.H., 2013. A treatise on the mathematical theory of elasticity. vol-

ume 1. Cambridge University Press.

[20] MATLAB, 2010. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Mas-

sachusetts.

[21] Mehrabadi, M.M., Nemat-Nasser, S., Oda, M., 1982. On statistical description

of stress and fabric in granular materials. International Journal for Numerical

and Analytical Methods in Geomechanics 6, 95–108.

[22] Mestat, P., 1992. Caractérisation du comportement du sable de labenne.

détermination des paramètres des lois de nova et de vermeer à partir d’essais

de laboratoire. Laboratoire Central des Ponts et Chaussées, Division MSGI,

Rapport interne, Thème GEO 7, 110.

[23] Mestat, P., Riou, Y., 2001. Methodologie de determination des parametres

pour la loi de comportement elastoplastique de vermeer et simulations d’essais

de mecanique des sols. Bulletin des laboratoires des Ponts et Chaussées .

[24] Metcalf, M., Reid, J.K., Cohen, M., 2004. Fortran 95/2003 Explained. volume

416. Oxford University Press Oxford.

[25] Mindlin, R., 1949. Compliance of elastic bodies in contact. J. Appl. Mech.,

ASME 16, 259–268.

42

[26] Muir Wood, D., Maeda, K., 2008. Changing grading of soil: effect on critical

states. Acta Geotechnica 3, 3.

[27] Nicot, F., Darve, F., 2011. The H-microdirectional model: accounting for a

mesoscopic scale. Mechanics of Materials 43, 918–929.

[28] Nicot, F., Darve, F., Group, R., 2005. A multi-scale approach to granular

materials. Mechanics of materials 37, 980–1006.

[29] Njock, P.G.A., Shen, S.L., Zhou, A., Lyu, H.M., 2020. Evaluation of soil liq-

uefaction using ai technology incorporating a coupled enn/t-sne model. Soil

Dynamics and Earthquake Engineering 130, 105988.

[30] Pouragha, M., Wan, R., 2018. µ-gm: A purely micromechanical constitutive

model for granular materials. Mechanics of Materials 126, 57–74.

[31] Rossum, G., 1995. Python reference manual .

[32] Smith, G.D., 1985. Numerical solution of partial differential equations: finite

difference methods. Oxford university press.

[33] Stroustrup, B., 2000. The C++ programming language. Pearson Education

India.

[34] Wang, X.W., Yang, T.L., Xu, Y.S., Shen, S.L., 2019. Evaluation of optimized

depth of waterproof curtain to mitigate negative impacts during dewatering.

Journal of Hydrology 577, 123969.

[35] Wautier, A., Bonelli, S., Nicot, F., 2019. Dem investigations of internal ero-

sion: Grain transport in the light of micromechanics. International Journal for

Numerical and Analytical Methods in Geomechanics 43, 339–352.

43

[36] Wu, Y.X., Shen, S.L., Lyu, H.M., Zhou, A., 2020. Analyses of leakage effect

of waterproof curtain during excavation dewatering. Journal of Hydrology 583,

124582.

[37] Xiong, H., Nicot, F., Yin, Z., 2017. A three-dimensional micromechanically

based model. International Journal for Numerical and Analytical Methods in

Geomechanics 41, 1669–1686.

[38] Xiong, H., Nicot, F., Yin, Z., 2018. From micro scale to boundary value problem:

using a micromechanically based model. Acta Geotechnica , 1–17.

[39] Xiong, H., Yin, Z.Y., Nicot, F., 2019. A multiscale work-analysis approach

for geotechnical structures. International Journal for Numerical and Analytical

Methods in Geomechanics .

[40] Yin, Z.Y., Jin, Y.F., Shen, J.S., Hicher, P.Y., 2018. Optimization techniques

for identifying soil parameters in geotechnical engineering: Comparative study

and enhancement. International Journal for Numerical and Analytical Methods

in Geomechanics 42, 70–94.

[41] Yin, Z.Y., Zhao, J., Hicher, P.Y., 2014. A micromechanics-based model for

sand-silt mixtures. International journal of solids and structures 51, 1350–1363.

[42] Zhang, Y., Buscarnera, G., 2016. Implicit integration under mixed controls

of a breakage model for unsaturated crushable soils. International Journal for

Numerical and Analytical Methods in Geomechanics 40, 887–918.

[43] Zhao, C.F., Yin, Z.Y., Hicher, P.Y., 2018. Integrating a micromechanical model

for multiscale analyses. International Journal for Numerical Methods in Engi-

neering 114, 105–127.

44

[44] Zienkiewicz, O.C., Taylor, R.L., Nithiarasu, P., Zhu, J., 1977. The finite element

method. volume 3. McGraw-hill London.

45

	Introduction
	A brief introduction to the 3D-H model
	Julia-based implementation of the 3D-H model
	Global mixed loading control
	Flow chart

	Numerical examples
	DEM model setup
	Parameter calibration and model prediction
	Computation efficiency and accuracy
	Proportional loading path
	Linking between DEM and MM: Microscopic information

	Conclusions
	Contact law

