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ABSTRACT 1 

 2 

Cycling is increasingly promoted as a sustainable transport mode. However, bicyclists are more 3 

vulnerable to fatality and severe injury in road crashes, compared to vehicle occupants. It is 4 

necessary to identify the contributory factors to crashes and injuries involving bicyclists. For 5 

the prediction of motor vehicle crashes, comprehensive traffic count data, i.e. AADT and 6 

vehicle kilometer traveled (VKT), are commonly available to proxy the exposure. However, 7 

extensive bicycle count data are usually not available. In this study, revealed bicycle trip data 8 

of a public bicycle rental system in the Greater London is used to proxy the bicycle crash 9 

exposure. Random parameter negative binomial models are developed to measure the 10 

relationship between possible risk factors and bicycle crash frequency at the zonal level, based 11 

on the crash data in the Greater London in 2012- 2013. Results indicate that model taking the 12 

bicycle use time as the exposure measure is superior to the other counterparts with the lowest 13 

AIC (Akaike information criterion) and BIC (Bayesian information criterion). Bicycle crash 14 

frequency is positively correlated to road density, commercial area, proportion of elderly, male 15 

and white race, and median household income. Additionally, separate bicycle crash prediction 16 

models are developed for different seasons. Effects of the presence of Cycle Superhighway and 17 

proportion of green area on bicycle crash frequency can vary across seasons. Findings of this 18 

study are indicative to the development of bicycle infrastructures, traffic management and 19 

control, and education and enforcement strategies that can enhance the safety awareness of 20 

bicyclists and reduce their crash risk in the long run.  21 

 22 
Keywords: Bicycle safety, exposure, random parameter negative binomial model, land use, 23 
travel behavior 24 
 25 
  26 
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1. INTRODUCTION  1 
 2 

Cycling has been receiving more attention in sustainable urban and transport development 3 

(Guo et al., 2019). As an active transport mode, cycling does not only relieve the traffic 4 

congestion and emission problems, but also improves the physical and mental well-being of 5 

people. In recent year, number of cyclists has been increasing remarkably in many cities around 6 

the world. Take the Greater London as an example, average daily bicycle trip was increased by 7 

3.9% in 2015-2017. In particular, about 25% of bicycle trips were made in the Central London. 8 

In some parts of the Central London, bicycle constituted to a very high share of commuter trips. 9 

In 2016, 65% of commuter trips at Torrington Place were made by bicycle (55% at Tooley 10 

Street and 48% at Southwark Bridge) (Transport for London - TfL, 2018).  11 

 12 

However, cyclists are vulnerable to severe injury and mortality in road crashes. In the Greater 13 

London, 93% of bicycle casualties were related to the collisions with motor vehicles (TfL, 14 

2018). In European Union, bicyclists constituted to 8% of overall road fatalities. Unfortunately, 15 

24% of road fatalities in the Netherlands were cyclists (Lajunen et al., 2016). To mitigate the 16 

safety hazards of bicyclists on roads, it is of paramount importance to explore the factors that 17 

contribute to the high crash and injury risk of bicyclists. Therefore, effective engineering 18 

countermeasures can be developed to enhance the overall safety of bicyclists and promote the 19 

bicycle mode. 20 

 21 

Many studies have investigated the effects of built environment and bicycle facilities on the 22 

bicycle crash frequency at macro-level using cross-sectional model (Siddiqui et al., 2012; 23 

Narayanamoorthy et al., 2013; Chen et al., 2015; Guo et al., 2018a). To evaluate the bicycle 24 

crash risk, it is necessary to estimate the exposure (i.e. quantifying the crash potential of 25 

bicyclists). For vehicle crashes, annual average traffic flow (AADT) and vehicle kilometer 26 

traveled (VKT), based on comprehensive traffic count data, can be used to estimate the 27 

exposure (Pei et al., 2012). However, it is rare that bicycle count data are available. Bicycle 28 

crash exposure may be measured using retrospective and prospective approaches based on self-29 

report data. They are however subjected to self-selection problem. This study addresses the 30 
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problem of how to accurately measure the bicycle crash exposure, based on the revealed bicycle 1 

trip data of a public bicycle rental system. Additionally, effects of possible land use, built 2 

environment and bicycle infrastructure attributes on bicycle crash incidence are investigated. 3 

For example, Cycle Superhighway (‘Superhighway’) was introduced in London in early 2010s, 4 

targeted to provide cyclists with safer, faster and more direct journeys through the city (Li et 5 

al., 2018). In this study, we aim to measure the association between possible factors and bicycle 6 

crash frequency at the zonal level, using the integrated crash, environment, population profile 7 

and traffic data of London in 2012-2013 (TfL, 2013-2014). A random parameter negative 8 

binomial model would be developed to measure the association. Also, effect of the presence of 9 

Cycle Superhighway on bicycle crash risk will be considered. Moreover, separate bicycle crash 10 

prediction models would be developed for different seasons, i.e. from May to October and from 11 

November to April, taking into account the bicyclists’ behavior under different weather 12 

conditions. 13 

 14 

The paper is organized as follows. Literature review is presented in Section 2. Section 3 15 

describes the study area, method of data collection and model formulation. Analysis results are 16 

presented in Section 4. Section 5 discusses the policy implications. Finally, Section 6 17 

summarizes the findings and suggests the way forward.  18 

 19 

2. LITERATURE REVIEW 20 

 21 

Bicycle is a popular transport mode for short distance trips, both commuting and leisure travel, 22 

especially for people who do not have access to private car, e.g. adolescents, children and 23 

elderly, etc. (Wang et al., 2016; Lajunen et al., 2016; Ji et al., 2016; Vanparijs et al., 2015). 24 

Many studies have been carried out to identify the possible risk factors to bicycle crashes. 25 

Factors considered are land use, built environment, traffic attributes, and population and 26 

household characteristics (Siddiqui et al., 2012; Wei et al., 2013; Chen, 2015; Pulugurtha and 27 

Thakur, 2015; Guo et al., 2018a; Guo et al., 2018b). 28 

 29 

For the effect of land use, Chen’s study (2015) indicated that mixed land use can increase the 30 



5 
 

bicycle crash risk. In particular, likelihood of bicycle crash in the industrial and commercial 1 

area is higher. It could be attributed to the conflicts between motor vehicles, bicycles and 2 

pedestrian (Narayanamoorthy et al., 2013). For the effect of traffic management and control 3 

attributes, increase in bicycle crash frequency was found correlated to the increase in the 4 

density of intersection (Siddiqui et al., 2012; Wei et al., 2013; Pulugurtha and Thakur, 2015), 5 

traffic signal (Guo et al., 2018c; de Geus et al., 2012; Chen, 2015), presence of cycle lanes 6 

(Reynolds et al., 2009; Hamann and Peek-Asa, 2013; Wei et al., 2013; Chen et al.,2016), and 7 

presence of on-street parking (Wei and Lovegrove, 2013; Vandenbulcke et al., 2014). 8 

Furthermore, environmental factors including landscape and weather conditions can also affect 9 

the level of service and safety of bicyclists (Vanparijs et al., 2015; Xing et al., 2019; Zhai et al., 10 

2019; Fournier et al., 2017; El-Assi et al., 2015). 11 

 12 

Personal demographic, socioeconomics, household characteristics and population profiles all 13 

affect the bicycle crash frequency. In particular, bicycle crash involvement rates of adolescents, 14 

children and elderly are all higher than that of other bicyclists. Additionally, their involvement 15 

rates of single bicycle crashes are particularly high (Rodgers, 1995; Tin Tin et al., 2010; 16 

Siddiqui et al., 2012; Ghekiere et al., 2014). Lack of sufficient skills and non-compliance to 17 

relevant guidelines were correlated to the high accident rates of adolescents and children 18 

(Mandic et al., 2018; Chong et al., 2017). For the older bicyclists, elevated crash rate could be 19 

attributed to the degradation of cognitive performance and mobility (Noland and Quddus, 2004; 20 

Vanparijs et al., 2015). For the effect of gender, studies indicate that fatality rate of male cyclist 21 

is higher than that of the female counterpart (Rodgers, 1995; Beck et al.,2007; Mindell et al., 22 

2012; Wei et al., 2013; Vanparijs et al., 2015; Guo et al., 2018b). For the socioeconomics and 23 

household characteristics, studies indicate that household income could affect the bicycle 24 

ownership, travel behavior and therefore bicycle crash involvement (Siddiqui et al., 2012; Guo 25 

et al.; 2018a).  26 

 27 

To estimate the crash rate, population and/or population density are often used to proxy the 28 

exposure at the macroscopic level, especially for active transportation modes like pedestrian 29 
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and bicycle (Cottrill and Thakuriah., 2010; Siddiqui et al., 2012; Lee et al., 2015; Wang et al., 1 

2017; Sze et al., 2019). Also, some studies have applied the total bicycle track length to proxy 2 

the bicycle crash exposure (Wei et al., 2013; Siddiqui et al., 2012). However, they do not 3 

account for the difference in the amount of bicycle travel among individuals. Alternately, 4 

studies have adopted bicycle count (Miranda-Moreno et al., 2011; Blaizot et al., 2013; Guo et 5 

al., 2018a; Nordback et al., 2013), vehicular traffic volume (Beck et al., 2007; Hamann and 6 

Peek-Asa, 2013; Wei et al., 2013), bicycle travel time and distance (Mindell et al., 2012; Blizot 7 

et al., 2013; Poulos et al., 2015) as the exposure measures for bicycle crash prediction models. 8 

 9 

Above studies indicate the effects of land use, built environment, population demographic and 10 

socioeconomics, and household characteristics on the frequency and severity of bicycle crash 11 

at the macro level. However, it is rare that the effects of highway infrastructure and bicycle 12 

facilities on the bicycle crash incidence are considered. Also, the effects of safety perception 13 

and travel behavior bicyclist should be investigated. This study attempts to examine the effects 14 

of Cycle Superhighway and other road facilities on the frequency of bicycle crash using the 15 

crash and traffic data of Greater London. Also, ridership data (frequency and time) of a public 16 

bicycle rental system will be used to estimate the bicycle crash exposure. Therefore, effects of 17 

travel behavior on bicycle crash involvement can be assessed. 18 

 19 

3. METHOD 20 

 21 

3.1 Study area  22 

 23 

Figure 1 illustrates the boundary of the study area under investigation. The study area covers 24 

several Inner London Boroughs like City of London, Islington, Hackney, Tower Hamlets and 25 

Westminster, etc. The geographical area was 49.1 km2 and total population was 0.76 million 26 

respectively in 2017. Same as other global cities, cycling is increasingly popular in London in 27 

recent years. In 2017, average daily bicycle trip was 30,170 in the study area. It constituted to 28 

2% of overall trips (TfL, 2018). Bicycles in London can generally be classified into three types: 29 

(i) privately owned bicycle; (ii) public bicycle rental system (with docking stations), e.g. 30 
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Santander Bike; and (iii) dockless bicycle sharing system, e.g. moBike, Ofo and Urbo (Li et 1 

al., 2019). Santander Bike constituted to 74% of overall bicycle trips in the study area (TfL, 2 

2018). There are over 750 docking stations of Santander Bike in the study area. Therefore, 3 

bicycle exposure is estimated based on the data of Santander Bike. Locations of the docking 4 

stations of Santander Bike are shown in Figure 2. Four Superhighways, e.g. CS2, CS3, CS7 5 

and CS8, were opened in the study area during the period 2010-2013 (Li et al., 2018). There 6 

are three major cycle track or lane types: (i) segregated one-way cycle track; (ii) segregated 7 

two-way cycle track; and (iii) non segregated (one-way) cycle lane. The network map and 8 

typical layouts of Superhighways are illustrated in Figure 1 and Figure 3 respectively. 9 

  10 

 11 

Figure 1. Location of the study area 12 
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 1 

Figure 2. Locations of bicycle docking stations in the study area 2 

(Source: https://kitchen2018blog.blogspot.com/2018/02/boris-bikes-map.html) 3 

 4 

 

 

(a) 
Segregated one-way cycle 

track 

(b)  
Segregated two-way cycle 

track 

(c)  
Non-segregated cycle lane 

 Figure 3. Illustrations of Cycle Superhighway 5 

(Source: https://en.wikipedia.org/wiki/Cycle_Superhighway_3 ; 6 
https://www.newcivilengineer.com/archive/new-cycle-superhighway-mooted-21-09-2017/;  7 
https://www.geograph.org.uk/photo/2372620) 8 

 9 

3.2 Data 10 
 11 

In this study, bicycle crash data during the period from 2012 to 2013 was obtained from the 12 

Greater London Authority (GLA) collision data extract. The collision data extract consists of 13 

two profiles: (i) attendant profile, and (ii) casualty profile. The former records the information 14 

on road characteristics (i.e. road type and junction control), speed limit, light condition and 15 

weather condition, and information on accident location, casualty age and gender, injury 16 
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severity and transport mode (i.e. bus, private car, bicycle and pedestrian) is available in the 1 

latter. Figure 4 illustrates the geographic locations of the bicycle crashes occurred in 2012. 2 

 3 

 4 

Figure 4. Location of bicycle crashes in the Greater London in 2012 5 

 6 

Information on land use and population profiles in the Greater London are available from the 7 

census dataset of Office for National Statistics (ONS). In the UK, census data is tabulated using 8 

a hierarchical geocoding system, known as Super Output Area (SOA). In this study, the 9 

population demographic, socioeconomics and household characteristics data are aggregated at 10 

the Middle Layer Super Output Area (MSOA) level. Each MSOA on average has a population 11 

of 7,200. Variables considered are land use (i.e. residential, commercial and green area, etc.), 12 

property price, number of school, number of employment, gender, numbers of birth and death, 13 

race (i.e. white, black, Asian, and minority ethnic, etc.), health condition, household income 14 

and household composition (i.e. couple, and couple with dependent children, etc.). The latest 15 

updated land use and population census data in 2012 and 2013 are available in this study. 16 

 17 

For the road network and traffic count data, information on road characteristics (e.g. major road, 18 
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minor road, and roadway length), AADT and traffic composition (i.e. private car, taxi, bus and 1 

goods vehicle, etc.) of all major road links and some minor road links are available. Figure 5 2 

illustrates the locations of traffic count stations in the study area. To estimate the bicycle crash 3 

exposure, information on bicycle use (i.e. frequency and time duration) in every MSOA 4 

obtained from Santander Bike transaction records are used. 5 

 6 

 7 

Figure 5. Location of traffic count stations in the Greater London 8 

 9 

Information on bicycle crash incidence, crash severity, bicycle exposure, land use, 10 

demographic and socioeconomics, and household attributes are matched into the corresponding 11 

MSOA using the Geographical Information System (GIS) technique. In this study, frequencies 12 

of bicycle crash of 88 MSOAs in 2012-2013 are modeled. Sample size of proposed model is 13 

176. There were 2,795 bicycle crashes in the study area in the observation period. To consider 14 

the effect of bicycle infrastructure on bicycle crash incidence, length of Superhighways in every 15 

MSOA is also included in the model. Table 1 summarizes the distribution of the variables 16 

considered. 17 

 18 
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Table 1. Summary statistics of the sample 1 

Category Factor Attribute Mean
Std. 
Dev 

Min Max 

Outcome Frequency of bicycle crash 15.88 18.17 2 144 
Road 
infrastructure 

Road density (km per km2) 6.14 2.59 0.86 13.09 
Cycle superhighway (km) 0.37 0.52 0 1.87 

Land use 

Proportion for residential 0.20 0.09 0.05 0.42 
Proportion for commercial 0.23 0.10 0.05 0.51 
Proportion for green area 0.20 0.12 0.02 0.60 
Proportion for transport facilities 0.37 0.06 0.24 0.55 

Demographics 

Population density (per km2) 19.52 7.23 3.05 35.8 

Gender 
Proportion of male 0.51 0.025 0.454 0.61 
Proportion of female 0.49 0.025 0.39 0.55 

Age 
Proportion of age 
above 64 

0.10 0.03 0.03 0.24 

Proportion of others 0.90 0.03 0.76 0.96 

Socio-
economics 

Race 
Proportion of white 0.53 0.08 0.34 0.69 
Proportion of others 0.47 0.08 0.31 0.66 

Median annual household income (€) 71369 28673 37130 174960

Household type 
Proportion of couple 
with children 

0.11 0.03 0.05 0.20 

Proportion of others 0.89 0.03 0.80 0.95 

Exposure 

Total annual 
bicycle usage 
time (hour) 

Overall 31141 31483 2498 165577
May to October only 20500 21082 1006 110520
November to April 
only 

10641 10802 880 59813 

Total annual 
bicycle use 
frequency 

Overall 87946 81980 7049 476329
May to October only 54768 51755 5014 289498
November to April 
only 

33178 31803 2016 186831

AADT 20365 11404 4306 62889 

Note 1: Observation unit is ‘Middle Super Output Area’ (MOSA) 2 
Note 2: Sample size is 176 3 

 4 

3.3 Model formulation 5 

 6 

The aim of this paper is to measure the association between bicycle crash frequency, exposure 7 

and possible risk factors. Several crash prediction models have been adopted in the bicycle 8 

safety literature. For instances, Poisson and Negative Binomial regression approaches are 9 

commonly used (Yao et al., 2016; Wong et al., 2007; Turner et al., 2006). To allow for 10 
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parsimonious specification, a panel mixed negative binomial model (PMNB) was proposed 1 

(Bhowmik et al, 2019a). PMNB has good model fit as conventional multivariate negative 2 

binomial model. Additionally, to account for endogeneity and unobserved heterogeneities (i.e., 3 

spatial spillover effects and weather conditions), methods including random parameter negative 4 

binomial model (Bhowmik et al., 2019b), zero-inflated negative binomial model, hurdle 5 

negative binomial model (Yasmin et al., 2018; Cai et al 2016), latent segmentation based 6 

Poisson and negative binomial models (Yasmin et al., 2016), two-equation Bayesian modeling 7 

approach and spatial lag regression model (Strauss et al., 2013 a,b) were proposed. In this study, 8 

random parameter approach would be adopted to account for the effect of unobserved 9 

heterogeneity (Mannering et al., 2016; Sze et al., 2019).  10 

 11 

For the Poisson regression model, probability of having y bicycle crash in the ith MSOA and 12 

period t can be written as,  13 

y௧~𝑓ሺy௧|μ௧, τ௧ሻ ൌ ୣ୶୮ሺିஜ∙ఛሻሺஜ∙ఛሻ౯

୷!
      𝑖, 𝑡 ൌ 0,1,2 ⋯ 𝑛, 14 

where μ௧ denotes the expected number of bicycle crash. 15 

 16 

Also, 17 

lnሺ μ௧ሻ ൌ 𝛽  𝑥௧
் ∙ 𝛽 18 

where x௧ is the column vector of exogenous variables corresponding to the ith MSOA and 19 

period t, 𝛽 is a vector of parameters, and 𝛽 is the constant term. 20 

 21 

For the negative binomial model, probability of having y bicycle crash can be written as, 22 

𝑃ሺy௧ሻ ൌ
൫୷ାఈషభ൯

୷ሺఈషభሻ
ቀ

ఈషభ

ఈషభାஜ
ቁ

ఈషభ

ቀ
ஜ

ఈషభାஜ
ቁ

୷
, 23 

where Γሺ∙ሻ is subjected to Gamma distribution and 𝛼 denotes the over-dispersion parameter. 24 

 25 

To account for the effect of unobserved heterogeneity, random parameter negative binomial 26 

model can be applied, where parameter 𝛽  is assumed to be randomly distributed. The 27 

probability density function then becomes, 28 
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𝑃ሺy௧ሻ ൌ න 𝑃ሺy௧|𝛽ሻ 𝑓ሺ𝛽ሻ𝑑𝛽 1 

 2 

To assess the goodness-of-fit of proposed models, two indicators, Akaike information criterion 3 

(AIC) and Bayesian information criterion (BIC), can be applied (Train, 2001). AIC and BIC 4 

can be written as, 5 

𝐴𝐼𝐶 ൌ  െ2 lnሺ𝐿ሻ  2𝑘, 𝐵𝐼𝐶 ൌ lnሺ𝑛ሻ𝑘 െ 2ln ሺ𝐿ሻ 6 

where 𝐿 is the maximum likelihood function, 𝑛 is the number of observations and 𝑘 is the 7 

number of parameters considered respectively. 8 

 9 

4. RESULTS  10 

 11 

4.1 Overall Model 12 

 13 

In this study, random parameter negative binomial model is applied to measure the association 14 

between bicycle crash frequency and possible risk factors, considering the effect of bicycle 15 

exposure. Table 2 shows the results of parameter estimation. Three exposure measures 16 

considered are population (Model 0), bicycle use time (model 1) and bicycle use frequency 17 

(Model 2). 18 

 19 

As shown in Table 2, AIC and BIC of Model 1 are the lowest among the three models, though 20 

not statistically significance. Hence, model using bicycle use time as the exposure measure was 21 

considered. Model using population as exposure is underperformed since it does not account 22 

for the difference in travel pattern among individuals (Guo et al., 2018a; Wang et al., 2017; Lee 23 

et al., 2015). On the other hand, studies also indicated that it was appropriate to indicate bicycle 24 

safety using relative risk (RR) with respect to travel distance and travel time (Mindell et al., 25 

2012; Vanparijs et al., 2015). Hence, it can be expected model using bicycle use time as the 26 

exposure can achieve better goodness of fit.  27 

 28 

Results indicate that road density, green area and commercial area, population, age, gender, 29 

household income and race all contribute to bicycle crash frequency at the 5% level of 30 
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significance. For instances, increases in road density (parameter = 0.04), proportion of green 1 

area (1.14), proportion of commercial area (1.60), proportion of elderly (6.49), proportion of 2 

male (13.58), median annual household income (0.001), and proportion of white (0.03) are 3 

correlated to the increase in bicycle crash frequency. Also, the random effects of demographic 4 

and socioeconomic characteristics on crash incidence are significant at the 5% level. However, 5 

no evidence can be established for the association between bicycle crash, Cycle Superhighway, 6 

household composition and traffic volume. No obvious association between bicycle crash and 7 

traffic volume was revealed could be because of the “safety in number” effect. In other word, 8 

number of bicycle crash does not necessarily increase proportionately with the increase in 9 

traffic volume (Bjornskau et al., 2015). 10 
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Table 2. Results of parameter estimation of overall bicycle crash prediction model 1 

Category Factor 
Model 0 Model 1 Model 2 

Coefficients T-stat Coefficients T-stat Coefficients T-stat 

Constant  -21.05** -6.65 -17.59** -6.40 -18.50** -6.79 
Road 
infrastructure 

Cycle Superhighway IS -- IS -- IS -- 
Road density 0.07** 3.62 0.04* 2.31 0.05* 2.19 

Land use 
Proportion of green area 1.25** 3.32 1.14** 3.43 1.56** 3.27 

Proportion of commercial area 
Mean 1.50** 

3.60 1.60** 3.89 1.87** 3.55 
S.D. (9.86**) 

Demographic 

Log (population) 
Mean 

9.02** 4.39 
1.80** 

4.19 
1.39* 

2.56 
S.D. (12.08**) (6.76**) 

Proportion of age above 64 
Mean 

5.40** 3.11 6.49** 4.39 
6.19** 

3.55 
S.D. (0.72^) 

Proportion of male 
Mean 14.57** 

8.51 
13.58** 

8.30 13.74** 6.81 
S.D. (0.36**) (0.38**) 

Socio-
economics 

Median annual household income <0.001* 2.36 <0.001* 2.03 <0.001^ 1.83 

Proportion of white 
Mean 

0.03** 4.64 
0.03** 

5.24 
0.03** 

3.64 
S.D. (<0.001^) (0.002**) 

Proportion of couple with children -0.04** -2.61 IS -- IS -- 

Exposure 
Total annual bicycle use frequency     2.98** 4.63 
Total annual bicycle use time (hour)   2.00** 4.38   
Log (AADT) IS -- IS -- IS -- 

Goodness-of-
fit 

AIC 1150.43 1136.17 1144.64 
BIC 1194.99 1186.19 1194.66 

Notes: ^, * and ** denote statistical significance at the 10%, 5% and 1% levels respectively.  2 

IS denotes insignificant.3 
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4.2 Segregated Models 1 

 2 

Consider the possible interferences by seasonal effects on the association between bicycle crash 3 

incidence and contributory factors, separate bicycle crash prediction models for different 4 

seasons: (i) warm season, i.e. May to October; and (ii) cold season, i.e. November to April, are 5 

developed. Table 3 presents the results of parameter estimation of separate models. Consistent 6 

to the results of overall model, factors including commercial area, population, elderly, gender 7 

and race are significantly correlated to bicycle crash frequency, at the 5% level, in both the 8 

warm and cold seasons. Again, the random effects of demographic and socioeconomic 9 

characteristics on crash incidence are significant at the 5% level. However, ‘Superhighway’ is 10 

significant only in the cold season (parameter = -0.18), and ‘green area’ is significant only in 11 

the warm season (1.22) respectively. 12 

  13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 
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Table 3 Results of parameter estimation results of separate model 1 

Category Factor 
Warm Season Cold Season 

Coefficients T-stat Coefficients T-stat 

Constant  -18.57** -6.11 -17.59** -6.40 

Road infrastructure 
Cycle Superhighway IS -- -0.18* -2.43 
Road density 0.08** 2.91 0.08** 3.37 

Land use 
Proportion of green area 1.22** 3.01 IS -- 
Proportion of commercial area 1.88** 3.23 1.53** 3.37 

Demographic 

Log (population) 
Mean 2.52** 

3.75 
1.29* 

2.24 
S.D. (2.92**) (22.99**) 

Proportion of age above 64 
Mean 6.75** 

3.51 4.84* 2.57 
S.D. (0.13*) 

Proportion of male 
Mean 12.99** 

5.57 
13.28** 

5.67 
S.D. (0.17*) (0.17*) 

Socio-economics 

Median annual household income IS -- IS -- 

Proportion of white 
Mean 

0.03** 3.94 
0.03** 

4.35 
S.D. (0.01**) 

Proportion of couple with children IS -- IS -- 

Exposure 
Log (AADT) IS -- IS -- 
Bicycle use time (hour) 1.13* 1.99 1.81** 3.22 

Goodness-of-fit 
AIC 1014.47 897.48 
BIC 1064.50 947.51 

Notes: * and ** denote statistical significance at the 5% and 1% levels respectively.  2 

IS denotes insignificant. 3 
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5. DISCUSSION  1 

 2 

5.1 Seasonal Effect 3 

 4 

There is a remarkable variation in the usage of rental bicycle (Santander Bike) across months. 5 

Figure 6 illustrates the monthly bicycle rental counts in the study area in 2012 and 2013. As 6 

shown in Figure 6, the distribution of bicycle usage is similar to that of mean daily maximum 7 

temperature. In particular, average monthly bicycle usage (ranging from 557,142 to 771,428) 8 

in the period from May to October (with mean daily maximum temperature ranging from 61℉ 9 

to 73℉) was remarkably higher than that (ranging from 282,857 to 454,285) in the period from 10 

November to April (with mean daily maximum temperature ranging from 48℉ to 59℉). We 11 

may consider the commuters who cycle even in the cold season as regular bicyclists, while 12 

those who only cycle in the warm season as casual bicyclists. As revealed in the crash statistics 13 

in 2012-2013, total number of bicycle crashes in the warm season (1,680) was remarkably 14 

higher than that in the cold season (1,115). A possible reason is that there are more bicyclists 15 

in the warm season. Indeed, it is believed that casual bicyclists, who are expected to ride more 16 

in the warm season, usually ride for leisure purpose (TfL, 2018). That is why proportion of 17 

green area is positively correlated to the bicycle crash frequency in the warm season only (as 18 

revealed in Table 3). Therefore, it is necessary to implement effective education and promotion 19 

measures that can enhance the safety awareness and perception of casual bicyclists, particularly 20 

children, adolescent and elderly. On the other hand, presence of Cycle Superhighway is 21 

negatively correlated to the bicycle crash frequency in the cold season only. This justifies the 22 

safety benefit of upgrading bicycle infrastructure, particularly for more skillful regular 23 

bicyclists. Nevertheless, it is worth exploring the seasonal trend using disaggregated model for 24 

every month or season when comprehensive data is available in the extended study. 25 

   26 
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 1 

Figure 6. Monthly bicycle use frequency and daily maximum temperature in London 2 

 3 

5.2 Road Infrastructure 4 

 5 

For the road network characteristic, road density is found positively correlated to bicycle crash 6 

frequency both in overall and separate models. For instance, number of bicycle crash would be 7 

increased by 28% when road density is increased by 100%. This could be attributed to the 8 

increase in potential interactions between bicycle and motor vehicle (Wong et al., 2007; Li et 9 

al., 2018). For the presence of Cycle Superhighway, it has favorable effect on bicycle crash 10 

frequency in the cold season. It could be attributed to the increase in driver awareness and 11 

safety perception when travelling through the Cycle Superhighway. As illustrated in Figure 12 

3(b), 3(c) and 3(d), colored asphalt pavements are applied for the cycle track and cycle lane 13 

along the Cycle Superhighway. However, no evidence can be established for significant 14 

correlation between bicycle crash frequency and presence of Cycle Superhighway for the 15 

overall and warm season models. It could be because majority of Cycle Superhighway are non-16 

segregated (see Figure 3(d)). Also, casual bicyclists, who are usually less skillful, are expected 17 

to ride more in the warm seasons (Sze et al., 2011). The favorable effect of colored pavement 18 

on drivers’ safety awareness could be offset. This finding implies that better design of Cycle 19 
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Superhighway, such as physical separation between bicycle lane and (motor) traffic lane, would 1 

be essential to enhance bicycle safety. 2 

 3 

5.3 Land Use 4 

 5 

Results indicate that proportion of commercial area (elasticity of 0.41) is positively correlated 6 

to bicycle crash frequency. This could be attributed to the frequent pick-up and drop-off 7 

activities on the roadsides in the commercial area. Therefore, potential bicycle crash risk could 8 

increase (Wong et al., 2007). Additionally, increase in the proportion of green area is correlated 9 

to the increase in bicycle crash frequency, particularly in the warm season (elasticity of 0.25). 10 

It could be attributed to the access to green area for recreational purpose of casual bicyclists in 11 

the warm season (Chen, 2015; Guo et al., 2018a). Moreover, commercial (commercial, office 12 

and shopping), green area (public park and plantation) and utility (highway) could constitute 13 

to 80% of the study area (Lubbock, 1963). It is importance to enhance the safety level in these 14 

areas in which pedestrian, bicycle and vehicular traffic flows are high. As shown in Figure 4, 15 

bicycle crashes are widely distributed in the entire study area. Bicycle facilities including 16 

segregated bicycle track, designed crossing and bicycle signal could have been introduced at 17 

the hot spots of bicycle crashes, especially in the commercial and green areas. Yet, it is worth 18 

exploring the effects of weather conditions, e.g. rain, strong wind, fog and snow, etc., on the 19 

frequency and severity of bicycle crash, when comprehensive real-time weather data are 20 

available (Wen et al., 2019; Zhai et al., 2019; Xing et al., 2019). 21 

        22 
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 1 

Figure 7. Distribution of bicycle crash by MSOA in the analysis period 2 

 3 

5.4 Demographic and Socioeconomics 4 

 5 

We also consider the safety effects of population demographic, socioeconomics and household 6 

attributes (Mindell et al., 2012; Wei et al., 2013; Ghekiere et al., 2014). Overall, population 7 

(elasticity of 7.03) is positively correlated to bicycle crash frequency. However, there is 8 

heterogeneity for the population effect based on demographic and socioeconomic 9 

characteristics. For instances, increase in the proportion of elderly (age above 64) is correlated 10 

to the increase in bicycle crash frequency (elasticity of 0.70). This could be attributed to the 11 

degradation of cognitive performance and impaired mobility of elderly. Then, the crash 12 

likelihood might increase (Palamara and Broughton, 2013; Jiménez-Mejías et al., 2016). Also, 13 

increase in the proportion of male (elasticity of 6.39) is correlated to the increase in bicycle 14 

crash frequency. This might be because male commuters are generally more aggressive and 15 

have a higher tendency to commit convicted travel behavior (Guo et al., 2018b). Furthermore, 16 

proportion of white race (elasticity of 1.28), which constituted to over 75% of overall 17 
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population in the Greater London, is positively correlated to bicycle crash. Again, there are 1 

heterogeneities for the effects of male and race on bicycle crash incidence. This implies the 2 

variations in safety perception and behaviors among male and people of the same race. It can 3 

be attributed to the differences in education level, cultural background and family influences, 4 

which are not captured in the prediction model, among the people in the same group. For 5 

example, people who have higher education are more risk averse and have lower tendency to 6 

violate traffic rules (Sami et al., 2013; Hung et al., 2011). These findings are indicative to the 7 

targeted safety education and promotion strategies that can enhance the safety perception of 8 

vulnerable road user groups (TfL, 2018). For the household attribute, results indicate that 9 

increase in medium household income by 100% is correlated to the increase in bicycle crash 10 

by 19%. Yet, current results only indicate the correlation between bicycle crash frequency and 11 

characteristics of residents. It is worth exploring the relationship between population 12 

demographic & socioeconomics, bicyclist behavior and potential crash risk, when 13 

comprehensive information on bicyclists’ safety perception are available in the future survey. 14 

 15 

6. CONCLUSIONS 16 

 17 

This study examines the relationship between possible risk factors and bicycle crash frequency 18 

at the zonal level, using the population census, land use, traffic, bicycle use and crash data of 19 

the Greater London in 2012-2013. Random parameter negative binomial regression approach 20 

is adopted. Crash exposures are estimated based on the frequency and duration of usage of a 21 

public bicycle rental system in London. 22 

 23 

Results indicate that model using the duration of bicycle use as the exposure measure is 24 

superior to that using the frequency of bicycle use or population. It can be expected as the 25 

duration of bicycle use is a better proxy to infer the potential interactions between bicycle and 26 

motor vehicles on the roads. Additionally, road density, bicycle facilities, land use, 27 

demographic, socioeconomics and household attributes are found correlated to bicycle crash 28 

incidence. It is indicative to the development of infrastructure, traffic management and 29 

enforcement strategies that can mitigate the hazards to bicyclist on roads. In particular, the 30 
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London Cycle Superhighway network, which has favorable effect on bicycle safety, could have 1 

been extended. Also, better traffic management and control measures can be implemented to 2 

mitigate the risk of bicyclists in the commercial areas, where the roadside pick-up & drop-off 3 

activities and interactions between bicycle and motor vehicles are frequent. Furthermore, 4 

separate bicycle crash prediction models are developed for different seasons. It is believed that 5 

the characteristics and travel behavior of bicyclists are different across different time periods. 6 

Casual bicyclists could ride more frequently for recreation purpose in the warm season. That 7 

is why proportion of green area is positively correlated to bicycle crash frequency in the warm 8 

season only. This is indicative to the effective education and promotion strategies that can 9 

enhance the safety perception and awareness of bicyclists, especially those of vulnerable 10 

groups. Yet, it is worth exploring the contributory factors to the safety perception, and therefore 11 

the behavior and revealed crash risk of bicyclists. Moreover, the bicycle exposure adopted in 12 

this study is limited to the usage data of a public bicycle rental system. There could be possible 13 

bias even that it constitutes 80% of overall bicycle trips in the study area. However, the system 14 

only records the origin and destination (i.e. docking station) of a bicycle trip. It is worth 15 

exploring to use bicycle travel distance as a proxy of bicycle crash exposure, when 16 

comprehensive and extensive bicycle count are available in future study. 17 

 18 
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