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Abstract: This paper presents a novel framework for the discrete modeling of the large-scale triaxial 27 

test of rock clasts, considering both the realistic particle shapes and veritable flexible boundary 28 

condition. First, real-shaped particle models for the tested rock clasts are precisely reconstructed using 29 

the close-range photogrammetry technique. The rubber membrane was modeled by a series of bonded 30 

particles. Then, the laboratory procedures of the triaxial test, i.e., sample preparation, isotropic 31 

compression, and shearing, are reproduced in the DEM simulations with consideration of the veritable 32 

confining boundary. To ensure more reliable numerical results, a systematic DEM calibration 33 

framework is established to determine the modeling parameters based on a series of calibration 34 

experiments, including tensile test, suspension test, clast-membrane sliding test, and large-scale triaxial 35 

test. Finally, the proposed method is applied to investigate the effects of confining pressure on the 36 

macro- and micro-mechanical behaviors of rock clasts. The presented works lay a foundation for further 37 

studies on revealing the mechanisms of the conventional triaxial test, e.g., the effect of end restraint and 38 

rubber membrane. Moreover, the proposed systematic framework for calibration of modeling 39 

parameters can be applied to precisely capture the real mechanical properties of various types of 40 

granular rock-like materials in DEM simulations. 41 

Keywords: Rock clast; particle shape; flexible membrane; triaxial test; discrete element method; 42 

micromechanics 43 
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1 Introduction 49 

Rock clasts, as the most common natural and artificial geomaterials in the world, e.g., gravel, 50 

ballast, and other geosynthetic clasts, are widely used in many infrastructure construction projects. The 51 

engineering behaviors of rock clasts, which determine the stability and safety of engineering structures 52 

during construction and operation, are of great interest to practitioners, designers, and researchers in 53 

different fields, e.g., geotechnical engineering, geological engineering, railway engineering, etc. Many 54 

engineers and researchers have employed various types of laboratory experiments, e.g., triaxial test (Hu 55 

et al. 2018; Indraratna et al. 2013), direct shear test (Han et al. 2018), point load test (Koohmishi and 56 

Palassi 2016), repose angle test (Rajan and Singh 2017), etc., to investigate the mechanical properties 57 

of rock clasts from different aspects. Among these experiments, the triaxial test is one of the most 58 

popular apparatus to study the macroscopic properties, e.g., shear strength parameters, contraction or 59 

dilation. Besides, more advanced techniques of the triaxial test have been developed to precisely capture 60 

the mechanical features of the materials during testing, including measurement of circumferential 61 

displacement (Suiker Akke et al. 2005), dissipation of energy (Li et al. 2017), and movement track of 62 

particle (Li et al. 2020) in specimens. 63 

Although many improvements have been implemented, the laboratory triaxial test still has some 64 

disadvantages. For instance, the accuracy of data from the test highly depends on the triaxial apparatus 65 

and proficiency of operators. The cost of laboratory triaxial test is high, especially for large scale one. 66 

The limitation of the apparatus and specimen dimensions results in the restriction that all tested 67 

materials should have a maximum particle size smaller than a threshold value due to the well-68 

acknowledged size effect mechanism (Indraratna et al. 2011; Yin et al. 2017). Additionally, the initial 69 

fabric of the sample, which is difficult to be controlled and observed in laboratory experiments, greatly 70 
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affects the test results (Chang and Yin 2010; Yang and Dai 2011; Yin et al. 2010). Besides, the effects 71 

of the rubber membrane and end restraint from the triaxial apparatus still remains unclear and cannot 72 

be ignored in large shear strain (Cheung and O'Sullivan 2008; Muraro and Jommi 2019). Therefore, 73 

behaviors of granular materials at the critical state cannot be precisely captured through triaxial testing. 74 

In consequence, numerical methods (DEM, FEM, and FDM) are developed to perform virtual triaxial 75 

tests. Among them, the discrete element method has shown a great capability to investigate the 76 

micromechanical particle mechanics with physics insight (Goldenberg and Goldhirsch 2005; Wang and 77 

Yin 2020), e.g., the particle movement, coordination number, fabric anisotropy, contact force network, 78 

sliding contact percentage, and inter-particle normal and shear contact forces. 79 

In the discrete element method (DEM), cubic compression with rigid boundary condition was first 80 

proposed to mimic the similar stress state during the triaxial test (Cheng et al. 2003). Then, considering 81 

the shape of specimens in real laboratory triaxial tests, rigid cylindrical sidewalls were adopted (Gao 82 

and Meguid 2018) with a collaborative servo-control mechanism. To consider the end restraint effect 83 

of the triaxial test, layered cylindrical walls were used to simulate the boundary (Liu et al. 2019). In 84 

order to reproduce the failure mode of specimens in the triaxial test, equivalent force algorithms were 85 

suggested to replace the servo mechanism of sidewalls to apply confining pressure (O'Sullivan and Cui 86 

2009). Recently, a new servo mechanism, which used bonded particles to simulate the rubber membrane, 87 

was proposed to model the confining boundary of specimens in the triaxial test (Li et al. 2017; Qu et al. 88 

2019). Nevertheless, in the previous investigations, the bending resistance of the rubber membrane in 89 

the bond-particle algorithm was ignored, which was recently solved by FDM-DEM coupling method 90 

(Zhu and Yin 2019; Zhu et al. 2020). However, the particle shape, known as a key factor affecting the 91 

shear behaviors (Yin et al. 2020), was not involved. Moreover, numerical studies of the large-scale 92 
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triaxial tests considering both the rubber membrane boundary and real rock clast shapes have not been 93 

reported. 94 

To fill the research gaps, we propose a numerical framework for DEM modeling of large-scale 95 

triaxial tests with a systematic calibration process considering the particle shape and confining boundary. 96 

First, realistic particle models for the tested rock clasts are precisely restructured based on the close-97 

range photogrammetry technique. Then, the realistic confining boundary is reproduced using the 98 

cluster-based membrane model. The process of the numerical triaxial test is then illustrated according 99 

to the laboratory test processes. In addition, a systematic procedure for determining the modeling 100 

parameters is given based on a series of calibration experiments. Finally, the proposed method is applied 101 

to investigate the behaviors of the tested rock clasts with different confining pressures from both micro 102 

and macro perspectives. 103 

2 Veritable reconstruction and shape analysis of rock clasts 104 

2.1 Sampling of rock clasts 105 

The source material of the selected rock clasts is the crushed granite obtained from Changsha 106 

(Hunan Province, China), which is also the source of the ballast layer in the Liuyang section of the 107 

Menghua heavy haul railway. In the preparation of the experiment, rock clasts with crushable shape 108 

(easy to break, e.g., high elongation and flatness (Ministry 2008)) are manually eliminated from the 109 

source materials, as shown in Fig. 1. 110 
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   111 
Fig. 1  Selection of the rock clasts 112 

According to the American Railway Engineering and Maintenance-of-Way Association (AREMA) 113 

No. 3 gradation, the adopted particle size distribution (PSD) of the rock clasts is shown in Fig. 2. 114 

Moreover, the density of the clast 𝜌𝑐  is 2710 kg/m3, and the maximum dry density and optimum 115 

moisture content of specimens are 1.81g/cm3 and 0.5%, respectively, following the ASTM D1557 116 

(ASTM 2012). 117 

 118 

Fig. 2  Particle size distribution of the clasts. 119 

2.2 Photogrammetry-based reconstruction of rock clasts 120 

Particle shape is a key factor to affect the interlocking in the granular medium (Suhr et al. 2020), 121 

and highly correlated with the strength of rock clasts (Koohmishi et al. 2016). Close-range 122 
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photogrammetry, a photo-based technology in 3D reconstruction, is used to acquire shape features of 123 

clasts in this study. This technology has been applied in many fields, such as architectural design, 124 

industrial processing, civil engineering, and biomedical fields. According to the existing literature 125 

(Paixão et al. 2018), compared with other technologies (laser scanning, CT scanning, etc.), close-range 126 

photogrammetry can more quickly obtain the surface topography information (including color 127 

information and geometric information) of the target object. In addition, the technology has high 128 

accuracy, low cost, and does not cause damage to the target object. In order to obtain the shape features, 129 

three industrial cameras, a rotary turntable, and a photo studio with astral lamps are established to 130 

acquire multiple images surrounding the particle surface. The 3D reconstruction scheme is shown in 131 

Fig. 3 (a). Rotating the turntable (5° per second) and taking continuous photos of the clast (6 seconds 132 

per shot), three industrial cameras shot from the three elevation angle directions (15°, 45° and 75°). 133 

Since the shape information of the clast base could not be collected, overturn the clast and repeat the 134 

same shooting process. Finally, a total of 60 photos can be obtained for each clast. 135 

The commercial software Photoscan (Li et al. 2016) is employed to process the clast photos and 136 

reconstruct the 3D particle model. First, feature points are extracted and registered from the photos, and 137 

then the feature points of the clast are reconstructed sparsely using the motion restoration structure 138 

method to construct a sparse point cloud. The sparse points in the point cloud are used as seed points to 139 

determine more points based on block matching. Next, the Poisson reconstruction is performed on the 140 

reconstructed 3D point cloud to build the triangular meshes of the particle surface. Finally, the triangular 141 

meshes model is output as STL file for simulation usage. In this study, a total of 100 rock clasts are 142 

randomly selected for 3D reconstruction, and some example clasts are shown in Fig. 3 (b). 143 
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 144 
(a) 145 

 146 

(b) 147 

Fig. 3  Digital image acquisition platform: (a) 3D reconstruction and (b) examples of reconstructed rock 148 

clasts 149 

2.3 Particle shape quantification of rock clasts 150 

Four typical shape indexes from three levels are adopted to quantify the shape features of rock 151 

clasts. The four shape indexes, e.g., elongation index (𝐸𝐼), flatness index (𝐹𝐼), roundness (𝑅𝑑), and 152 

roughness (𝑅𝑔), were often used for particle shape evaluation in previous researches (Barrett 1980; 153 

Wang 2020). 154 

The elongation index 𝐸𝐼  and flatness index 𝐹𝐼  reflect the flake degree and acicular degree, 155 

respectively, and the larger the value, the closer the particle tends to the cube or sphere. The 𝐸𝐼 and 156 

𝐹𝐼 are calculated based on the dimension of curcumscribed oriented bounding box of the rock clast, 157 
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which can be determined based on the 3D Minkowski tensor Ωij: 158 

Ωij =
1

𝑆𝑀
∑𝑠𝑘𝑇𝑖

𝑘𝑇𝑗
𝑘

𝑁𝑚

𝑘=1

 (1) 

where 𝑇𝑖
𝑘 and 𝑇𝑗

𝑘 are the 𝑖th and 𝑗th components of the unit normal vector of 𝑘th triangular mesh, 159 

shown in Fig. 4 (a). 𝑠𝑘 is the area of 𝑘th triangular mesh. 𝑁𝑚 and 𝑆𝑀 are the number and the total 160 

area of triangular meshes, respectively. Ωij is corresponding to the symmetric matrix 𝐶 with trace 1: 161 

𝐶 = [

Ω11 Ω12 Ω13
Ω21 Ω22 Ω23
Ω31 Ω32 Ω33

] = [𝑞𝑎 𝑞𝑏 𝑞𝑐] [

𝜆𝑎 0 0
0 𝜆𝑏 0
0 0 𝜆𝑐

] [

𝑞
𝑎
𝑇

𝑞
𝑏
𝑇

𝑞
𝑐
𝑇

] (2) 

where the three eigenvalues (λ𝑎 ≥ λ𝑏 ≥ λ𝑐) are the minimum proportions of the projected area of the 162 

particle in the corresponding principal axis direction to the total area. 𝑞𝑎 , 𝑞𝑏  and 𝑞𝑐  are three 163 

principal axis directions of the oriented bounding box (OBB). 164 

After determining the three principal directions of the particle, the OBB of the particle can be 165 

constructed along the principal direction, as shown in Fig. 4 (a). Then, 𝐸𝐼 and 𝐹𝐼 can be expressed 166 

as: 167 

𝐸𝐼 =
𝐼

𝐿
 (3) 

𝐹𝐼 =
𝑆

𝐼
 (4) 

where 𝐿, 𝐼 and 𝑆 are the largest, intermediate, and smallest length in the direction of the principal 168 

axis of the OBB, respectively. 169 

The particle roundness 𝑅𝑑 is a well-known shape index proposed by Wadell (Wadell 1932) to 170 

evaluate the relative sharpness of particle corners. Based on the algorithm of the largest inscribed sphere 171 

and the local inscribed sphere of the corner (Itasca 2014), the three-dimensional roundness 𝑅𝑑  is 172 

calculated as follow: 173 



10 

 

 𝑅𝑑 =
1

𝑁𝐶
∑𝑟𝑖

𝑁𝐶

𝑖=1

𝑅𝑖𝑛𝑠𝑐⁄  (5) 

where 𝑅𝑖𝑛𝑠𝑐 indicates the radius of the largest inscribed sphere. 𝑟𝑖 is the radius of 𝑖th inscribed sphere 174 

of the local corner and 𝑁𝐶  is the number of the identified corners. 175 

 176 

(a)                        (b)                        (c) 177 

Fig. 4  Calculation processes of shape indexes: (a) elongation index (𝑬𝑰) and flatness index (𝑭𝑰), (b) 178 

roundness (𝑹𝒅) and (c) roughness (𝑹𝒈) 179 

The process of calculating 𝑅𝑑 is demonstrated in Fig. 4 (b). In order to find the largest inscribed 180 

sphere, the rock clast is voxelized according to the STL file. Then, go through all the voxelized spaces 181 

and sum up the distance from the center of space to the surface of clast. The center of space, 182 

corresponding to the minimum sum, is the center of the largest inscribed sphere. Moreover, the method 183 

to acquire the local inscribed corner spheres includes three major steps, e.g., surface smoothing, corner 184 

identification, and sphere fitting, which are detailed in (Wang 2020). 185 

As shown in Fig. 4 (c), the roughness (𝑅𝑔), as a shape index in the third level, is calculated based 186 

on the author’s previous study. It is conducted through (1) fitting the points cloud of the clast surface 187 

by the high-order spherical harmonics; (2) established benchmark smoothed surface with lower-order 188 

spherical harmonics; (3) compare the original and benchmark surface and calculate the local deviation 189 
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distance ∆𝑑𝑖. The deviation distance equals to the volume of deviation area divided by the area of the 190 

local triangular element. The definition of the roughness 𝑅𝑔 is given as:  191 

𝑅𝑔 = √
4𝜋

3𝑉𝑎

3

∙
1

𝑆𝑀
∑∆𝑑𝑖 × 𝑆𝑖

𝑁𝑚

𝑖=1

 (6) 

where 𝑆𝑖 is the area of 𝑖th triangular mesh element; 𝑉𝑎 is the volume of the clast; 𝑁𝑚 is the number 192 

of triangular mesh element; 𝑆𝑀 is the area of the clast surface. 193 

As shown in Fig. 5, the shape results of 100 randomly selected rock clasts are statistically presented. 194 

Because of manually selection to eliminate the undesired shapes, both 𝐸𝐼  and 𝐹𝐼  have similar 195 

distributions and range from 0.5 to 1.0, as shown in Fig. 5 (a) and (b). It means that the clasts are mostly 196 

massive, with few flakes and needles. The results roundness index 𝑅𝑑 are shown in Fig. 5 (c). It can 197 

be seen from the figure that over 98% of the tested rock clasts had an 𝑅𝑑 greater than 0.2 and all the 198 

𝑅𝑑 is smaller than 0.4. Moreover, as shown in Fig. 5 (d), the roughness of the clasts 𝑅𝑔 is in the range 199 

of [0.05, 0.14] and 𝑅𝑔 around 0.08 is obviously redundant with other intervals. 200 

 201 

(a)                                    (b) 202 
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 203 

(c)                                   (d) 204 

Fig. 5  Statistics of shape indexes: (a) elongation index (𝑬𝑰), (b) flatness index (𝑭𝑰), (c) 205 

roundness (𝑹𝒅) and (d) roughness (𝑹𝒈) 206 

3 Modeling of the large-scale triaxial test 207 

The DEM software PFC3D 5.0 has been proved to be a reliable numerical tool for investigating the 208 

granular materials with realistic shape from the microscale perspective (Liu et al. 2017). This study 209 

adopts  the code PFC3D 5.0. Numerical triaxial tests of rock clasts are performed considering realistic 210 

particle shapes and veritable membrane boundary. 211 

3.1 DEM model of rock clast with realistic shapes 212 

In this study, the clump-based particle model (rigid agglomerate), which approximates the rock 213 

clast shape with an agglomerate of rigid spheres according to Itasca (Itasca 2014), is employed to model 214 

the realistic-shaped rock clasts. The clump-based particle models in DEM are created using the 215 

triangular-mesh-based particle models obtained from the above-described photogrammetry-based 3D 216 

scanning. As shown in Fig. 6 (a), there are two key parameters, e.g., ‘Distance’ and ‘Ratio’, that control 217 

the shape of the generated clump-based particle model. The ‘Distance’ corresponds to an angular 218 

measure of smoothness in degrees from 0 to 180, and the ‘Ratio’ is the radius ratio of smallest pebble 219 
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to largest pebble in the clump template. As shown in Fig. 6 (b), the ‘Distance’ and the ‘Ratio’ strongly 220 

affect the roughness of the model surface and the sharpness of edges and corners. In this study, in order 221 

to determine the appropriate values of ‘Distance’ and ‘Ratio’, the two parameters are varied within 222 

certain ranges, e.g., 80 ≤ ‘Distance’≤ 160, and 0.1 ≤ ‘Ratio’≤ 0.5, which cover most of the adopted 223 

values in the previous studies of realistic clast modeling (Liu et al. 2017; Miao et al. 2017). 224 

 225 

(a)                                          (b) 226 

Fig. 6  key indexes in the generation of clump templates (a) meaning and (b) influence 227 

The adoption of ‘Distance’ and ‘Ratio’ in DEM simulation should consider the balance of both 228 

computation efficiency and simulation accuracy. Thus, the average pebble amount in clump template 229 

𝑁𝑝 and the filling rate of clump template 𝑅𝑓, which are affected by both ‘Distance’ and ‘Ratio’, are 230 

compared in the chosen area. The filling rate of the clump template 𝑅𝑓 is defined as: 231 

𝑅𝑓 =∑
𝐷𝑇𝑖
𝐷𝑆𝑖

× 100%

𝑁𝑡

𝑖=1

 (7) 

where 𝑁𝑡 is the number of STL file and equals to 100 in this study. 𝐷𝑇𝑖 is equivalent diameter of 232 

clump template generated by 𝑖 th STL file, and 𝐷𝑆𝑖  is the equivalent diameter of 𝑖 th STL file. The 233 

equivalent diameter of the rock clast is the diameter of a sphere which has the same volume with the 234 
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clast. 235 

Fig. 7 displays the variation of 𝑅𝑓 (values in z-axis coordinates) and 𝑁𝑝 (values in blue numbers) 236 

with different ‘Distance’ (80°, 100°, 120°, 140°, 160°) and ‘Ratio’ (0.1, 0.2, 0.3, 0.4, 0.5). D140-R04 237 

(the abbreviation of the template with ‘Distance’=140 and ‘Ratio’=0.4), D120-R03 and D100-R02 are 238 

chosen as candidates because of the balance between 𝑅𝑓 and the gradient of 𝑁𝑝. As shown in the 239 

example template in Fig. 7, the surface of D140-R04 is more realistic than that of D100-R02, while the 240 

angularity of D100-R02 is more accurate. Since the influence of an unreal surface will be compensated 241 

by the assigned friction coefficient of the clump-based particle model, the ‘Distance’ and ‘Ratio’ is 242 

adopted as 100 and 0.2, respectively. Accordingly, the average pebble amount in clump template 𝑁𝑝 is 243 

59.7 which is larger than the most of previous numerical simulations (Gao and Meguid 2018; Lu and 244 

McDowell 2006; Tong and Wang 2014). 245 

 246 
Fig. 7  Variation of 𝑹𝒇 and 𝑵𝒑 with different ‘Distance’ and ‘Ratio’ 247 

3.2 Adopted contact models in the DEM simulation 248 

Two contact models are involved in the simulation of the triaxial compression test of rock clasts, 249 
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including the linear elastic model and the simplified linear parallel bond model. As shown in Fig. 8 (a), 250 

the linear elastic contact model (Gong et al. 2019b) is adopted to simulate the interactions between 251 

different objects, including clast-clast contact, clast-membrane contact, clast-wall contact, membrane-252 

membrane contact, and membrane-wall contact. The wall is employed to simulate the top and base steel 253 

plate. In the linear elastic model, the contacts cannot resist the bending moment and tensile force and 254 

will ultimately undergo linear elastic deformation and slide under compression. The force-displacement 255 

relationship can be expressed as: 256 

𝐹𝑛 = 𝑘𝑛𝑢𝑛 (8) 

𝐹𝑡 = {
𝑘𝑡𝑢𝑡            𝑘𝑡𝑢𝑡 < 𝜇𝐹𝑛
𝜇𝐹𝑛              𝑘𝑡𝑢𝑡 ≥ 𝜇𝐹𝑛

 (9) 

where 𝐹 , 𝑢  and 𝑘  are the contact force, contact displacement, and linear contact stiffness, 257 

respectively. The subscript 𝑛 and 𝑡 indicate the normal direction and tangential direction. 𝜇 is the 258 

friction coefficient. Considering that the contact stiffness is closely related to the shape of the contact 259 

point, effective modulus 𝐸 and stiffness ratio 𝑘𝑟 are used to describe the different contact stiffness 260 

in, which defined as: 261 

𝐸 =

{
 

 
𝑘𝑛(𝑟 + 𝑟′)

𝜋(min(𝑟, 𝑟′))2)

𝑘𝑛
𝜋𝑟

 

Particle-Particle contact 

Particle-Wall contact 

(10) 

𝑘𝑟 =
𝑘𝑛
𝑘𝑡

  (11) 

where 𝑟 and 𝑟′ are the radius of the first particle (particle is a basic element in PFC3D 5.0 and also 262 

named ball) and second particle, respectively. Eq. (10) indicates that the deformation (overlap) of 263 

particle-wall contact completely depends on the stiffness of particle in PFC3D, and the wall is always 264 

regarded as ‘rigid’. 265 
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Deformable agglomerates (clusters) are employed to simulate the rubber membrane, in which a 266 

certain number of particles with the same sizes are bonded together using a simplified linear parallel 267 

bond model. The typical linear parallel bond model includes a bond component and a linear component, 268 

and the two components act in parallel. According to the assumption that rubber shows similar elastic 269 

behavior in both tension and compression under certain strain (Asadi et al. 2018a), the linear parallel 270 

bond model is simplified that the stiffness of the linear component is set to zero. In other words, the 271 

linear component is deleted, and the retained bond component provided linear elastic behavior. 272 

Moreover, the strength of the bond model is large enough to prevent the membrane from breakage 273 

during the triaxial test. The simplified linear parallel bond model is shown in Fig. 8 (b). The force-274 

displacement relationship can be expressed as: 275 

𝐹𝑛 = 𝐴̅𝑘̅𝑛𝑢𝑛 (12) 

𝐹𝑡 = 𝐴̅𝑘̅𝑡𝑢𝑡 (13) 

where 𝑘̅𝑛  and 𝑘̅𝑡  are the parallel bond normal stiffness and the parallel bond tangential stiffness, 276 

respectively. 𝐴̅  is the contact area between bonded particles and equals to 𝜋𝑅̅2  (𝑅̅  is half of the 277 

membrane thickness in this study). Moreover, the bending moment 𝑀𝑏 and the twisting moment 𝑀𝑡 278 

are defined as: 279 

𝑀𝑏 = 0.25𝜋𝑅̅
4𝑘̅𝑛𝜃𝑏 (14) 

𝑀𝑡 = 0.5𝜋𝑅̅
4𝑘̅𝑡𝜃𝑡 (15) 

where 𝜃𝑏 and 𝜃𝑡 are bend-rotation and twist-rotation, respectively. 280 

 281 
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(a) 282 

 283 

(b) 284 

Fig. 8  Adopted contact models: (a) linear elastic model and (b) simplified linear parallel bond 285 

model 286 

3.3 Confining pressure activated by the flexible membrane 287 

Considering the consistency between the numerical simulation and the laboratory test, the cluster-288 

based model of a flexible membrane is established, and the confining pressure is applied to the specimen 289 

through the membrane-based servo control process, which is improved from the previous work (Li et 290 

al. 2017). 291 

As shown in Fig. 9, the cluster-based membrane model is established by approximating the 292 

cylindrical membrane surface using a series of bonded particles in DEM. The detailed process to set up 293 

the membrane model is described as follow: 294 

(1) Generate rigid walls according to the realistic shape and size of the specimen in the laboratory test, 295 

including top wall (loading plate), base wall (base plate), and sidewalls (cylindrical container). 296 

(2) Determine the distance between the centers of two bonded particles. In order to protect the cluster-297 

based membrane from puncture, bonded particles should have a certain amount of initial overlap. 298 

In this study, the distance of centers between two bonded particles is defined as 0.72 times the 299 

particle diameter (thickness of membrane). 300 

(3) Partition the cylindrical container surface into triangular meshes. All the triangular meshes are the 301 
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same equilateral triangles, and the length of the edge of triangles is equal to the distance between 302 

the centers of two bonded particles. Output the node positions of the triangular meshes. 303 

(4) Create the bonded particles, and the particle centers are determined by the obtained node positions. 304 

Assign the simplified parallel bond model to the contact between each pair of neighboring bonded 305 

particles after the creation process. 306 

(5) Finally, the cylindrical container is replaced by the cluster-based membrane model, which can be 307 

employed to activate the confining pressure by applying the external forces to the bonded particles. 308 

 309 

Fig. 9  Generate of bonded particles in the rubber membrane 310 

As described above, the undeformed membrane is approximated by the equilateral triangular 311 

elements, in which one particle is bonded with six neighboring particles to form a hexagonal 312 

arrangement. The external force is manually applied to each particle element according to the confining 313 

pressure and the local distortion of the membrane. Essentially, the magnitude of the applied force on 314 

the particle element is the product of the confining pressure and the area of the equivalent region. 315 

Moreover, the applied force is perpendicular to the equivalent region and pointed inward to the 316 

specimen. As shown in Fig. 10, the equivalent region of the bonded particle 0 (node 0 is the center of 317 
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particle 0) is affected by surrounding six triangular mesh elements, and the acting force on the triangular 318 

mesh element 034, which arises from the confining pressure σ𝑐, can be express as follow: 319 

𝑓034 =
𝜎𝑐
2
𝑙3 × 𝑙4 (16) 

where 𝑙3 (or 𝑙4) is defined as the vector pointing from node 0 to node 3 (or 4).  320 

The acting force 𝑓⃗⃗⃗
034

 spreads equally to node 0, node 3, and node 4. Moreover, the applied force 321 

on node 0 is provided by acting the force on six surrounding triangular mesh elements. Thus, the applied 322 

force on node 0 is defined as: 323 

𝑓0 =
𝜎𝑐
6
∑ 𝑙𝑛+1 × 𝑙𝑛

6

𝑛=1

 (17) 

where 𝑙𝑛 (or 𝑙𝑛) is defined as the vector pointing from node 0 to node 𝑛 (or 𝑛 + 1). 324 

For a triangular mesh element 𝑚 , we can calculate the center coordinate (𝑥𝑚, 𝑦𝑚, 𝑧𝑚) , the 325 

outward normal (𝑋𝑚, 𝑌𝑚, 𝑍𝑚), and the area 𝐴𝑚. Thus, according to the divergence theorem of Gauss, 326 

the volume of the specimen can be calculated: 327 

𝑉𝑜𝑙 =∭ 𝑑𝑉 =∯ 𝑋𝑚
𝑆𝑉

∙ 𝑥𝑚𝑑𝑆 ≈ ∑ 𝐴𝑚𝑋𝑚
𝑚∈𝑉

𝑥𝑚 (18) 

Moreover, to simulate the end restraint of the specimen, the top and base bonded particles 328 

(highlighted in red as shown in Fig. 10) are fixed to the contacted walls, i.e., the particle velocity is 329 

equal to the wall velocity. It worth noted that when the local distortion of the rubber membrane is large, 330 

new contacts between none-neighboring bonded particles will exist. In this case, the linear elastic model 331 

is employed as the contact law to simulate the interaction between none-neighboring bonded particles, 332 

which are denoted as membrane-membrane contacts, abbreviated as 𝑚  in subscript. The effective 333 

modulus 𝐸𝑚 , stiffness ratio 𝑘𝑟𝑚  and friction coefficient 𝜇𝑚  are assigned to the membrane-334 

membrane contacts. Besides, considering the initial overlap of bonded particles, the density of bonded 335 

particles are assigned as 809 kg/m3 based on the real density of rubber membrane 𝜌𝑚 (941 kg/m3) in 336 
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this study. 337 

 338 

Fig. 10  Calculation of applied force in each particle element 339 

3.4 Simulation process of the triaxial test 340 

In this section, the simulation of the large-scale triaxial test is performed to mimic the real 341 

procedures of the laboratory experiment. Considering the working condition of the rock clasts (e.g., 342 

ballast), we focus on the consolidated drained monotonic triaxial test. According to ASTM D7181 343 

(ASTM 2011), the laboratory experiments are carried out following three stages, i.e., sample preparation, 344 

isotropic compression, and shearing. It worth noted that the dry granular material has same behavior of 345 

saturated one, and thus the saturation is not necessary considered in DEM simulation. The adopted 346 

conventional large-scale triaxial apparatus is shown in Fig. 11. The bottom of the specimen is fixed on 347 

a base steel plate, and the top of the specimen is covered by a steel loading plate, which can move down 348 

vertically and freely. The water in the chamber is employed to activate the confining pressure on the 349 

rubber membrane around the specimen. 350 
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 351 

Fig. 11  The large triaxial apparatus in this study 352 

Since the weight of the large triaxial test specimen is very large, and the rubber membrane is 353 

delicate, the specimen preparation process is conducted with great carefulness on the triaxial apparatus. 354 

The rock clasts are compacted layer by layer for three times in a cylindrical steel container, which is 355 

300 mm in diameter and 600 mm in height. The thickness and designed void ratio of each layer are 356 

always kept as 200 mm and 0.56 (equal to 95% compaction degree), respectively. According to the 357 

laboratory test, as shown in Fig. 12 (a), three layers of rock clasts are generated and compacted 358 

successively in DEM simulation. The numerical process is detailed as follow: 359 

(1) Firstly, for each layer, non-overlapping clasts are randomly generated in the rigid cylindrical 360 

container. The total volume of generated clasts is in line with the real volume for each layer in the 361 

laboratory test. Then, a compaction friction coefficient 𝜇0  is assigned, and the generated rock 362 

clasts fall freely with the same gravitational acceleration (9.7915 m/s2 in Changsha). 363 

(2) Next, a compaction wall is created at the top of the specimen and move down to apply compaction 364 

load to the rock clast until a designed void ratio is reached. 365 

(3) Then, the compaction wall is lift up and the rebound height is computed. If the rebound height 366 
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exceeds 1 cm, redo the compaction until the rebound height is smaller than 1 cm.  367 

(4) If the rebound height is still larger than 1 cm after many times of compaction, delete the whole layer 368 

of rock clasts and repeat step (1) to step (3) until the rebound height is smaller than 1 cm. It worth 369 

noted that when repeat the sample generation and compaction process, a new pseudorandom 370 

number would be updated in PFC3D to ensure a different spatial pattern (positions and orientations) 371 

of the generated rock clasts and the compaction friction coefficient will be adjusted carefully to 372 

reduce the interlocking of clasts during free falling and compaction. 373 

(5) Finally, after a total of three layers of rock aggregated are generated and compacted to reach the 374 

target void ratio, as shown in Fig. 12 (b), the compaction wall is deleted, and the real friction 375 

coefficient is assigned to all the particles. 376 

 377 

(a)                                   (b) 378 

Fig. 12  Compaction process: (a) compaction in three layers and (b) comparison of the compacted 379 

specimen between numerical and laboratory test  380 

After the compacted specimen is well prepared in Fig. 13 (a), the next process is to activate the 381 

confining pressure, named the consolidation process under isotropic compression, which is performed 382 

based on the following steps: 383 

(1) First, replace the rigid cylindrical sidewalls with the cluster-based membrane model, as shown in 384 
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Fig. 13 (b). The thickness of the numerical membrane is equal to the actual rubber membrane in a 385 

laboratory test (2.5 mm). Generate a new loading plate on the top of the specimen to mimic the real 386 

one shown in Fig. 11. 387 

(2) Then, the lateral confining pressure 𝜎𝑐 is activated based on the previously introduced membrane 388 

servo method, in which the specified force is applied to each bonded particle according to Eq. (17). 389 

Meanwhile, the bottom wall is fixed, and the axial confining pressure is activated based on the wall-390 

servo control process of the loading plate (top wall). The wall-servo control is a well-acknowledged 391 

process, in which a specific wall velocity is updated in real-time according to the contact force and 392 

stiffness measured from the loading wall at each time step (Gong and Liu 2017).  393 

(3) The specimen is assumed to reach the consolidated state, as shown in Fig. 13 (c), when two 394 

numerical conditions are satisfied at the same time: (a) the unbalanced ratio, defined as the ratio of 395 

the mean unbalanced force to the mean contact force (Farhang and Mirghasemi 2017), is less than 396 

10-5; and (b) the deviation between measured confining pressure and the target one is less than 0.1%.  397 

It can be seen from Fig. 13 (c) and (d) that the consolidated numerical specimen is visually 398 

consistent with the experimental one. It worth noted that since the pressure chamber is not transparent, 399 

the illustrated experimental consolidated specimen in Fig. 13 (d) is made by a vacuum pump, and the 400 

pressure difference is approximately equal to the confining pressure. 401 
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 402 

(a)                  (b)                 (c)                 (d) 403 

Fig. 13  Numerical consolidation process: (a) compacted specimen in rigid boundary, (b) replace rigid 404 

boundary, (c) consolidated specimen in simulation and (d) consolidated specimen in laboratory test 405 

Once the consolidated specimen is ready, the final step is to activate the axial compression load. 406 

As shown in Fig. 14 (a), the loading plate is moved down at a constant velocity in the shearing process, 407 

while the particle elements of the membrane moved independently to provide constant confining 408 

pressure. To obtain a quasi-static behavior, the shear strain rate 𝜀1̇  (the ratio of loading velocity to 409 

specimen height) is sufficiently small according to the inertia number 𝐼𝑖𝑛𝑒𝑟𝑡𝑖𝑎  introduced by MiDi 410 

(2004): 411 

𝐼𝑖𝑛𝑒𝑟𝑡𝑖𝑎 = 𝜀̇1
𝑑𝑐

√𝜎𝑐 𝜌𝑐⁄
< 10−3 (19) 

where 𝑑𝑐 is the average clast diameter, and 𝜌𝑐 is the density of clast. In this study, the shear velocity 412 

is constant (0.05 times the initial height of the specimen). Thus, 𝜀1̇ is Approximately equal to 0.05. 413 

Accordingly, 𝐼𝑖𝑛𝑒𝑟𝑡𝑖𝑎 is less than 10-4 during shear. 414 
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 415 

(a)                        (b)                       (c) 416 

Fig. 14  Shearing process: (a) packed specimen (b) sheared specimen and (c) sheared specimen in 417 

laboratory test 418 

The shearing process continues until the axial strain reached 15%, which is consistent with the 419 

laboratory test. As shown in Fig. 14 (b) and (c), the overall deformation of the numerical specimen at 420 

the final shear state is very similar to the realistic one. The simulation process of the large scale triaxial 421 

compression test is summarized in Fig. 15. 422 
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 423 

Fig. 15  Process of numerical triaxial compression test 424 

It worth noted that, to be consistent with the laboratory experiment, the axial strain 𝜀1, volumetric 425 

strain 𝜀𝑣 and deviatoric stress 𝑞 in this study are defined following the ASTM D7181: 426 

𝜀1 =
ℎ0 − ℎ

ℎ0
 (20) 

where ℎ0 and ℎ are the height of specimen in initial and current, respectively. 427 

The volumetric strain 𝜀𝑣 is given as follows: 428 

𝜀𝑣 =
𝑉0 − 𝑉

𝑉0
 (21) 

where 𝑉0 and 𝑉 are the volume of the specimen in the initial state and current state, respectively. 429 

The deviatoric stress 𝑞 is defined as: 430 

𝑞 =
ℎ𝑓̅

𝑉
 (22) 

where 𝑓 ̅ is the force applied to loading plate. The mean effective stress 𝑝 equals to: 431 

𝑝 = 𝜎𝑐 + 𝑞/3 (23) 
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4 Calibration of modeling parameters in DEM 432 

The calibration of modeling parameters is an essential step of the DEM simulation. To ensure more 433 

realistic and reasonable numerical results, a systematic calibration framework is proposed in this section. 434 

The modeling parameters involved in the proposed DEM simulation are carefully classified and 435 

calibrated. The following sections will introduce the detailed procedures for the determination of all 436 

modeling parameters, which are required in DEM simulation. 437 

4.1 Summary of modeling parameters and calibration process 438 

In this section, we first present a summary of the proposed calibration framework to determine the 439 

modeling parameters that are required in the DEM simulations of rock clasts. According to the adopted 440 

contact models and the simulated material properties, the modeling parameters are divided into three 441 

groups, e.g., known parameters, measured parameters, and calculated parameters, as shown in Fig. 16. 442 

 443 

Fig. 16  Classification of parameters 444 

4.1.1 Known parameters 445 

The known parameters, including the effective modulus of wall 𝐸𝑤, Poisson’s ratios 𝑣𝑐, 𝑣𝑚, 𝑣𝑤, 446 
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damping coefficient 𝜁, the density of clast 𝜌𝑐 and membrane 𝜌𝑚, can be directly inferred from the 447 

intrinsic properties of the corresponding materials and the previous literature. The adopted values of the 448 

five known parameters are listed as follow: 449 

(a) According to the manufacturer of triaxial apparatus, the effective modulus of wall 𝐸𝑤 and Poisson’s 450 

ratio of wall 𝜐𝑤 are 206 GPa and 0.3. The adopted values are also in line with the Chinese Design 451 

Code of Steel Structure (China 2017). 452 

(b) The Poisson’s ratio of clast 𝜐𝑐 is set to 0.25 according to the experimental study of similar rock 453 

clast in (Blake et al. 2019). The Poisson's ratio of rubber membrane 𝜐𝑚 is equal to 0.48 considering 454 

the extremely small volume compressibility of rubber (Lopera Perez et al. 2017). 455 

(c) The damping coefficient 𝜁 is set to 0.5 based on the previous DEM simulations in (Qu et al. 2019). 456 

It worth noted that, as suggested in (Nie et al. 2020), the 𝜁 has low impact on the numerical results 457 

under the quasi-static condition. 458 

(d) The density of clast 𝜌𝑐 and membrane 𝜌𝑚 are set to 2710 kg/m3 and 809 kg/m3 according to the 459 

real density of clast and membrane. 460 

4.1.2 Measured parameters 461 

The measured parameters include the effective modulus of clast 𝐸𝑐  and membrane 𝐸𝑚 , the 462 

normal 𝑘̅𝑛  and tangential 𝑘̅𝑡  bond stiffness, and the friction coefficients of clast-clast contact 𝜇𝑐 , 463 

membrane-membrane contact 𝜇𝑚, clast-membrane contact 𝜇𝑐𝑚, clast-wall contact 𝜇𝑐𝑤, membrane-464 

wall contact 𝜇𝑚𝑤. These parameters are expected to be measured from a series of calibration tests by 465 

approximating the DEM simulated results to the laboratory experimental ones. The detailed procedure 466 

of each calibration test will be introduced in the later sections. 467 

4.1.3 Calculated parameters 468 
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The calculated parameters are computed based on the results of the known and measured 469 

parameters. There are eight calculated parameters, including three effective moduli of clast-membrane 470 

contact 𝐸𝑐𝑚, clast-wall contact 𝐸𝑐𝑤, membrane-wall contact 𝐸𝑚𝑤 and five stiffness ratios of clast-471 

clast contact 𝑘𝑟𝑐, membrane-membrane contact 𝑘𝑟𝑚, clast-membrane contact 𝑘𝑟𝑐𝑚, clast-wall contact 472 

𝑘𝑟𝑐𝑤, membrane-wall contact 𝑘𝑟𝑚𝑤.  473 

Among them, the stiffness ratios can be directly calculated based on the corresponding Poisson’s 474 

ratios for each contact type according to previous investigation (Li et al. 2017): 475 

𝑘𝑟∗ = 
2 − 𝜐∗
2(1 − 𝜐∗)

 (24) 

where the subscript ∗ denotes the contact type. It worth noted that, according to Eq. (24), the 𝑘𝑟𝑐 and 476 

𝑘𝑟𝑚 can be directly calculated as 1.167 and 1.46, respectively. As for 𝑘𝑟𝑐𝑚, 𝑘𝑟𝑐𝑤 and 𝑘𝑟𝑚𝑤, their 477 

corresponding 𝜐𝑐𝑚, 𝜐𝑐𝑤 and 𝜐𝑚𝑤 are required to be solved according to the following equation: 478 

𝜐12 =
𝜐2𝐸1(1 + 𝜐2) + 𝜐1𝐸2(1 + 𝜐1)

𝐸1(1 + 𝜐2) + 𝐸2(1 + 𝜐1)
 (25) 

where the subscripts 1 and 2 denote the contact between material 1 and material 2. Among the 479 

parameters at the right-hand side of Eq. (25), the 𝐸𝑤, 𝑣𝑐, 𝑣𝑚, 𝑣𝑤 are known parameters while the 480 

𝐸𝑐, 𝐸𝑚 will be determined from the calibration tests in the later section. 481 

Besides, the three effective moduli 𝐸𝑐𝑚 , 𝐸𝑐𝑚 , 𝐸𝑐𝑤  are calculated based on the following 482 

equation: 483 

𝐸12 =
2𝐸1𝐸2(2 − 𝜐12)(1 + 𝜐12)

𝐸1(2 − 𝜐2)(1 + 𝜐2) + 𝐸2(2 − 𝜐1)(1 + 𝜐1)
 (26) 

It worth noted that Eq. (25) and Eq. (26) are derived from (Itasca 2014) based on the elastic theory. 484 

According to the above-detailed classification of the modeling parameters and their relationships, 485 

the proposed calibration framework is given in Fig. 17. First, according to the material properties, we 486 

can easily obtain the known parameters. Then, based on a series of calibration tests on membrane and 487 
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rock clasts, we can acquire most of the measured parameters, except the effective modulus of clast 𝐸𝑐. 488 

Next, a series of large triaxial compression test (with various trial values of 𝐸𝑐) are conducted to obtain 489 

the value of 𝐸𝑐. The macroscopic response of the numerical models is compared with that of the real 490 

experimental specimen to determine the precise value of 𝐸𝑐. Finally, all the calculated parameters can 491 

be solved based on the known parameters and the measured parameters. 492 

 493 

Fig. 17  The proposed framework for calibration of modeling parameter 494 

4.2 Calibration of the membrane properties 495 

In order to ensure that the behavior of the simulated membrane mimic the real boundary condition 496 

in the large triaxial compression test, the measured parameters, including 𝑘̅𝑛 , 𝑘̅𝑡  and 𝐸𝑚 , are 497 

carefully calibrated from a series of tensile tests and suspension tests. 498 

As shown in Fig. 18 (a), a high precision tension testing system (MTS insight 30) is employed to 499 

conduct the tensile test of the rubber membrane. The tested rubber membrane is 75.0 mm in length, 22.0 500 

mm in width, and 2.5mm in thickness. The simulation of the rubber membrane tensile test is conducted 501 

based on the following steps: 502 

(1) First, the clustered-based bonded particle model of the rubber membrane with the same dimension 503 
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as the tested sample in the laboratory experiment is generated. The trial values of 𝑘̅𝑛 and 𝑘̅𝑡 are 504 

assigned to the membrane model. 505 

(2) Then, two walls are generated to bond the top and bottom portions of the simulated membrane. The 506 

normal and tangential bond stiffness between walls and membrane particles is set to 105 times of 507 

𝑘̅𝑛 and 𝑘̅𝑡, respectively. 508 

(3) Next, the bottom wall is kept static and a constant upward velocity is applied on the top wall to pull 509 

up the membrane until a small strain increment is reached. This process is similar to the laboratory 510 

tensile test. 511 

(4) The model is kept cycling until that the unbalanced force ratio (ratio of the mean unbalanced force 512 

to the mean contact force) is smaller than 10-10. 513 

(5) The elastic modulus of the membrane according to the size of the sample, the measured bonding 514 

force, and displacements of the top and bottom walls are computed. Finally, the elastic modulus of 515 

the membrane is recorded. 516 

As shown in Fig. 18 (b), the suspension test is conducted by fixing the one side (20 mm in length) 517 

of the membrane at the horizontal plane and suspend another side (100 mm in length) of the membrane 518 

under gravity. The vertical displacement of ten measure points is recorded in the laboratory test. The 519 

process of the numerical suspension test is summarized as follow: 520 

(1) Generate the cluster-based membrane model with the same dimension as the tested one and assign 521 

the trial values of 𝑘̅𝑛 and 𝑘̅𝑡. 522 

(2) Fix the bonded particles on one side (20 mm) of the simulated membrane. Set gravity in the model 523 

and keep the model cycling until the unbalanced force ratio is less than 10-10. 524 

(3) Record the vertical displacement of all bonded particles. Compute the vertical displacement of the 525 
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measure points (same locations as the experimental ones) in the numerical model. 526 

The above-described two calibration tests are performed iteratively to determine the bond stiffness 527 

𝑘̅𝑛 and 𝑘̅𝑡. The adopted values of 𝑘̅𝑛 and 𝑘̅𝑡 are confirmed when the following two conditions are 528 

satisfied: 529 

(1) The deviation of the elastic modulus of the membrane between the laboratory tensile test and the 530 

DEM simulation is smaller than 2%. 531 

(2) The average deviation of the recorded vertical displacements between the measured points on the 532 

numerical model and laboratory specimen is smaller than 2%.  533 

Based on these two criteria, the 𝑘̅𝑛 and 𝑘̅𝑡 are finally determined as 3.4×108 Pa/m and 2.4×108 534 

Pa/m, respectively. As shown in Fig. 18 (c), using the calibrated 𝑘̅𝑛 and 𝑘̅𝑡, the simulation results are 535 

compared with the laboratory test results. It can be seen from the figures that both the stress-strain curve 536 

in the tensile test and the vertical displacement profile in the suspension test of the DEM simulation are 537 

consistent with those measured from the laboratory test. In addition, the effective modulus of 538 

membrane-membrane contacts 𝐸𝑚 can be measured to be equal to 1.06MPa from the laboratory test. 539 

Subsequently, the membrane-wall parameters 𝐸𝑚𝑤 and 𝑘𝑟𝑚𝑤 can be calculated as 1.06 MPa and 1.46 540 

using Eq. (25) and (26), respectively. 541 

 542 

(a) 543 
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 544 

(b) 545 

 546 

(c) 547 

Fig. 18  Calibration of bond parameters: (a) tensile test, (b) suspension test and (c) test results 548 

4.3 Calibration of friction coefficients 549 

The friction coefficients between different materials have significant influences on the mechanical 550 

behaviors in DEM simulation. However, how to accurately determine the friction coefficients between 551 

various numerical objects is still a changeling task in DEM (Asadi et al. 2018b; Wang et al. 2018). In 552 

this study, a series of sliding tests are conducted to determine all the involved friction coefficients 553 

between clasts, the membrane, and the steel plate. An example is illustrated in Fig. 19 (a), for the friction 554 
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coefficient between two contacted objects (A and B), the calibration process based on the sliding test in 555 

laboratory is performed as follows: 556 

(1) Fix object A on a slope, and keep its upper surface parallel to the slope. 557 

(2) Place object B on the upper surface of object A. Gradually increase the inclination of the slope and 558 

record the incline angle 𝛼 when the upper object slips off. 559 

(3) Generate the same numerical model of the corresponding laboratory sliding test in DEM. Ensure 560 

that the inclination angle of the interface between the two objects in the DEM model is the same as 561 

the recorded value 𝛼 in the laboratory sliding test. 562 

(4) Assign a trial value of the friction coefficient between the two objects and activate the gravity. Fix 563 

object A and run the DEM model. 564 

(5) Gradually decrease the friction coefficient until object B slipped off in DEM. Record the updated 565 

friction coefficient when the slippage occurs. 566 

(6) Conduct 20 tests following steps (1) - (5) to obtain more reliable results. It worth noted that for 567 

calibration of 𝜇𝑐, 𝜇𝑐𝑚, and 𝜇𝑐𝑤, the tested rock clasts that have flat surfaces are carefully selected 568 

for each simulation. 569 

Based on the above-described approach, the friction coefficients between clasts, membrane, and 570 

steel plate can be calibrated. Fig. 19 (b) – (f) illustrate the results of the experimental inclination angle 571 

and the simulated friction coefficient for each pair of target objects. It can be seen from the figures that 572 

for smooth contact interface conditions, e.g., wall (steel plate)-membrane contact and membrane-573 

membrane contact, the recorded incline angles and friction coefficients have relatively smaller 574 

deviations, while the results of clast-clast contact show the largest fluctuation. Based on the calibrated 575 

tests, the average friction coefficients for each contact types are adopted as 𝜇𝑐𝑚 = 0.65, 𝜇𝑐 = 0.97, 576 
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𝜇𝑚 = 0.9, 𝜇𝑚𝑤 = 0.64 and 𝜇𝑐𝑤 = 0.43. 577 

 578 

(a) 579 

 580 

(b) 581 

 582 

(c) 583 
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 584 

(d) 585 

 586 

(e) 587 

 588 

(f) 589 

Fig. 19 Sliding test: (a) method and (b) results 590 

4.4 Calibration of effective modulus 591 
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The last modeling parameter that is required to be calibrated is the effective modulus of clast-clast 592 

contact 𝐸𝑐. In this study, a series of laboratory triaxial compression tests of rock clasts are conducted 593 

and the macroscopic behaviors, e.g., stress-strain relationship, the volume change, are employed as the 594 

benchmarks for calibration of 𝐸𝑐 in DEM. The procedure to calibrate 𝐸𝑐 based on the laboratory tests 595 

and DEM simulations are detailed as follow: 596 

(1) Prepare five specimens of rock clasts with the same particle size distribution (as shown in Fig. 2) 597 

for laboratory tests. All the specimens are compacted to reach the target degree of compaction equal 598 

to 95% (about 0.56 in the void ratio). The dimension of each cylindrical specimen is 600 mm in 599 

height and 300 mm in diameter. The maximum particle size of the tested rock clasts is limited to 600 

50.0 mm so that the size ratio between the particle and specimen reaches 1:6 according to the 601 

suggestion in ASTM and previous investigations (Indraratna et al. 2011; Marschi et al. 1972). 602 

(2) Conduct the large-scale triaxial compression tests on the five specimens following the detailed 603 

process introduced in section 3.4. For each test, the confining pressure σ𝑐 is set as 50kPa to prevent 604 

the clasts from breakage. The shear strain rate is maintained at 2 mm/min during the triaxial 605 

compression test. The tests are completed when the 15% axial strain is achieved. It worth noted that 606 

crushed clasts are rarely found after testing, which indicated that the non-breakage assumption is 607 

suitable in this study. 608 

(3) According to the conventional range of effective modulus of rock clast in the previous 609 

investigations (Gong et al. 2019a; Sun et al. 2018), put forward a series of trial values of 𝐸𝑐 and 610 

compute the remaining relevant modeling parameters 𝐸𝑐𝑤, 𝑘𝑟𝑐𝑤, 𝐸𝑐𝑚, 𝑘𝑟𝑐𝑚. Input all modeling 611 

parameters into DEM to simulate the large-scale triaxial compression tests following the detailed 612 

process introduced in section 3.4.  613 
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(4) Compare the results of the deviatoric stress and volumetric strain between the experimental tests 614 

and the numerical simulations. Select the most appropriate value of 𝐸𝑐 so that the numerical output 615 

has the best goodness of fitting with the macroscopic behaviors of rock clasts in the experimental 616 

tests. 617 

As shown in Fig. 20, three example results of the numerical simulations (with 𝐸𝑐 = 0.2 GPa, 2.0 618 

GPa and 20 GPa) are compared with the laboratory results. It can be seen from the figure that larger 𝐸𝑐 619 

leads to significant higher shear stiffness and larger shear strength. In addition, the trend of dilatancy is 620 

also positively correlated with the adopted 𝐸𝑐. Since the numerical model with 𝐸𝑐 = 2.0 GPa shows 621 

satisfied fitness to the experimental results, we adopt 𝐸𝑐  = 2.0 GPa in this study and remaining 622 

calculated parameters can also be determined as 𝐸𝑐𝑤 = 1.98 GPa, 𝑘𝑟𝑐𝑤 = 1.167, 𝐸𝑐𝑚 = 2.12 kPa, 623 

𝑘𝑟𝑐𝑚 = 1.46. 624 

 625 

(a)                                    (b) 626 

Fig. 20 Comparison of typical mechanical responses in the triaxial test under a confining 627 

pressure of 50 kPa: (a) deviatoric stress and (b) volumetric strain 628 

4.5 Influence of gravity in homogeneity 629 

The large triaxial specimen is heavy and, in consequence, the inhomogeneity of specimen caused 630 

by gravity may be larger. Thus, it is necessary to analyze the gravity induced inhomogeneity.  631 
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First, the visualized contact force network at 𝜀1 = 0% and 𝜀1 = 15% is compared in Fig. 21 (a). 632 

At the beginning of shearing, the density of strong contact force (red line) near the base plate is greater 633 

than that near the loading plate because of the wight of clasts. But this phenomenon is not obvious at 634 

the end of shearing. This difference relates to the fact that the influence of gravity in homogeneity highly 635 

depends on the mean effective stress p. 636 

To accquire the influence of gravity in micro perspective, the average stress tensor of a single 637 

particle 𝜎̅𝑖𝑗
𝑃 which was given by Potyondy and Cundall (Potyondy and Cundall 2004) is introduced: 638 

σ̅ij
𝑃=

1

𝑉𝑃
∑𝑓𝑖

𝐶𝑟𝑗
𝐶

𝑁𝐶𝑃

𝐶=1

 (27) 

where 𝑉𝑃 is the volume of the given particle, 𝑁𝐶𝑃 is the contact number of the given particle, 𝑓𝑖
𝐶 is 639 

the ith component of the contact force, and 𝑟𝑗
𝐶 is the jth component of the vector connecting the contact 640 

point to the particle center. 641 

According to the position of particles in specimen (Fig. 21b), the particle stress ratio PSR, which 642 

may be a persuasive index to reflect the gravity induced inhomogeneity in micro perspective, is defined 643 

as: 644 

PSR=
Average σ̅zz

P  in top zone

Average σ̅zz
P  in bottom zone

 (28) 

As shown in Fig. 21 (b), the particle stress ratio PSR increases to a plateau during shear. Combine 645 

to the development of deviatoric stress in Fig. 20 (a), we can conclude that the difference of particle 646 

stress in top zone and bottom zone gradually decreases with increasing p. In other words, the increasing 647 

p leads to the decreasing influence of gravity in homogeneity. It should be noted that the value of plateau 648 

of PSR is larger than 1.0. This result indicates that the particles in top zone have higher probability to 649 

participate in the strong contact force chain compare to the particles in bottom zone, consistent with the 650 

density of strong contact force observed in Fig. 21 (a). 651 



40 

 

 652 

(a) 653 

 654 

(b) 655 

Fig. 21 Gravity induced inhomogeneity of contact force (a) visualized contact force network and 656 

(b) particle stress ratio 657 

5 Application and analysis 658 

To further illustrate the capability of the proposed method, the DEM simulations of large scale 659 

triaxial compression tests are performed to investigate the macro-and micro-mechanical behaviors of 660 

rock clasts under different confining pressure conditions. All the adopted modeling parameters are 661 

obtained from the above-described calibration tests and are summarized in Table 1. 662 

 663 
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Table 1  Material properties used in the DEM simulation 664 

Type Parameter Value 

Linear elastic model 

Effective modulus of clast-clast contacts, 𝐸𝑐  (Pa) 2.0×109 

Effective modulus of clast-membrane contacts, 𝐸𝑐𝑚  (Pa) 2.12×106 

Effective modulus of clast-wall contacts, 𝐸𝑐𝑤  (Pa) 1.98×109 

Effective modulus of membrane-membrane contacts, 𝐸𝑚  (Pa) 1.06×106 

Effective modulus of membrane-wall contacts, 𝐸𝑚𝑤  (Pa) 1.06×106 

Stiffness ratio of clast-clast contacts, 𝑘𝑟𝑐  1.167 

Stiffness ratio of clast-membrane contacts, 𝑘𝑟𝑐𝑚 1.46 

Stiffness ratio of clast-wall contacts, 𝑘𝑟𝑐𝑤  1.167 

Stiffness ratio of membrane-membrane contacts, 𝑘𝑟𝑚 1.46 

Stiffness ratio of membrane-wall contacts, 𝑘𝑟𝑚𝑤  1.46 

Simplified parallel 

bond model 

Normal stiffness of parallel bond, 𝑘̅𝑛 (Pa/m) 3.4×108 

Tangential stiffness of parallel bond, 𝑘̅𝑡 (Pa/m) 2.4×108 

Friction coefficient 

Friction coefficient of clast-clast contacts, 𝜇𝑐 0.65 

Friction coefficient of clast-membrane contacts, 𝜇𝑐𝑚 0.97 

Friction coefficient of clast-wall contacts, 𝜇𝑐𝑤 0.43 

Friction coefficient of membrane-membrane contacts, 𝜇𝑚𝑚 0.9 

Friction coefficient of membrane-wall contacts, 𝜇𝑚𝑤 0.64 

Density of clast, 𝜌𝑐  (kg/m3) 2710 

Density of membrane particles, 𝜌𝑚  (kg/m3) 809 

Global parameter Damping coefficient, 𝜁 0.5 

 665 

The range of the confining pressure is similar to the measured value in the ballast layer of the 666 

heavy haul railway (Sun et al. 2019). It worth noted that the influence of particle breakage is eliminated 667 

since the rock aggerates are modeled as non-breakage clump particles. The initial fabric properties, e.g., 668 

spatial arrangement and orientations of the rock clasts, are kept as the same to ensure that the confining 669 

pressure is the only variable in this numerical study. 670 

As shown in Fig. 22, all preshear specimens are made from one compacted specimen. To eliminate 671 

the effect of gravity induced inhomogeneity, the consolidation and shearing process is in non-gravity 672 

condition (Shire and O’Sullivan 2012). Moreover, both loading plate and base plate move to each other 673 

in same velocity during shear. Four different confining pressure (e.g., 12.5 kPa, 25 kPa, 50 kPa, 100 674 
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kPa) are activated with the simulated rubber membrane considering the non-breakage assumption. After 675 

the consolidated specimens are obtained, all samples are sheared to the same axial strain (𝜀1=15%). It 676 

can be observed from Fig. 22 that the surface of sheared specimens became more rugged with the 677 

increasing confining pressure. This phenomenon indicates that the decreased preshear void ratios of 678 

specimens (shown in Fig. 22) highly relates to the distortion of rubber membrane according to the 679 

confining pressure. 680 

 681 

Fig. 22  Simulation schemes 682 

The results of numerical triaxial tests are analyzed from both macroscale and microscale 683 

perspectives. In the macroscale perspective, we focus on shear strength and dilatancy. The microscale 684 

analysis is divided into inter-particle structure and contact behaviors. The evolutions of mean 685 

coordination number, particle orientation, connectivity, and sliding contact during the shear process are 686 

investigated to explain the macroscale response. Moreover, the shear band is analized based on the 687 

displacement and rotation of particles.  688 

5.1 Shear strength and dilatancy 689 
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As shown in Fig. 23, the typical outputs of triaxial tests in compression, including the stress ratio 690 

- axial strain curves and the volumetric strain - axial strain curves, are computed. It can be seen from 691 

Fig. 23 (a) that the stress ratios of all samples gradually increase to a plateau versus the increasing axial 692 

strain. With increasing confining pressure 𝜎𝑐, both the peak stress ratio and the shear modulus become 693 

smaller. Fig. 23 (b) displays the shear-induced dilatancy. In general, all specimens undergo an initial 694 

slight contraction and then exhibit significant dilation. With increasing 𝜎𝑐, the volumetric dilatancy of 695 

the specimen is smaller. 696 

 697 

(a)                                    (b) 698 

Fig. 23  Typical curves in triaxial test: (a) stress ratio and (b) volumetric strain 699 

5.2 Inter-particle structure 700 

The mean coordination number CNP, and the orientation distributions are studied to reveal the 701 

evolution of inter-particle structures during shear. 702 

The mean coordination number CNP is defined as the average number of neighboring clast particles. 703 

The CNP can indicate the particle rearrangement and the internal packing structure. As shown in Fig. 704 

24, as expected, CNP increases with increasing confining pressure. In addition, during shear, CNP of all 705 

specimens sharply increases in 𝜀1 ∈  (0, 0.01), and then slowly decrease to a plateau. The result 706 
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demonstrates that the inter-particle structure becomes denser during the initial shear stage, which is 707 

consistent with the phenomena observed from the volumetric strain curve. 708 

  709 

Fig. 24  The coordination number of clast particles CNP 710 

The orientation distributions are visualized on the horizontal and vertical planes, as shown in Fig. 711 

25. It can be seen from the figure that the orientation distributions in x-z plane and y-z plane are very 712 

similar. The dotted line and solid line indicate the orientation distributions of compacted specimens and 713 

sheared specimens, while the grey dotted line represents the compacted state of the sample before the 714 

consolidation process. Obviously, the major principal orientations of clasts mainly accumulated near 715 

the horizontal plane in all stages. It is easy to understand that an clast is more likely to align 716 

perpendicular to the gravitational directions to reach a stable state. The orientation distributions of rock 717 

clasts show obviously preferable directions before shear, indicating that the process of compaction leads 718 

to significant fabric anisotropy. After applying confining pressure in the rubber membrane, the 719 

anisotropy decreases. Moreover, the shearing process also results in increasing anisotropy. However, 720 

the influence of confining pressure on the anisotropy of clast orientation is negligible in the range of 721 

this study. 722 
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 723 

(a)                       (b)                       (c) 724 

Fig. 25  Statistic of the direction of clast: (a) in x-y plane, (b) in x-z plane and (c) in y-z plane 725 

5.3 Contact behaviors 726 

In this section, the contact behaviors are characterized by the percentage of the particles with 727 

connectivity larger than 4, P(C≥4), and the percentage of sliding contact, Sp. 728 

Connectivity C is the contact number for a specific particle (Nie et al. 2019). In three dimensions, 729 

particles with C≤3 cannot contribute to stability. Thus, the percentage of particles with connectivity 730 

C≥4, P(C≥4), can reflect the internal stability of specimens under external load. Fig. 26 (a) displays the 731 

evolution of P(C≥4) during shear at a different confining pressure 𝜎𝑐. Increasing 𝜎𝑐 leads to a distinct 732 

increase in P(C≥4). This can be easily understood as higher 𝜎𝑐 makes the specimens denser and more 733 

stable. Moreover, for a specific 𝜎𝑐, P(C≥4) initially increases to a peak, and then gradually decreases 734 

to a plateau. Compare the trend of P(C≥4) and 𝜀𝑣, we can conclude that the most stable conditions of 735 

the specimens appear after the initial contraction, and the specimens gradually become unstable as the 736 

dilatancy becomes larger. 737 

The evolution of the percentage of sliding contact SP during shear is presented in Fig. 26 (b). In 738 

general, SP first increases to a peak and then gradually decreases, indicating that the sliding between 739 
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clasts diminishes with tangential and normal contact force become more and more important. In 740 

addition, the larger the confining pressure is, the smaller the SP is. This phenomenon indicates that the 741 

increasing confining pressure hinders the sliding and thus leads to a smaller dilatancy, as revealed in 742 

Fig. 23 (b). 743 

 744 

(a)                                    (b) 745 

Fig. 26 Quantification of contact behaviors: (a) percentage of particles with connectivity larger 746 

than 4 P(C≥4) and (b) percentage of sliding contact SP of specimens 747 

5.4 Shear band analysis 748 

The shear band is a common feature of localisation plastic deformation for the instability of triaxial 749 

specimen. Compare to conventional servo method (e.g., wall-based servo method), one outstanding 750 

advantage of the membrane-based servo method is the realistic shear band (Qu et al. 2019). For wall-751 

based servo method, the particles are forced to adapt to the kinematics of the boundary walls. But for 752 

membrane-based servo method, particles are able to move freely at any position. The shear band can be 753 

recognised by non-strain indications (Qu et al. 2019). Thus, in this section, particle displacement and 754 

particle rotation are selected to visualize and analyze the shear band. 755 

Fig. 27 (a) illustrates the displacement of particles as vectors at 𝜀1 = 15%, and the thickness of 756 
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vectors is scaled by magnitude. Obviously, the inclination of shear bands increase with increasing 757 

confining pressure 𝜎𝑐. The localised instability may be dominated by strong local inhomogeneity (Rice 758 

1976). In other words, the initial flaws (or relatively large voids) in the specimen give rise to 759 

concentrating deformation in its vicinity. Thus, the stronger contact force caused by the increasing 𝜎𝑐 760 

leads to the larger development of the initial flaws. In consequence, the inclination of shear bands 761 

increase.  762 

Fig. 27 (b) shows the distribution of cumulative rotation of particles 𝜔 at 𝜀1 = 15% which was 763 

proposed by Zhu et al. (Zhu and Yin 2019). Similar to particle size distribution, the rotational 764 

distribution is the volumetric (or mass) percentage of particles rotating to a greater degree than indicated 765 

by 𝜔 . The particles in triaxial specimen can be divided into low rotational, transmission and high 766 

rotational according to 𝜔. All the curves of rotational distribution intersect at 𝜔 = 0.28 radians. The 767 

particles with 𝜔 ≤ 0.28 radians can be named as low rotational particles which are not engaged in shear 768 

band. It can be concluded from the results that higher 𝜎𝑐 leads to fewer percentage of low rotational 769 

particles, indicating that the area of shear band increases with increasing 𝜎𝑐. 770 

 771 

(a) 772 
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 773 

(b) 774 

Fig. 27 Shear band analysis: (a) visualization of shear band at 𝜺𝟏 = 15% and (b) distribution of 775 

particle rotation 776 

6 Conclusion 777 

A DEM modeling framework of the large scale triaxial test on rock clasts has been proposed with 778 

a systematic calibration process. The fitness between numerical simulations and laboratory test results 779 

in both stress ratio and volumetric strain indicated that the proposed method is reliable. Furthermore, 780 

the proposed method is applied to investigate the macro- and microscopic behaviors of rock clasts under 781 

different confining pressures. The main contributions of the proposed study are summarized as follows: 782 

(1) Close-range photogrammetry is employed to reconstruct the 3D particle model of the realistic rock 783 

clasts. The shapes of the sampled rock clasts are quantitatively analyzed, and the clump-based 784 

model is adopted to approximate the realistic particle morphology in DEM. 785 

(2) The flexible boundary of the triaxial test in the real laboratory experiment is simulated as a cluster-786 

based membrane model, which employs the simplified linear parallel bond model to bonded the 787 

neighboring particle elements in a triangular meshes network. Subsequently, the membrane servo 788 

control algorithm based on the cluster-based membrane model is developed in PFC3D5.0 to activate 789 



49 

 

the confining pressure. 790 

(3) A systematic procedure for calibration of modeling parameters is proposed to accurately capture 791 

the properties of the realitstic material in DEM simulation. The calibration tests include tensile and 792 

suspension tests (membrane properties), sliding tests (friction coefficients), and the large-scale 793 

triaxial compression tests (effective modulus). 794 

(4) The proposed approach is employed to simulate the large scale triaxial compression tests of rock 795 

clasts with different confining pressures. The macroscopic quantities, including the mean 796 

coordination number, particle orientation, connectivity, and sliding contact, are analyzed to explain 797 

the evolution of the macroscale responses, e.g., shear strength and dilatancy. 798 
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