
In many practical settings, learning algorithms can take a substantial amount of time to converge,
thereby raising the need to understand the role of discounting in learning. We illustrate the impact
of discounting on the performance of learning algorithms by examining two classic and representa-
tive dynamic-pricing and learning problems studied in Broder and Rusmevichientong (2012) [BR]
and Keskin and Zeevi (2014) [KZ]. In both settings, a seller sells a product with unlimited inventory
over T periods. The seller initially does not know the parameters of the general choice model in
BR (resp., the linear demand curve in KZ). Given a discount factor ρ, the retailer’s objective is
to determine a pricing policy to maximize the expected discounted revenue over T periods. In
both settings, we establish lower bounds on the regret under any policy and show limiting bounds
of Ω(

√
1/(1− ρ)) and Ω(

√
T ) when T → ∞ and ρ → 1, respectively. In the model of BR with

discounting, we propose an asymptotically tight learning policy and show that the regret under
our policy as well that under the MLE-CYCLE policy in BR is O(

√
1/(1− ρ)) (resp., O(

√
T ))

when T → ∞ (resp., ρ → 1). In the model of KZ with discounting, we present sufficient con-
ditions for a learning policy to guarantee asymptotic optimality, and show that the regret under
any policy satisfying these conditions is O(log(1/(1− ρ))

√
1/(1− ρ)) (resp., O(log T

√
T )) when

T → ∞ (resp., ρ → 1). We show that three different policies – namely, the two variants of the
greedy Iterated-Least-Squares policy in KZ and a different policy that we propose – achieve this
upper bound on the regret. We numerically examine the behavior of the regret under our policies
as well as those in BR and KZ in the presence of discounting. We also analyze a setting in which
the discount factor per period is a function of the number of decision periods in the planning horizon.
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1 Introduction

In the classic revenue-management setting where a revenue-maximizing retailer sells a new product

over a planning horizon, customers arrive sequentially and the retailer needs to dynamically adjust its

retail price to learn the demand curve of the product, i.e., the relationship between the demand and
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the retail price; see, for example, Broder and Rusmevichientong (2012) [henceforth, BR] and Keskin

and Zeevi (2014) [henceforth, KZ]. Depending on the industry, the arrival rate of consumers (via online

and/or off-line channels) for the product(s) whose demand curve is to be learned, can be drastically

different. For example, for a typical product sold (say) in a grocery store, the retailer can hope to

access thousands of consumers each day. In contrast, the arrival rate of customers for expensive and

niche products is typically much lower. For instance, only a handful of customers typically visit a

Lamborghini dealership in a day; in 2019, Lamborghini sold a total of 4,296 units of the Super SUV

Lamborghini Urus across 165 dealers in the world (which is about 0.08 units sold per dealership per

day on average)1. When the consumer arrival rate is high, the required observations can be made

quickly, thus enabling learning algorithms to converge fast. On the other hand, when the arrival rate

is low, then learning can take a substantial amount, e.g., months, to converge, thus raising the need

to understand the role of discounting in learning algorithms. In a similar vein, complex learning tasks

can also require a significant amount of time; e.g., the learning of the correlated demand curves of

a large number of substitutable products, again arguing for the need to incorporate discounting in

learning. Events such as the recent significant interest-rate hikes by the U.S. Federal Reserve further

raise the need to understand the impact of discounting in learning2.

Intuitively, it is clear that discounting can fundamentally influence the tradeoff between explo-

ration and exploitation that learning algorithms often exploit. Our goal is to illustrate the impact of

discounting on the performance of learning algorithms. To this end, we examine two classic and rep-

resentative settings that are analyzed in BR and KZ, and incorporate a discount factor in the learning

algorithms for these settings. In particular, we consider two asymptotic regimes without assuming

any specific relationship between the length of the planning horizon and the discount factor – first,

consistent with the analysis in BR and KZ, where the length of the planning horizon approaches

infinity, and the second, where the discount factor approaches 1. For each setting, we first use the

classical notion of regret to analyze the performance of the algorithms proposed in these two papers

with respect to the discount factor. This analysis requires the development of a lower bound of the

regret under any policy and an upper bound on the regret under the specific algorithms proposed in

these papers. Then, we propose new algorithms that explicitly incorporate the discount factor and

obtain upper bounds on the regret under these algorithms. We also numerically examine the behavior

1https://www.best-selling-cars.com/brands/2019-global-lamborghini-sales-worldwide/
2https://www.bloomberg.com/news/articles/2022-07-13/fed-could-weigh-historic-100-basis-point-hik

e-after-cpi-scorcher#xj4y7vzkg
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of the regret under these algorithms.

It is important to note that while the significance of incorporating discounting naturally increases

as the duration of the planning horizon increases, discounting can be explicitly incorporated in any

learning setting, without consideration for the length of the planning horizon. For instance, for any

given planning horizon that has been divided into decision periods, one can define the precise change

in the value of money with time by examining a specific relationship between the discount rate per

period and the discount rate over the planning horizon. Of course, the significance of incorporating

discounting will likely vary depending on the specifics of the business context under consideration.

To this end, we also examine an alternate setting where a given planning horizon (say, a quarter)

is split into smaller decision periods. This naturally results in the discount factor per period being

an increasing function of the number of periods. In particular, as the number of periods tends to

infinity, the discount factor per period tends to 1. Here, we consider another asymptotic regime where

the number of periods approaches infinity, keeping the demand volume per period the same, and, as

before, derive a lower bound on the regret under any policy and an upper bound on the regret under

the algorithms in BR and KZ as well as our new algorithms.

1.1 Summary of Contributions

We incorporate discounting in two models: the model in BR and the one in KZ. Both papers study

the dynamic pricing of products with unlimited inventory, where the seller needs to learn the unknown

parameters of a demand function. In both settings, we first establish a lower bound on the regret under

any pricing policy – this bound is a function of both the time horizon T and the discount factor ρ – and

then obtain asymptotically optimal policies. We also analyze a setting in which the discount factor

per period is a specific function of the number of decision periods in the planning horizon.

In Section 2, we incorporate discounting in the model analyzed in BR, where the probability that a

customer purchases a product at a given price is characterized by certain parameters that are unknown

and should be learnt. The authors show that the regret under any pricing policy is Ω(
√
T ), and propose

a pricing policy, referred to as MLE-CYCLE, that achieves a regret of O(
√
T ). In the presence of

discounting, we establish (in Theorem 1) a lower bound of Ω
(√

1
1−ρ

)
(resp., Ω(

√
T )) on the regret

under any pricing policy, when T → ∞ (resp., ρ → 1). Then, we propose a pricing policy and show

(in Theorem 2) that it achieves a regret of O
(√

1
1−ρ

)
(resp., O(

√
T )) when T → ∞ (resp., ρ → 1).

In addition, we show (in Theorem 3) that under discounting, the MLE-CYCLE policy in BR also
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achieves a regret of O
(√

1
1−ρ

)
when T → ∞. In Section 2.3, we numerically examine the behavior of

the regret under our policy as well as the MLE-CYCLE policy in the presence of discounting.

In Section 3, we incorporate discounting in the single-product setting of KZ. The authors consider

a linear demand model, where the demand in each time period consists of two parts: a deterministic

part, which is a linear function (with unknown parameters) of the price, and a random demand

shock. They show that the regret under any pricing policy is Ω(
√
T ). The authors then consider the

well-known greedy Iterated Least Squares (ILS) policy (Anderson and Taylor 1976) and show that,

under certain conditions, a variant of this policy achieves a regret of O(log T
√
T ). In the presence of

discounting, we establish (in Theorem 4) a lower bound of Ω
(√

1
1−ρ

)
(resp., Ω(

√
T )) on the regret

under any policy, when T → ∞ (resp., ρ→ 1). We then modify the conditions in KZ in the presence

of discounting and show (in Theorem 5) that if a policy satisfies our conditions, then it achieves a

regret of O
(
log
(

1
1−ρ

)√
1

1−ρ

)
(resp., O(log T

√
T )), when T → ∞ (resp., ρ→ 1). Next, we show that

three different policies – namely, the two variants of the greedy ILS policy in KZ and a different policy

that we propose – achieve this upper bound on the regret. Finally, in Section 3.3, we numerically

examine the performance of the above policies.

Section 4 assumes a specific relationship between ρ and T . We show that for the models in BR

and KZ, the regret under any policy is Ω(
√
T ) (Propositions A.1 and A.4). For the model in BR, we

show that the regret under our policy as well that under the MLE-CYCLE policy in BR is O(
√
T )

(Propositions A.2 and A.3). For the model of KZ, we show that the regret is O(log T
√
T ) under three

policies – namely, the two variants of the greedy Iterated-Least-Squares policy in KZ and a different

policy that we propose (Propositions A.5 and A.6).

1.2 Technical Highlights

We first briefly explain the highlights of our technical analysis when we incorporate discounting in the

model of BR. To establish a lower bound on the regret under any policy in terms of the time horizon T

and discount factor ρ, similar to BR, we apply the Kullback-Leibler (KL) divergence as a measure

of the difference between two distributions. BR establish two lower bounds (Lemmas 3.3 and 3.4 in

that paper) on the regret that are functions of the KL divergence and T . Based on these two lower

bounds, they choose two parameter values that depend on T , and show that the regret is Ω(
√
T ) for

at least one of these two parameter values. In our analysis, however, we need to take into account

the discounting effect and establish two new lower bounds (Lemmas A.2 and A.3) on the regret that
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are functions of the KL divergence, T , and ρ. Using these two bounds, we choose three parameter

values, which depend on both T and ρ, and show that for at least one of these three values, the regret

is Ω
(√

1
1−ρ

)
(resp., Ω(

√
T )) when T → ∞ (resp., ρ = 1).

The incorporation of the discount factor alters the analysis in a non-trivial manner. For in-

stance, BR prove a lower bound on the regret in Lemma 3.3 of their paper by (i) first establishing

a lower bound on the regret in each time period using the conditional KL divergence in that time

period and (ii) then applying the Chain Rule to show a lower bound on the cumulative regret using

the total KL divergence. In our analysis, however, we cannot apply the Chain Rule directly as we

must consider the cumulative discounted regret, which is bounded from below by a constant times the

cumulative discounted conditional KL divergence; we note that the Chain Rule can only be applied

to the summation of the conditional KL divergence. Therefore, we need to isolate the discount factor

from the cumulative discounted conditional KL divergence – to achieve this, it becomes necessary to

decompose and reorganize the cumulative discounted conditional KL divergence.

As mentioned earlier, in our analysis of the setting in BR, Theorems 2 and 3 establish, respectively,

asymptotic bounds on the regret under our proposed policy and under the MLE-CYCLE policy in BR.

The structure of our policy is different from that of the policy in BR. Specifically, MLE-CYCLE

operates in cycles, with each cycle consisting of an exploration phase and an exploitation phase. Our

policy consists of one exploration phase at the beginning of the time horizon and one exploitation

phase for the remainder of the time horizon. The key to guarantee the asymptotic upper bounds on

the regret under our policy is to choose an appropriate length of the exploration phase to balance the

exploration-exploitation tradeoff.

In our analysis of the setting in KZ, to obtain a lower bound on the regret under any policy in terms

of both the time horizon T and discount factor ρ, we generalize Lemma 1 in KZ by incorporating ρ

(Lemma A.7). To establish the upper bound on the regret under discounting in Theorem 5, we use a

decomposition approach that is significantly different from the technique used in KZ: For a constant N ,

we partition the cumulative regret into two parts, namely the regret in the first N periods and that

in the remaining T −N periods, and first establish an upper bound on the cumulative regret that is a

function of T , ρ, and N . Our eventual upper bound is then obtained by making an appropriate choice

of N . Finally, the upper bound on the regret in Theorem 6 also requires non-trivial technical work. In

particular, Lemma A.9 establishes an upper bound on the difference between the optimal price under

the true parameters of the demand function and the “greedy” price (based on our estimates) offered
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in the exploitation phase of our policy.

1.3 Literature Review

Our work is related to the stream of literature on demand learning with discounting. Studies in this

stream examine dynamic pricing policies in Bayesian learning settings with discounted rewards; unlike

our work, the focus in these papers is not on studying the impact of discounting in their policies or

on analyzing the regret under their policies with respect to the discount factor. We briefly summarize

a few representative papers in this literature. Chen and Wang (1999) study the dynamic pricing of a

single asset over an infinite horizon with discounted rewards. The willingness-to-pay is drawn from one

of two possible distributions and is learnt via Bayesian updating. The authors characterize an optimal

pricing policy that incorporates updated beliefs in each period. Zhang and Chen (2006) investigate

joint pricing and inventory control with Bayesian learning of a component of the demand that does

not depend on the selling price. The authors solve a Bayesian dynamic program and characterize

an optimal policy to maximize the finite-horizon expected discounted profit. Araman and Caldentey

(2009) and Farias and Van Roy (2010) consider dynamic pricing problems faced by a retailer with

finite inventory, and aim to maximize expected discounted revenue over an infinite time horizon.

In both problems, the willingness-to-pay distribution is known while the customer arrival rate is

unknown. Both papers formulate Bayesian dynamic programs, propose pricing heuristics, and analyze

their performance. Mason and Välimäki (2011) focus on revenue maximization in a posted-price,

infinite-horizon setting with discounted rewards. They assume a commonly-known willingness-to-pay

distribution and an unknown arrival-rate of customers, which can be either high or low and is learnt

in a Bayesian fashion. The authors study the structural properties of the optimal price. Kwon et al.

(2012) consider a firm seeking to maximize its expected discounted profit over an infinite time horizon

using markdown pricing. They model the cumulative demand as a Brownian motion with an unknown

drift that is either high or low and is learnt via Bayesian updating. The authors characterize the

optimal initial price, markdown price, and markdown time.

Our work also contributes to the recent fast-growing literature on learning algorithms, e.g., Broder

(2011), Besbes and Zeevi (2015), Qi et al. (2017), Baardman et al. (2019), Chen et al. (2020), Jaga-

bathula et al. (2020), Keskin et al. (2020), Lei et al. (2023), Mintz et al. (2020), Zhang et al. (2020),

Besbes et al. (2021), Chen et al. (2021), Lyu et al. (2021), Zhang et al. (2021), Keskin and Li (2023),

and Feng et al. (2023). The papers in this domain propose and analyze learning algorithms under

a variety of business environments (without explicitly incorporating discounting), and examine the
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behavior of the regret. For an excellent review of earlier work in this domain, we refer the reader to

den Boer (2015).

2 Incorporating Discounting in the Model in BR (2012)

We briefly introduce the model in BR; to the extent possible, we retain the same notation. Consider

a retailer selling a product with infinite inventory over a time horizon of T periods. In period t ≥ 1,

the retailer determines the price pt and a customer decides whether to purchase the product or not

at that price. Let d(p; z) denote the probability that the customer will purchase a product at price p,

where p ∈ P = [pmin, pmax] ⊆ R+, z ∈ Z ⊆ Rn is a vector of unknown parameters, and Z is a compact

and convex parameter set. We assume that d(p; z) is nonincreasing in p for all z ∈ Z. Then, the

single-period expected revenue r(p; z) under price p is r(p; z) = d(p; z)p.

We now incorporate discounting. Let ρ ∈ [0, 1) denote the discount factor and let C = (P,Z, d).

Then, the expected discounted revenue over T periods is:

R(z, C, T, ρ) =
T∑
t=1

ρt−1r(pt; z).

When z is known, we assume that r(·; z) has a unique maximizer in P for each z ∈ Z, and denote it

by p∗(z). We make the following two assumptions (Assumptions 1 and 2 below), reproduced verbatim

here from BR, on the problem class C.

Assumption 1 There exists positive constants dmin, dmax, L, and cr, such that

(a) 0 < dmin ≤ d(p; z) ≤ dmax < 1 for all p ∈ P and z ∈ Z.

(b) The revenue function p 7→ r(p; z) has a unique maximizer p∗(z) ∈ P.

(c) The function z 7→ p∗(z) is L-Lipschitz, that is, |p∗(z)− p∗(z̄)| ≤ L∥z − z̄∥ for all z, z̄ ∈ Z.

(d) The revenue function p 7→ r(p; z) is twice differentiable with supp∈P,z∈Z |r′′(p; z)| ≤ cr.

For t ≥ 1, let yt = 1 if a customer purchases a product in period t, and yt = 0 otherwise. Let

yt = (y1, y2, · · · , yt) ∈ {0, 1}t denote the purchasing history in the first t periods. When z is unknown,

we define a pricing policy ψ = (ψ1, ψ2, · · · ) as a sequence of functions, where ψt : {0, 1}t−1 → P sets

the price in period t based on yt−1, i.e., the purchasing history of the first t − 1 periods. For any

policy ψ and z ∈ Z, let Y ψ,z
t = (Y1, Y2, · · · , Yt) denote the random outcome of the first t periods

7



when policy ψ is used and the vector of the underlying true parameters is z. Then, the probability

distribution of Y ψ,z
t is given by

Qψ,zt (yt) =

t∏
l=1

d(ψl(yl−1); z)
yl(1− d(ψl(yl−1); z))

1−yl for all yt = (y1, y2, · · · , yt) ∈ {0, 1}t.

We also define the distribution of customer responses to a sequence of fixed prices p = (p1, · · · , pk) ∈ Pk

for some k ∈ N:

Qp,z(y) =

k∏
l=1

d(pl; z)
yl(1− d(pl; z))

1−yl ,

where y ∈ {0, 1}k. We make the following statistical assumption:

Assumption 2 There exists a vector of exploration prices p̄ ∈ Pk for some k ∈ N such that the family

of distributions {Qp̄,z : z ∈ Z} is identifiable; that is, Qp̄,z(·) ̸= Qp̄,z̄(·) whenever z ̸= z̄. Moreover,

there exists a constant cf > 0 depending only on the problem class C and p̄ such that the smallest

eigenvalue of matrix I(p̄, z), denoted by λmin{I(p̄, z)}, satisfies λmin{I(p̄, z)} ≥ cf for all z ∈ Z,

where I(p̄, z) denotes the Fisher information matrix that is defined as follows:

[I(p̄, z)]i,j = E
[
− ∂2

∂zi∂zj
logQp̄,z(Y )

]
=

n∑
k=1

{(∂/∂zi)d(p̄k, z)} × {(∂/∂zj)d(p̄k, z)}
d(p̄k, z)(1− d(p̄k, z))

.

We refer the reader to Section 2 of BR for three common parametric demand models, namely the

logit, linear, and exponential demand models, that satisfy Assumptions 1 and 2. For a problem class

C satisfying Assumptions 1 and 2, we define the regret under an arbitrary policy:

Regret: Let Pψt denote the random price in period t under policy ψ. For a problem class C, a vector

of parameter z ∈ Z, and a discount factor ρ ∈ [0, 1), the cumulative regret over T periods under ψ is:

Regret(z, C, T, ρ, ψ) =
T∑
t=1

ρt−1E[r(p∗(z); z)− r(Pψt ; z)].

2.1 Lower Bound on the Regret

Theorem 1 below establishes a lower bound on the regret under any pricing policy.

Theorem 1 Define a problem class CLB = (P,Z, d) by letting P = [3/4, 5/4], Z = [1/3, 1], and

d(p; z) = 1/2 + z − zp. Then, for any policy ψ, there exists ρ̂ ∈ [0, 1), T̂ ∈ N, a parameter z ∈ Z, and

a constant K0 > 0 independent of ρ and T , such that for any ρ ≥ ρ̂ and T ≥ T̂ , we have

Regret(z, CLB, T, ρ, ψ) ≥ K0

√ ρ

1− ρ
(1− ρT−1) +

√
ρT (1− ρT−1)

1− ρ

 .
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Further,

limρ→1Regret(z, CLB, T, ρ, ψ) = Ω
(√

T
)

and limT→∞Regret(z, CLB, T, ρ, ψ) = Ω
(√

1
1−ρ

)
.

2.2 An Asymptotically Tight Learning Algorithm

In this section, we propose a pricing policy and establish matching upper bounds on the regret under

this policy. That is, as T → ∞ (resp., ρ→ 1), our policy offers an upper bound of O
(√

1
1−ρ

)
(resp.,

O(
√
T )) on the regret. In addition, we show that the regret under the MLE-CYCLE policy in BR is

also O
(√

1
1−ρ

)
when T → ∞. We also numerically examine the regret under these two policies in

Section 2.3.

Our pricing policy consists of only two phases: a single exploration phase at the start of the

time horizon followed by a single exploitation phase. Recall from Assumption 2 that the vector of

exploration prices is p̄ ∈ Pk. We first define the length of the exploration and exploitation phases.

Let τ =

[√
1−ρT
1−ρ

]
, where [x] denotes the integer nearest to x. Then, the length of the exploration

phase (resp., exploitation phase) is kτ (resp., T − kτ). We now formally describe our policy below.

Inputs: A problem class C = (P,Z, d) and exploration prices p̄ = (p̄1, p̄2, · · · , p̄k) ∈ Pk.

Description: Divide the T periods into two phases: one for exploration and the other for exploitation.

� Exploration Phase: In time period t = 1, 2, · · · , kτ :

Offer the product at exploration prices p̄ = (p̄1, p̄2, · · · , p̄k) sequentially. For s = 1, · · · , τ , let

Y (s) = (Y(s−1)k+1, · · ·Ysk) denote the outcomes in periods (s− 1)k+ 1, · · · , sk, when the prices

in p̄ are offered for the sth time. Let Z(τ) denote the maximum likelihood estimate (MLE) based

on the observed customer responses during the exploration phase; that is,

Z(τ) = argmax
z∈Z

τ∏
s=1

Qp̄,z(Y (s)).

� Exploitation Phase: In time period t = kτ + 1, kτ + 2, · · · , T :

Offer price p∗(Z(τ)) based on the estimate Z(τ).

Let ψ̂ denote our pricing policy above. Theorem 2 establishes an upper bound on the regret under ψ̂

as well as limiting values of this bound as T → ∞ and as ρ→ 1.

Theorem 2 For any problem class C satisfying Assumptions 1 and 2 with corresponding exploration

prices p̄ ∈ Pk, there exist constants K1,K2 > 0 independent of ρ and T , such that for all z ∈ Z,
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T ∈ N and ρ ∈ [0, 1), the policy ψ̂ satisfies

Regret(z, C, T, ρ, ψ̂) ≤ K1
1− ρkτ

1− ρ
+K2

ρkτ − ρT

(1− ρ)τ
,

where τ =

[√
1−ρT
1−ρ

]
. Further,

limρ→1Regret(z, C, T, ρ, ψ̂) = O
(√

T
)

and limT→∞Regret(z, C, T, ρ, ψ̂) = O
(√

1
1−ρ

)
.

Theorems 1 and 2 together indicate that

lim
ρ→1

Regret(z, C, T, ρ, ψ̂) = Θ
(√

T
)

and lim
T→∞

Regret(z, C, T, ρ, ψ̂) = Θ

(√
1

1− ρ

)
.

Theorem 3 establishes an upper bound on the regret under the MLE-CYCLE policy in BR when

discounting is taken into consideration. We also show that the regret is O
(√

1
1−ρ

)
when T → ∞

under that policy. We first briefly summarize the MLE-CYCLE policy.

The MLE-CYCLE policy operates in cycles, with each cycle consisting of an exploration phase and

an exploitation phase. The length of the exploration phase is fixed, say k periods, while the length

of the exploitation phase increases linearly in the number of cycles; specifically, the length of the

exploitation phase of cycle h is h periods. During a cycle’s exploration phase, the product is offered at

exploration prices p̄ ∈ Pk sequentially, and then the maximum-likelihood estimate of the underlying

demand-curve parameters is computed based on the observed customer responses. During the cycle’s

exploitation phase, the “optimal” price based on the current estimates of the parameters is offered.

Theorem 3 Let ψ̌ denote the MLE-CYCLE policy in BR. In the presence of discounting, for any

problem class C satisfying Assumptions 1 and 2 with corresponding exploration prices p̄ ∈ Pk, there

exists a constant K3, independent of ρ and T , such that for all z ∈ Z, T ≥ 2, and ρ ∈ [0, 1), the

policy ψ̌ satisfies

Regret(z, C, T, ρ, ψ̌) ≤ K3

1 +

⌊
√
2T ⌋∑

h=1

ρh
2/2

 .

Further,

limρ→1Regret(z, C, T, ρ, ψ̌) = O
(√

T
)

and limT→∞Regret(z, C, T, ρ, ψ̌) = O
(√

1
1−ρ

)
.

2.3 Numerical Experience

In this section, we numerically examine the behavior of the regret under our policy and under the

MLE-CYCLE policy in BR. First, we consider a linear demand model in the setting of BR. We let the
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demand distribution be d(p; z) = z1−z2p, where p ∈ P = [0.75, 1.83] and z ∈ Z = [1.1, 1.3]× [0.4, 0.6].

We set the exploration prices to be p̄ = (0.8, 1.8), and the total number of periods to be T = 40000.

We consider the following nine scenarios of the true demand parameters:

(z1, z2) ∈
{
(1.15, 0.45), (1.15, 0.5), (1.15, 0.55), (1.2, 0.45), (1.2, 0.5), (1.2, 0.55), (1.25, 0.45),

(1.25, 0.5), (1.25, 0.55)
}
.

We also vary log10

(
1

1−ρ

)
from 1 to 6, in increments of 0.1; correspondingly, the discount factor ρ ranges

from 0.9 to 0.999999. For each combination of (z1, z2) and ρ, we compute the average regret under our

policy and that under MLE-CYCLE in BR over 100 simulations. Let Regret1 (resp., Regret2) denote

the average regret under MLE-CYCLE (resp., our policy).

Next, we consider a logit demand model in the setting of BR. Here, we let the demand distribution

be d(p; z) = e−z1p−z2

1+e−z1p−z2
for p ∈ P = [0.5, 8] and z ∈ Z = [0.2, 2]× [−1, 1]. We set the exploration prices

to be p̄ = (0.5, 4.25) and the total number of periods to be T = 40000. We consider the following nine

scenarios of the true demand parameters:

(z1, z2) ∈ {(1.2,−1), (1.2,−0.5), (1.2, 0), (1.3,−1), (1.3,−0.5), (1.3, 0), (1.4,−1), (1.4,−0.5), (1.4, 0)},

and vary log10

(
1

1−ρ

)
from 1 to 6, in increments of 0.1. For each combination of (z1, z2) and ρ, we

compute the average regret under our policy and that under MLE-CYCLE over 100 simulations. Let

Regret3 (resp., Regret4) denote the average regret under MLE-CYCLE (resp., our policy).

Figure 1 (resp., Figure 2) plots the relative difference between the average regret under policy

MLE-CYCLE in BR and and that under our policy for the linear (resp., logit) model. For both

figures, each scenario corresponds to a given choice z = (z1, z2) of the true demand parameters and

the red line plots the average of the nine scenarios. A consistent observation in both the figures,

and across the nice scenarios in each figure, is that our policy performs better when the discount

factor is sufficiently close to 1. This is a combined consequence of two reasons: First, we note that

when ρ is sufficiently close to 1, the effect of discounting is minimal in the sense that the revenue

earned later in time is nearly as important as that earned earlier. Second, our policy obtains better

estimates of the unknown parameters by front-loading all the exploration – this benefits us later in

the exploitation phase. Specifically, in the comparison of our policy with policy MLE-CYCLE in

BR, while the exploitation phase under our policy starts later in time than that under MLE-CYCLE,

the estimates of the unknown parameters of the demand distribution in the exploitation phase under

11



Figure 1: The relative percentage difference between the average regret under policy MLE-CYCLE
and that under our policy for a linear model.
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Note: Regret1 is the average regret under MLE-CYCLE and Regret2 is the average regret under our policy.

our policy are based on a higher number of observations and are thus more accurate than those in

the early exploitation periods under MLE-CYCLE. Consequently, the expected revenue earned in

the exploitation phase under our policy is higher than that under MLE-CYCLE, leading to a better

performance. In Appendix E, we also demonstrate the robustness of the superior performance of our

policy when ρ is sufficient close to 1, by examining the relative difference between the regret under

MLE-CYCLE and that under our policy for different values of the time horizon T .

Figures 1 and 2 also show that when the discount factor is modest (i.e., not very close to 1; say

0.9), our policy typically performs better than policy MLE-CYCLE in BR. However, this behavior is

relatively less sharp (as compared to the case when the discount factor is very close to 1): MLE-CYCLE

may sometimes perform better on instances in which the expected revenue under the exploration prices

is sufficiently close to the (clairvoyant) optimal revenue. The reasoning is as follows. First, recall that

our policy explicitly takes the discount factor into consideration; therefore, unlike MLE-CYCLE, the

length of the exploration phase in our policy depends on the discount factor. Table A.1 in Appendix D

shows the number of exploration periods as a function of the discount factor for our policy and for

policy MLE-CYCLE. As shown in Table A.1, when the discount factor is modest, since the revenue

obtained in the latter periods is of little consequence, it is favorable to start exploitation early, and

therefore, our policy spends relatively less amount of time on exploration. With a shorter exploration
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Figure 2: The relative percentage difference between the average regret under policy MLE-CYCLE
and that under our policy for a logit model.
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Note: Regret3 is the average regret under MLE-CYCLE and Regret4 is the average regret under our policy.

phase, our policy switches to exploitation early while MLE-CYCLE continues with exploration. Thus,

the shorter exploration phase in our policy results in a better relative performance for most of the

instances in our test bed. However, in some cases, the shorter exploration phase in our policy leads

to estimates of the unknown parameters that are not sufficiently close to their true values. In such

cases, if the expected revenue under the exploration prices is sufficiently close to the optimal revenue,

then the expected revenue obtained by MLE-CYCLE under the exploration prices could be higher

than the expected revenue obtained by our policy (in the corresponding exploitation periods) under

the greedy prices based on our estimates. Consequently, MLE-CYCLE may perform better since it

spends relatively more time on exploration.

3 Incorporating Discounting in the Model in KZ (2014)

We now consider the single-product setting in KZ. Consider a firm selling a product over a time horizon

of T periods. Given price pt ∈ [l, u] in period t, the demand in that period is Dt = α+β ·pt+ ϵt, where

α, β are unknown parameters, and {ϵt}t=1,··· ,T are unobservable demand shocks that are independent

and identically distributed random variables with mean zero and variance σ2. In addition, there exists

a positive constant x0 such that E[eϵt·x] < ∞ for all |x| ≤ x0. Let θ = (α, β) ∈ Θ be the vector of

the unknown demand parameters, where Θ ⊆ R2 is a compact rectangle. Note that β < 0; we assume
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that β ∈ [bmin, bmax] for bmin < bmax < 0. Then, the seller’s expected single-period revenue is

rθ(p) := p · (α+ βp) for θ ∈ Θ and p ∈ [l, u].

Let φ(θ) be the optimal price that maximizes the expected single-period revenue, i.e., φ(θ) :=

argmax{rθ(p) : p ∈ [l, u]}. We assume that φ(θ) is in the interior of [l, u]; thus, φ(θ) = −α
2β . Let

r∗θ := rθ(φ(θ)) denote the seller’s optimal single-period revenue.

Let Ht := (D1, p1;D2, p2; · · · ;Dt, pt) denote the history of demands and prices in the first t periods.

Let π = (π1, π2 · · · ) denote a non-anticipating policy, where πt is a mapping from R2t−2 into [l, u] that

sets the price in period t based on Ht−1. Then, in the presence of a discount factor ρ ∈ [0, 1), the

seller’s T -period expected discounted revenue under policy π is

Rπθ (T, ρ) = E

{
T∑
t=1

ρt−1rθ(πt(Ht−1))

}
.

The T -period regret is then defined as

∆π
θ (T, ρ) :=

T∑
t=1

ρt−1r∗θ −Rπθ (T, ρ).

Let ∆π(T, ρ) := supθ∈Θ∆π
θ (T, ρ) be the worst-case regret over Θ.

3.1 A Lower Bound on the Regret

Theorem 4 below establishes a lower bound on the regret under any pricing policy.

Theorem 4 There exists a finite positive constant K4 that is independent of ρ and T such that

∆π(T, ρ) ≥ K4

√
ρ(1− ρ2T−2)

1− ρ2
for any policy π, ρ ∈ [0, 1), and T ≥ 3.

Further, limρ→1∆
π(T, ρ) = Ω

(√
T
)

and limT→∞∆π(T, ρ) = Ω
(√

1
1−ρ

)
.

3.2 Asymptotically Optimal Learning Algorithms

In Section 3.2.1, we present sufficient conditions (in Theorem 5) under which a learning policy achieves

an upper bound of O
(√

1
1−ρ log

1
1−ρ

)
(resp., O(

√
T log T )) on the regret when T → ∞ (resp., ρ→ 1).

In Section 3.2.2, we show that, in the presence of discounting, the two policies in KZ satisfy our

conditions in Theorem 5. Thus, they are asymptotically optimal. In Section 3.2.3, we propose another

policy and show (in Theorem 6) that the regret under our policy is also O
(√

1
1−ρ log

1
1−ρ

)
(resp.,

O(
√
T log T )) when T → ∞ (resp., ρ→ 1).
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3.2.1 Sufficient Conditions for Asymptotic Optimality under Discounting

In the presence of discounting, we modify the conditions in Theorem 2 of KZ, and establish an

O
(√

1
1−ρ log

1
1−ρ

)
(resp., O(

√
T log T )) upper bound on the regret when T → ∞ (resp., ρ → 1),

under any policy satisfying these conditions.

We first define the well-known Greedy Iterated Least Squares (ILS) policy (Anderson and Taylor

1976). Given the history of demands and prices in the first t periods, let SSEt(θ) =
∑t

s=1(Ds−α−β ·

ps)
2, where θ = (α, β), and let θ̂t := argminθ{SSEt(θ)} denote the least-squares estimate of θ based

on these observations. Recall that θ lies in the compact rectangle Θ. Let ϑt := argminϑ∈Θ{∥ϑ− θ̂t∥}

denote the truncated estimate and assume that the optimal price based on ϑt (i.e., φ(ϑt)) is an interior

point of [l, u]. Then, the greedy ILS policy is defined as one that charges price pt = φ(ϑt−1) in period t.

That is, the greedy ILS policy estimates the unknown demand parameters at the beginning of each

time period, and then charges the “greedy” or “myopic” price based on these estimates.

Under the greedy ILS policy, parameter estimates may get stuck at values that are not the true

ones; this is referred to as incomplete learning (den Boer and Zwart 2014 and KZ). Therefore, one needs

to modify the greedy ILS and impose additional conditions to ensure that the regret is asymptotically

optimal. KZ show that price deviations can help gather information to learn the unknown parameters.

Consider a policy π and let pπs denote the price in period s under this policy. For the problem without

discounting, KZ characterize two conditions under which π is asymptotically optimal. In condition (i)

of Theorem 2 in KZ, the authors impose a lower bound on the sum of the squared price deviations

under policy π, denoted by Jπt :=
∑t

s=1(p
π
s − p̄πt )

2, where p̄πt = t−1
∑t

s=1 p
π
s . In condition (ii), they

impose an upper bound on the sum of the squared difference between the price under policy π and

the greedy price. In the presence of discounting, condition (i) of Theorem 5 below is the same as that

of Theorem 2 in KZ. However, condition (ii) of their Theorem 2 needs to be modified to capture the

sum of the discounted squared difference between the price under policy π and the greedy price.

Theorem 5 Let κ0, κ1, κ2 be finite positive constants and κ3 ∈ N. Let π be a pricing policy that

satisfies

(i) Jπt ≥ κ0
√
t, and

(ii)
∑t2

s=t1
ρs(φ(ϑs)− pπs+1)

2 ≤ κ1t1 + κ2
∑t2

s=κ3t21
ρss−1/2,3

3Note that in condition (ii), if t2 < κ3t
2
1, then the term

∑t2
s=κ3t

2
1
ρss−1/2 is 0.
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almost surely for all t ≥ 2 and t2 ≥ t1, where p
π
s+1 is the price in period s+1 under policy π and φ(ϑs)

is the greedy price in period s + 1. Then, there exist positive constants K5,K6,K7, and N ∈ N, that

are independent of ρ and T , such that

∆π(T, ρ) ≤ K5
1− ρN

1− ρ
+K6N logN +K7

logN

N

1− ρT−N
2

1− ρ
,

for T ≥ 3 and ρ ∈ [0, 1). Further, for N =

⌊√
1−ρT
1−ρ

⌋
, we have

lim
ρ→1

∆π(T, ρ) = O
(√

T log T
)

and lim
T→∞

∆π(T, ρ) = O
(√

1

1− ρ
log

(
1

1− ρ

))
.

3.2.2 Analysis of the ILS Variants in Keskin and Zeevi (2014) with Discounting

We now present two variants of greedy ILS policy in KZ. We show that, in the presence of discounting,

these two variants satisfy our conditions in Theorem 5 and are, therefore, asymptotically optimal. For

notational simplicity, we henceforth drop the superscript π from pπt , p̄
π
t , and J

π
t .

Example 1: Constrained Iterated Least Squares (CILS). Let δs := φ(ϑs−1)−p̄s−1 denote the difference

between the greedy ILS price in period s and the average price in the first s−1 periods. For a positive

constant c1, a CILS policy (referred to as CILS(c1)) charges the following prices:

pt =

p̄t−1 + sgn(δt)c1t
−1/4 if |δt| < c1t

−1/4

φ(ϑt−1) otherwise.

Any policy π in the CILS family {CILS(c1) : c1 > 0} satisfies the conditions of Theorem 5. KZ show

that the sum of squared price deviations Jt satisfies Jt ≥ 1
4c

2
1t

1/2. Thus, condition (i) of Theorem 5 is

satisfied for κ0 =
1
4c

2
1. Moreover, note that the deviation from the greedy ILS price satisfies |φ(ϑs−1)−

ps| ≤ c1s
−1/4, and thus

∑t2
s=t1

ρs(φ(ϑs)− ps+1)
2 ≤ c21

∑t2
s=t1

ρs(s+ 1)−1/2 ≤ 2c21t1 + c21
∑t2

s=t21
ρss−1/2.

Therefore, condition (ii) is satisfied with κ1 = 2c21, κ2 = c21, and κ3 = 1. Consequently, any policy in

the CILS family achieves the performance guarantee in Theorem 5. ■

Example 2: ILS with Deterministic Testing (ILS-d). Let p̃1, p̃2 be two distinct prices in [l, u], and let{
F1,t}, {F2,t} be two sequences of sets satisfying the following conditions. For each i ∈ {1, 2} and t ∈ N,

Fi,t ⊆ Fi,t+1, where F1,t, F2,t are disjoint subsets of {1, 2, · · · , t}. Further, F1,t (resp., F2,t) contains

⌊
√
t⌋ (resp., ⌊

√
t− 1⌋) distinct elements. An ILS-d policy with experimental prices p̃1 and p̃2 (referred
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to as ILS-d(p̃1, p̃2)) charges the following prices:

pt =


p̃1 if t ∈ F1,t

p̃2 if t ∈ F2,t

φ(ϑt−1) otherwise.

Thus, p̃1 is used in period t ∈ F1,T = {1, 4, 9, 16, · · · , (⌊
√
T ⌋)2} and p̃2 is used in period t ∈

F2,T = {2, 5, 10, 17, · · · , (⌊
√
T − 1⌋)2 + 1}. Next, we show that any policy π in the ILS-d family

{ILS-d(p̃1, p̃2) : p̃1 ̸= p̃2, p̃1 ∈ [l, u], p̃2 ∈ [l, u]} satisfies the conditions of Theorem 5. Note that at least

⌊
√
t− 1⌋ experiments are conducted with p̃1 and p̃2 each in the first t periods; this implies that

Jt =
∑t

s=1(ps − p̄t)
2 ≥

∑
s∈F1,t∪F2,t

(ps − p̄t)
2 ≥ κ0

√
t for κ0 =

1
4(p̃1 − p̃2)

2. In addition, we have

t2∑
s=t1

ρs(φ(ϑs)− ps+1)
2

≤
t2∑
s=t1

ρs(⌊
√
s+ 1⌋ − ⌊

√
s⌋)(u− l)2 +

t2∑
s=t1

ρs(⌊
√
s⌋ − ⌊

√
s− 1⌋)(u− l)2

≤ (u− l)2
[ t21−1∑
s=t1

(⌊
√
s+ 1⌋ − ⌊

√
s⌋) +

t2∑
s=t21

ρs(
√
s+ 1−

√
s) +

t21∑
s=t1

(⌊
√
s⌋ − ⌊

√
s− 1⌋) +

t2∑
s=t21+1

ρs(
√
s−

√
s− 1)

]

≤ 2(u− l)2

t1 + t2∑
s=t21

ρss−1/2

 .
Note that when s = t21 (resp., s = t21+1), we have

√
s = t1 ∈ N (resp.,

√
s− 1 = t1 ∈ N), which implies

the second inequality. Then, condition (ii) holds with κ1 = 2(u− l)2, κ2 = 2(u− l)2, and κ3 = 1. ■

3.2.3 A Different ILS Variant with Discounting

We note that the conditions in Theorem 5 are sufficient, but not necessary for establishing the claimed

results. We now present a policy that does not satisfy the conditions in Theorem 5, and show that the

regret under this policy is also O
(√

1
1−ρ log

1
1−ρ

)
(resp., O(

√
T log T )) when T → ∞ (resp., ρ→ 1).

Our pricing policy is also a variant of the greedy ILS policy. Recall from Section 2.2 that τ =[√
1−ρT
1−ρ

]
. For c2 ∈ N, we conduct price experiments in the first 2c2τ periods using two distinct

prices p̃1 and p̃2. In the remaining T−2c2τ periods, we offer the greedy ILS price φ(ϑt−1). Specifically,
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our policy, which we denote by π̂, charges the following prices:

pt =


p̃1 if t ∈ {1, 3, · · · , 2c2τ − 1},

p̃2 if t ∈ {2, 4, · · · , 2c2τ},

φ(ϑt−1) otherwise.

We show that our policy is asymptotically optimal. Let η = log
(
1−ρT
1−ρ

)
. Then, we have

Theorem 6 There exist positive constants ρ̌ ∈ [0, 1), Ť ∈ N, and positive constants K8 and K9 that

are independent of ρ and T , such that

∆π̂(T, ρ) ≤ K8
1− ρ2c2τ

1− ρ
+K9

η

τ

ρ2c2τ − ρT

1− ρ
,

for ρ ≥ ρ̌ and T ≥ Ť . Further,

lim
ρ→1

∆π̂(T, ρ) = O
(√

T log T
)

and lim
T→∞

∆π̂(T, ρ) = O
(√

1

1− ρ
log

(
1

1− ρ

))
.

Note that if ρ = 1, then for τ = [
√
T ], policies CILS, ILS-d, and our policy π̂, all satisfy the conditions

in Lemma 1 below, which generalizes the conditions in Theorem 2 of KZ and ensures that the regret

under any policy that satisfies these conditions is O(
√
T log T ).

Lemma 1 Suppose ρ = 1. Let κ0, κ1 be finite positive constants, and let π be a pricing policy that

satisfies

(i) Jt ≥ κ0
√
t, and

(ii)
∑T−1

s=0 (φ(ϑs)− ps+1)
2 ≤ κ1

√
T

almost surely for all t ≥ 2, where ps+1 is the price in period s+1 under policy π and φ(ϑs) is the greedy

price in period s+ 1. Then, the regret ∆π(T, 1) under policy π satisfies ∆π(T, 1) = O(
√
T log T ).

3.3 Numerical Experience

We numerically examine the behavior of the regret under our policy, the CILS policy, and the ILS-d

policy. Given a price p ∈ [l, u] = [0.75, 2], demand is normally distributed with mean α + βp and

standard deviation σ = 0.1, where θ = (α, β) ∈ Θ = [1, 1.4]× [−0.64,−0.36]. We set the experimental

prices in policy ILS-d and our policy to be (p̃1, p̃2) = (0.75, 1.75), and the total number of periods to

be T = 40000. The constant c1 in CILS is set to 0.55 and the constant c2 in our policy is set to 1. We

consider the following nine scenarios of the true demand parameters:

θ = (α, β) ∈
{
(1.15,−0.45), (1.15,−0.5), (1.15,−0.55), (1.2,−0.45), (1.2,−0.5), (1.2,−0.55),
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(1.25,−0.45), (1.25,−0.5), (1.25,−0.55)
}
,

and vary log10

(
1

1−ρ

)
from 1 to 6, in increments of 0.1. For each combination of θ and ρ, we compute

the average regret under our policy (resp., ILS-d and CILS) over 100 simulations. Let Regret7 (resp.,

Regret5 and Regret6) denote the average regret under our policy (resp., ILS-d and CILS). Figure 3

plots the relative difference between the average regret under ILS-d and that under our policy. Recall

from Section 3.2.2 that under ILS-d, p̃1 is used in period t ∈ F1,T = {1, 4, 9, 16, · · · , 40000} and p̃2 is

used in period t ∈ F2,T = {2, 5, 10, 17, · · · , 39602}. That is, the exploration periods are F1,T ∪ F2,T =

{1, 2, 4, 5, 9, 10, 16, 17, · · · , 39602, 40000}. The structure of ILS-d is similar to that of MLE-CYCLE, in

the sense that both policies alternate between exploration and exploitation in cycles. As in Figures 1

and 2, Figure 3 illustrates the better performance of our policy when the discount factor is sufficiently

close to 1, confirming the robustness of our finding. Note that when the discount factor ρ is sufficiently

close to 1, the effect of discounting is minimal in the sense that the revenue earned later in time is

nearly as important as that earned earlier. As compared to the ILS-d policy, our policy obtains better

estimates of the unknown parameters by front-loading all the exploration. Consequently, the expected

revenue earned in the exploitation phase under our policy is higher than that under ILS-d, leading

to a better performance. We also demonstrate the robustness of the superior performance of our

policy when ρ is sufficient close to 1, by examining the relative difference between the regret under

ILS-d and that under our policy for different T (see Appendix E). Figure 3 also shows that when ρ is

modest, while our policy typically performs better than policy ILS-d, this behavior is relatively less

sharp – the underlying reason is the same as that discussed earlier in Section 2.3 for the comparison

between our policy and MLE-CYCLE. Table A.1 in Appendix D shows the number of exploration

periods as a function of the discount factor for our policy and for policy ILS-d. Figure 4 plots the

relative difference between the average regret under the CILS policy and that under our policy, and

again underlines the better performance of our policy for discount factors sufficiently close to 1.

4 Dependent Discount Factor and Duration of Planning Horizon

Recall that our analysis in Sections 2 and 3 did not assume any relationship between the discount

factor, ρ, and the duration of planning horizon, T . As a result, our expressions for the regret bounds

were functions of both ρ and T . For any given planning horizon which has been divided into decision

periods, one can define the precise change in the value of money with time by examining a specific

relationship between the discount rate per period and the discount rate over the planning horizon.
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Figure 3: The relative percentage difference between the average regret under policy ILS-d and that
under our policy.
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Note: Regret5 is the average regret under ILS-d and Regret7 is the average regret under our policy.

Figure 4: The relative percentage difference between the average regret under policy CILS and that
under our policy.
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Note: Regret6 is the average regret under CILS and Regret7 is the average regret under our policy.
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Motivated by this fact, we now revisit our earlier analysis by assuming a specific expression of the

discount factor per period as a function of the number of decision periods in the planning horizon.

To this end, we examine the following setting: Consider a planning horizon (say, one quarter) over

which the discount rate is ρ0 ∈ (0, 1). The planning horizon is divided into T decision periods. Thus,

the effective discount rate per decision period is ρ(T ) = (ρ0)
1/T . Note that as T goes to infinity, the

discount factor in each period, ρ(T ), goes to 1. In our analysis, we also consider an asymptotic regime

where the number of decision periods approaches infinity, keeping the demand volume per period the

same – this can be interpreted as a business context where the quarterly sales volume increases. As

before, we derive a lower bound on the regret under any policy and an upper bound on the regret

under the algorithms in BR and KZ as well as our new algorithms. We show that for the models in

BR and KZ, the regret under any policy is Ω(
√
T ). For the model in BR, we show that the regret

under our policy as well that under the MLE-CYCLE policy in BR is O(
√
T ). For the model of

KZ, we show that the regret is O(log T
√
T ) under three policies – namely, the two variants of the

greedy Iterated-Least-Squares policy in KZ and a different policy that we propose. These results are

presented in Propositions A.1 through A.6 in Appendix C.

5 Concluding Remarks

We offer the following three directions in which future research can proceed:

� In this paper, we investigate the impact of discounting on the performance of learning algorithms

by examining two classic and representative dynamic-pricing and learning problems studied in

BR and KZ. In both settings, we study the dynamic pricing of a single product with stationary

unknown demand in the presence of discounting. The generalization of our analysis to multiple

products is an important question. KZ extend their single-product results to the case of multiple

products with substitutable demands – this is a challenging extension of single-product pricing.

BR focus on the single-product setting but their results can also be extended easily to multiple

products with independent demands; if, instead, the demands for the products are dependent,

then their analysis does not seem to extend in a straightforward manner. We believe that the

generalization of our work to multiple products with dependent demands is a challenging and

fruitful direction in which future work can proceed.

� Keskin and Zeevi (2017) consider a linear demand model with unknown and time-varying param-

eters, and study dynamic pricing and demand learning under changing demand environments;
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i.e., under non-stationary demand. They derive a lower bound on the regret under any policy,

given a finite variation “budget”, and propose families of dynamic-pricing policies that achieve a

matching upper bound on the regret. They also illustrate how the manner in which the demand

environment changes matters: the decision maker can earn more revenue when the demand

changes in “bursts” rather than when it changes “smoothly”. In the presence of discounting,

a changing demand environment imposes another challenge on the design of dynamic-pricing

policies, since the decision maker now also needs to consider the timing of the demand changes

to exploit the knowledge of the underlying parameters that vary over time and with different

patterns. We believe that our analysis in this paper can serve as a stepping stone for under-

standing how non-stationary demand can affect dynamic pricing and demand learning in the

presence of discounting.

� It will be interesting to investigate how discounting can be incorporated in algorithms such as

CILS (Keskin and Zeevi 2014) that simultaneously conduct exploration and exploitation.
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Appendix A Proofs of the Results in Section 2

A.1 Proof of Theorem 1

Preliminary Results

We first show some preliminary results, which are used in the proof of Theorem 1. In our analysis, we use a

common quantitative measure of uncertainty known as the KL divergence.

Definition A.1 (Definition 2.26 in Cover and Thomas 1999). For any probability measures Q0 and Q1 on a

discrete sample space Y, the KL divergence of Q0 and Q1 is

K(Q0;Q1) =
∑
y∈Y

Q0(y) log

(
Q0(y)

Q1(y)

)
.

Broder and Rusmevichientong (2012) show the following properties of the problem class CLB defined in the

statement of Theorem 1, which are used to prove Lemmas A.2 and A.3 below.

Lemma A.1 (Lemma EC.1.1 of Broder and Rusmevichientong 2012) For all p ∈ P and z ∈ Z,

1. p∗(z) = 1+2z
4z .

2. p∗(z0) = 1 for z0 = 1/2.

3. d(p∗(z0); z) = 1/2 for all z ∈ Z.

4. r(p∗(z); z)− r(p; z) ≥ 1
3 (p

∗(z)− p)2.

5. |p∗(z)− p∗(z0)| ≥ 1
4 |z − z0|.

6. |d(p; z)− d(p; z0)| ≤ |p∗(z0)− p||z − z0|.

We recall that Pψt is the random price in period t under policy ψ. For notational simplicity, we henceforth

drop the superscript ψ from Pψt .
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Lemma A.2 For z0 = 1/2, z ∈ Z, T ≥ 1, and any policy ψ,

Regret(z0, CLB , T, ρ, ψ) ≥
1

16(z0 − z)2

[
ρT−1K(Qψ,z0T ;Qψ,zT ) + (1− ρ)

T−1∑
t=1

ρt−1K(Qψ,z0t ;Qψ,zt )

]
.

Proof of Lemma A.2: To show the lemma, we use the following Chain Rule for KL divergence (Theorem

2.5.3, Cover and Thomas 1999):

K(Qψ,z0T ;Qψ,zT ) =

T∑
t=1

K(Qψ,z0t ;Qψ,zt

∣∣∣Yt−1),

where K(Qψ,z0t ;Qψ,zt

∣∣∣Yt−1) :=
∑

yt∈{0,1}t
Qψ,z0t (yt) log

(
Q
ψ,z0
t (yt|yt−1)

Qψ,zt (yt|yt−1)

)
is the conditional KL divergence. Similar

to Broder and Rusmevichientong (2012), we show that

K(Qψ,z0t ;Qψ,zt

∣∣∣Yt−1) ≤ 16(z0 − z)2E[r(p∗(z0); z0)− r(Pt; z0)].

Thus, we have

Regret(z0, CLB , T, ρ, ψ)

=

T∑
t=1

ρt−1E[r(p∗(z0); z0)− r(Pt; z0)]

≥
T∑
t=1

ρt−1 1

16(z0 − z)2
K(Qψ,z0t ;Qψ,zt

∣∣∣Yt−1)

=
1

16(z0 − z)2

[
T∑
t=1

K(Qψ,z0t ;Qψ,zt

∣∣∣Yt−1)−
T∑
t=2

(1− ρ)K(Qψ,z0t ;Qψ,zt

∣∣∣Yt−1)−

T∑
t=3

(ρ− ρ2)K(Qψ,z0t ;Qψ,zt

∣∣∣Yt−1)− · · · −
T∑
t=T

(ρT−2 − ρT−1)K(Qψ,z0t ;Qψ,zt

∣∣∣Yt−1)

]

=
1

16(z0 − z)2

[
K(Qψ,z0T ;Qψ,zT )− (1− ρ)(K(Qψ,z0T ;Qψ,zT )−K(Qψ,z01 ;Qψ,z1 ))−

(ρ− ρ2)(K(Qψ,z0T ;Qψ,zT )−K(Qψ,z02 ;Qψ,z2 ))− · · · − (ρT−2 − ρT−1)(K(Qψ,z0T ;Qψ,zT )−K(Qψ,z0T−1;Q
ψ,z
T−1))

]
=

1

16(z0 − z)2

[
ρT−1K(Qψ,z0T ;Qψ,zT ) + (1− ρ)

T−1∑
t=1

ρt−1K(Qψ,z0t ;Qψ,zt )

]
.

The third equality holds by the Chain Rule for KL-divergence. ■

Lemma A.3 For z0 = 1/2, z ∈ Z, T ≥ 2, and any policy ψ,

Regret(z0, CLB , T, ρ, ψ) + Regret(z, CLB , T, ρ, ψ) ≥
1

6(12)2
(z0 − z)2

T−1∑
t=1

ρte−K(Q
ψ,z0
t ;Qψ,zt ).

Proof of Lemma A.3 uses Lemma A.4 below.
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Lemma A.4 (Theorem 2.2, Tsybakov 2009) Let Q0 and Q1 be two probability distributions on a finite space

Y, with Q0(y), Q1(y) > 0 for all y ∈ Y. Then for any function J : Y → {0, 1},

Q0{J = 1}+Q1{J = 0} ≥ 1

2
e−K(Q0;Q1),

where K(Q0;Q1) denotes the KL divergence of Q0 and Q1.

Proof of Lemma A.3: We first define two intervals Cz0 ⊂ P and Cz ⊂ P by

Cz0 =

{
p : |p∗(z0)− p| ≤ 1

12
|z0 − z|

}
and Cz =

{
p : |p∗(z)− p| ≤ 1

12
|z0 − z|

}
.

By property 5 in Lemma A.1, i.e., |p∗(z0) − p∗(z)| ≥ 1
4 |z0 − z|, Cz0 and Cz are disjoint. By property 4 in

Lemma A.1, for each ẑ ∈ {z0, z}, if p ∈ P \ Cẑ, then

r(p∗(ẑ); ẑ)− r(p; ẑ) ≥ 1

3
(p− p∗(ẑ))2 ≥ 1

3(12)2
(z0 − z)2.

Let P1, P2, · · · , PT denote the sequence of random prices under policy ψ. Let Prz{A} (resp., Prz0{A}) denote

the probability that event A occurs when the underlying parameter is z (resp., z0). Then

Regret(z0, CLB , T, ρ, ψ) + Regret(z, CLB , T, ρ, ψ)

≥
T−1∑
t=1

ρtE[r(p∗(z0); z0)− r(Pt+1; z0)] +

T−1∑
t=1

ρtE[r(p∗(z); z)− r(Pt+1; z)]

≥ 1

3(12)2
(z0 − z)2

T−1∑
t=1

ρt (Prz0{Pt+1 /∈ Cz0}+ Prz{Pt+1 /∈ Cz})

≥ 1

3(12)2
(z0 − z)2

T−1∑
t=1

ρt (Prz0{Pt+1 ∈ Cz}+ Prz{Pt+1 /∈ Cz})

≥ 1

6(12)2
(z0 − z)2

T−1∑
t=1

ρte−K(Q
ψ,z0
t ;Qψ,zt ).

The last inequality holds by Lemma A.4. ■

Proof of Theorem 1

Let z1 = z0 +
(

1−ρ
ρ

)1/4
. Then for ρ ≥ 16

17 , we have z1 ∈ Z. Using Lemmas A.2 and A.3, we have

2(Regret(z0, CLB , T, ρ, ψ) + Regret(z1, CLB , T, ρ, ψ))

≥ Regret(z0, CLB , T, ρ, ψ) + (Regret(z0, CLB , T, ρ, ψ) + Regret(z1, CLB , T, ρ, ψ))

≥ 1

16

√
ρ

1− ρ

[
ρT−1K(Qψ,z0T ;Qψ,z1T ) + (1− ρ)

T−1∑
t=1

ρt−1K(Qψ,z0t ;Qψ,z1t )

]
+

1

6(12)2

√
1− ρ

ρ

T−1∑
t=1

ρte−K(Q
ψ,z0
t ;Q

ψ,z1
t )
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≥ 1

6(12)2

√
(1− ρ)ρ

[
T−1∑
t=1

ρt−1K(Qψ,z0t ;Qψ,z1t ) +

T−1∑
t=1

ρt−1e−K(Q
ψ,z0
t ;Q

ψ,z1
t )

]

=
1

6(12)2

√
(1− ρ)ρ

T−1∑
t=1

ρt−1
[
K(Qψ,z0t ;Qψ,z1t ) + e−K(Q

ψ,z0
t ;Q

ψ,z1
t )

]
≥ 1

6(12)2

√
(1− ρ)ρ

T−1∑
t=1

ρt−1

=
1

6(12)2

√
ρ

1− ρ
(1− ρT−1). (A-1)

The second inequality holds by Lemmas A.2 and A.3. The third inequality holds by the the fact that the KL

divergence is nonnegative. The last inequality holds since x+ e−x ≥ 1 for all x ≥ 0.

Let z2 = z0 +
(

(1−ρ)ρT−2

1−ρT−1

)1/4
. Note that

lim
T→∞

lim
ρ→1

(
(1− ρ)ρT−2

1− ρT−1

)1/4

= 0.

Thus, there exists ρ̂ ∈ ( 1617 , 1) and T̂ ∈ N such that for all ρ ≥ ρ̂ and T ≥ T̂ ,
(

(1−ρ)ρT−2

1−ρT−1

)1/4
≤ 1/2 and z2 ∈ Z.

Note that for z ∈ Z, K(Qψ,z0t ;Qψ,zt ) is non-decreasing in t because

K(Qψ,z0t ;Qψ,zt ) = K(Qψ,z0t−1 ;Q
ψ,z
t−1) +K(Qψ,z0t ;Qψ,zt

∣∣∣Yt−1) ≥ K(Qψ,z0t−1 ;Q
ψ,z
t−1).

The equality holds by the Chain Rule for KL divergence (Theorem 2.5.3, Cover and Thomas 1999). The

inequality holds since K(Qψ,z0t ;Qψ,zt

∣∣∣Yt−1) is nonnegative (Theorem 2.6.3, Cover and Thomas 1999).

Using Lemmas A.2 and A.3, we have

2(Regret(z0, CLB , T, ρ, ψ) + Regret(z2, CLB , T, ρ, ψ))

≥ Regret(z0, CLB , T, ρ, ψ) + (Regret(z0, CLB , T, ρ, ψ) + Regret(z2, CLB , T, ρ, ψ))

≥ 1

16

√
1− ρT−1

(1− ρ)ρT−2

[
ρT−1K(Qψ,z0T ;Qψ,z2T ) + (1− ρ)

T−1∑
t=1

ρt−1K(Qψ,z0t ;Qψ,z2t )

]
+

1

6(12)2

√
(1− ρ)ρT−2

1− ρT−1

T−1∑
t=1

ρte−K(Q
ψ,z0
t ;Q

ψ,z2
t )

≥ 1

16

√
1− ρT−1

(1− ρ)ρT−2
ρT−1K(Qψ,z0T ;Qψ,z2T ) +

1

6(12)2

√
(1− ρ)ρT−2

1− ρT−1

T−1∑
t=1

ρte−K(Q
ψ,z0
T ;Q

ψ,z2
T )

=
1

16

√
ρT (1− ρT−1)

1− ρ
K(Qψ,z0T ;Qψ,z2T ) +

1

6(12)2

√
(1− ρ)ρT−2

1− ρT−1

ρ(1− ρT−1)

1− ρ
e−K(Q

ψ,z0
T ;Q

ψ,z2
T )

≥ 1

6(12)2

√
ρT (1− ρT−1)

1− ρ

[
K(Qψ,z0T ;Qψ,z2T ) + e−K(Q

ψ,z0
T ;Q

ψ,z2
T )

]
≥ 1

6(12)2

√
ρT (1− ρT−1)

1− ρ
. (A-2)
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The second inequality holds by Lemmas A.2 and A.3. The third inequality holds by the the fact that the KL

divergence is nonnegative (see Theorem 2.6.3 in Cover and Thomas 1999) and K(Qψ,z0t ;Qψ,z2t ) is non-decreasing

in t. The last inequality holds since x+ e−x ≥ 1 for all x ≥ 0.

Combining (A-1) and (A-2), we have

2(Regret(z0, CLB , T, ρ, ψ) + Regret(z1, CLB , T, ρ, ψ) + Regret(z2, CLB , T, ρ, ψ))

≥ (Regret(z0, CLB , T, ρ, ψ) + Regret(z1, CLB , T, ρ, ψ)) + (Regret(z0, CLB , T, ρ, ψ) + Regret(z2, CLB , T, ρ, ψ))

≥ 1

(12)3

√ ρ

1− ρ
(1− ρT−1) +

√
ρT (1− ρT−1)

1− ρ

 .

Then we have

max
z∈{z0,z1,z2}

Regret(z, CLB , T, ρ, ψ)

≥ Regret(z0, CLB , T, ρ, ψ) + Regret(z1, CLB , T, ρ, ψ) + Regret(z2, CLB , T, ρ, ψ)
3

≥ K0

√ ρ

1− ρ
(1− ρT−1) +

√
ρT (1− ρT−1)

1− ρ

 ,

where K0 = 1
6(12)3 .

Let f(ρ, T ) = K0

(√
ρ

1−ρ (1− ρT−1) +
√

ρT (1−ρT−1)
1−ρ

)
. Then we have

lim
ρ→1

f(ρ, T ) = K0

√
T − 1 = Ω(

√
T ), and

lim
T→∞

f(ρ, T ) = K0

√
ρ

1− ρ
= Ω(

√
1

1− ρ
).

■

A.2 Proof of Theorem 2

Lemmas A.5 and A.6 below are used in the proof of Theorem 2. Similar to the proof of Lemma 3.7 in Broder

and Rusmevichientong 2012), it is straightforward to obtain Lemma A.5 using the tail inequality for MLE based

on IID Samples in Theore

Lemma A.5 (Mean-Squared Errors for MLE Based on IID Samples, Borovkov 1998) For any

τ ≥ 1, there exists a constant Kmle depending only on the exploration prices p̄ and the problem class C such

that

E[∥Z(τ)− z∥]2 ≤ Kmle

τ
.

Lemma A.6 is reproduced verbatim from Corollary 2.4 of Broder and Rusmevichientong (2012).
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Lemma A.6 For any problem class C = (P,Z, d) satisfying Assumption 1 and for any z, ẑ ∈ Z,

r(p∗(z); z)− r(p∗(ẑ); z) ≤ crL
2∥z − ẑ∥2.

Proof of Theorem 2: First, we show an upper bound on the regret incurred during the exploration phase.

Recall from Assumption 1 that the revenue function is twice differentiable. In addition, the pricing interval P is

compact; thus, there exists a constantK1 depending only on the problem class C such that r(p∗(z); z)−r(p; z) ≤

K1 for all p ∈ P and z ∈ Z. Thus, the regret incurred during the exploration phase satisfies

τ∑
s=1

k∑
l=1

ρ(s−1)k+l−1E[r(p∗(z); z)− r(p̄l; z)] ≤
1− ρkτ

1− ρ
K1. (A-3)

Next, we show an upper bound on the regret incurred during the exploitation phase. During the exploitation

phase, we use price p∗(Z(τ)) and we offer this price for all T −kτ periods. It follows from Lemmas A.5 and A.6

that

E [r(p∗(z); z)− r(p∗(Z(τ)); z)] ≤ crL
2E
[
∥z −Z(τ)∥2

]
≤ crL

2Kmle

τ
.

Thus, the regret incurred during the exploitation phase satisfies

T∑
t=kτ+1

ρt−1E[r(p∗(z); z)− r(p∗(Z(τ)); z)] ≤ ρkτ − ρT

(1− ρ)τ
crL

2Kmle. (A-4)

Let K2 = crL
2Kmle. Combining (A-3) and (A-4), the cumulative regret under policy ψ̂ satisfies

Regret(z, C, T, ρ, ψ̂) ≤ K1
1− ρkτ

1− ρ
+K2

ρkτ − ρT

(1− ρ)τ
.

Let g(ρ, T ) = K1
1−ρkτ
1−ρ +K2

ρkτ−ρT
(1−ρ)τ , where τ =

[√
1−ρT
1−ρ

]
. Then we have limρ→1 τ = [

√
T ] and

lim
ρ→1

g(ρ, T ) = lim
ρ→1

(
K1

1− ρk[
√
T ]

1− ρ
+K2

ρk[
√
T ] − ρT

(1− ρ)[
√
T ]

)
= K1k[

√
T ] +K2

(
T

[
√
T ]

− k

)
= O(

√
T ).

Note that limT→∞ τ = [
√
1/(1− ρ)]. Thus, we have

lim
T→∞

g(ρ, T ) = K1
1− ρk[

√
1/(1−ρ)]

1− ρ
+K2

ρk[
√

1/(1−ρ)]

(1− ρ)[
√

1/(1− ρ)]
= O

(√
1

1− ρ

)
.

■

A.3 Proof of Theorem 3

Proof of Theorem 3: Note that the MLE-CYCLE policy ψ̌ operates in cycles. Broder and Rusmevichientong

(2012) show that the regret incurred in each cycle is bounded from above by a constant, denoted by K3. Note
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that cycle h starts in period h2+h(2k−1)−2k+2
2 and the total number of cycles is no more than ⌊

√
2T ⌋ for T ≥ 2.

Thus, we have

Regret(z, C, T, ρ, ψ̌) ≤
⌊
√
2T⌋∑

h=1

ρ[h
2+h(2k−1)−2k]/2K3 ≤

1 +

⌊
√
2T⌋∑

h=1

ρh
2/2

K3.

and

Regret(z, C, T, ρ, ψ̌) ≤ K3 +

⌊
√
2T⌋∑

h=1

ρh
2/2K3 ≤ K3 +K3

∫ √
2T

0

ρh
2/2dh =K3 +K3

∫ √
2T

0

elog(ρ)h
2/2dh

=K3 +K3

√
1

2

∫ T

0

elog(ρ)x
√

1

x
dx.

The last equality holds by letting x = h2/2. When T → ∞,

lim
T→∞

K3

(
1 +

√
1

2

∫ T

0

elog(ρ)x
√

1

x
dx

)
= K3

(
1 +

√
1

2

√
1

− log ρ

∫ ∞

0

e−ww−1/2dw

)

= K3

(
1 +

√
π

2

√
1

− log ρ

)
= O

(√
1

− log ρ

)
= O

(√
1

1− ρ

)
.

The first equality holds by letting w = − log(ρ)x. The second equality holds since
∫∞
0
e−ww−1/2dw = Γ(1/2) =

√
π. When ρ→ 1,

lim
ρ→1

1 +

⌊
√
2T⌋∑

h=1

ρh
2/2

K3 ≤ K3(
√
2T + 1) = O

(√
T
)
.

■

Appendix B Proofs of the Results in Section 3

B.1 Proof of Theorem 4

Let pt denote the random price in period t under policy π and Ft =
∑t
s=1

[
1 ps
ps p2s

]
denote the Fisher information

matrix. It is straightforward that Lemma A.7 holds using Lemma 1 in Keskin and Zeevi (2014), which is used

to show Theorem 4.

Lemma A.7 There exist positive constants µ0 and µ1 such that

sup
θ∈Θ

{
T∑
t=2

ρt−1E(pt − φ(θ))2

}
≥

T∑
t=2

ρt−1 µ0

µ1 + supθ∈Θ{C(θ)E[Ft−1]C(θ)⊺}
, (A-5)

where C(·) is a 1× 2 matrix function on Θ such that C(θ) = [−φ(θ) 1].
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Proof of Theorem 4: By the definition of C(θ), we have C(θ)E[Ft−1]C(θ)
⊺ =

∑t−1
s=1 E(ps − φ(θ))2. Thus,

inequality (A-5) in Lemma A.7 is equivalent to the following:

sup
θ∈Θ

{
T∑
t=2

ρt−1E(pt − φ(θ))2

}
≥

T∑
t=2

ρt−1 µ0

µ1 + supθ∈Θ{
∑t−1
s=1 E(ps − φ(θ))2}

, (A-6)

By the definition of regret, we have

∆π(T, ρ) = sup
θ∈Θ

{
T∑
t=1

ρt−1E(r∗θ − rθ(pt))

}

= sup
θ∈Θ

{
−β

T∑
t=1

ρt−1E(pt − φ(θ))2

}

≥ |bmax| sup
θ∈Θ

{
T∑
t=1

ρt−1E(pt − φ(θ))2

}
.

The second equality holds since r∗θ − rθ(pt) = φ(θ)(α + βφ(θ)) − pt(α + βpt) and we replace α with −2βφ(θ).

Using (A-6), we have

∆π(T, ρ) ≥ b2maxµ0

T∑
t=2

ρt−1 1

µ1|bmax|+ |bmax| supθ∈Θ{
∑t−1
s=1 E(ps − φ(θ))2}

≥ K10

T∑
t=2

ρt−1 1

K11|bmax| supθ∈Θ{
∑t−1
s=1 E(ps − φ(θ))2}

= K10

T∑
t=2

ρ2t−3

K11|bmax| supθ∈Θ{
∑t−1
s=1 ρ

t−2E(ps − φ(θ))2}

≥ K10

T∑
t=2

ρ2t−3

K11|bmax| supθ∈Θ{
∑t−1
s=1 ρ

s−1E(ps − φ(θ))2}

≥ K10

T∑
t=2

ρ2t−3

K11∆π(t− 1, ρ)

≥ K10

T∑
t=2

ρ2t−3

K11∆π(T, ρ)
=

K10

K11∆π(T, ρ)

ρ(1− ρ2T−2)

1− ρ2
,

where K10 = µ0b
2
max and K11 = 1 + 4µ1

(u−l)2 ≥ 1 + µ1

supθ∈Θ{E(p1−φ(θ))2} ≥ 1 + µ1

supθ∈Θ{
∑t−1
s=1 E(ps−φ(θ))2}

. The last

inequality holds since ∆π(t, ρ) increases in t.

Then, we have ∆π(T, ρ) ≥
√

K10

K11

ρ(1−ρ2T−2)
1−ρ2 . Thus, ∆π(T, ρ) ≥ K4

√
ρ(1−ρ2T−2)

1−ρ2 , where K4 =
√
K10/K11.

When T → ∞,

lim
T→∞

∆π(T, ρ) ≥ lim
T→∞

K4

√
ρ(1− ρ2T−2)

1− ρ2
= K4

√
ρ

1− ρ2
= Ω

(√
1

1− ρ

)
.

When ρ→ 1,

lim
ρ→1

∆π(T, ρ) ≥ lim
ρ→1

K4

√
ρ(1− ρ2T−2)

1− ρ2
= K4

√
T − 1 = Ω(

√
T ).

■
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B.2 Proof of Theorem 5

We show Theorem 5 using Lemma A.8 below, which is reproduced verbatim from Lemma 3 of Keskin and Zeevi

(2014).

Lemma A.8 There exist finite positive constants λ and γ such that, under any pricing policy π,

Pπθ {∥θ̂t − θ∥ > δ, Jt ≥ m} ≤ γt exp(−λ(δ ∧ δ2)m) (A-7)

for all δ,m > 0, and t ≥ 2.

Proof of Theorem 5: Using Lemma A.8 and condition (i), Keskin and Zeevi (2014) show that, there exists a

constant K12 such that

E(φ(θ)− pt+1)
2 ≤ K12 log t

λκ0
√
t

+ 2E(φ(ϑt)− pt+1)
2 for all t ≥ N,

where N satisfies kN exp(− 1
2λκ0

√
N) ≤ 1. For N ≥ exp, we have

T−1∑
t=N

ρtE(φ(θ)− pt+1)
2

≤ K12

T−1∑
t=N

ρt
log t

λκ0
√
t
+ 2

T−1∑
t=N

ρtE(φ(ϑt)− pt+1)
2

≤ K12

N2−1∑
t=N

ρt
log t

λκ0
√
t
+K12

T−1∑
t=N2

ρt
log t

λκ0
√
t
+ 2

κ1N + κ2

T−1∑
s=κ3N2

ρss−1/2


≤ 4K12 logN

N

λκ0
+K12

2 logN

λκ0N

ρN
2

(1− ρT−N2

)

1− ρ
+ 2κ1N +

2κ2√
κ3N

ρκ3N
2

(1− ρT−κ3N
2

)

1− ρ

≤ K13N logN +K14
logN

N

1− ρT−N2

1− ρ
,

where K13 = 4K12

λκ0
+ 2κ1 and K14 = 2K12

λκ0
+ 2κ2√

κ3
. The third inequality holds since log t/

√
t decreases in t for

t ≥ exp2. Since β ∈ [bmin, bmax], we have

∆π(T, ρ) = sup
θ∈Θ

{
−β

T−1∑
t=0

ρtE(pt+1 − φ(θ))2

}

≤ |bmin| sup
θ∈Θ

{
N−1∑
t=0

ρtE(pt+1 − φ(θ))2 +

T−1∑
t=N

ρtE(pt+1 − φ(θ))2

}

≤ |bmin|

{
1− ρN

1− ρ
(u− l)2 +K13N logN +K14

logN

N

1− ρT−N2

1− ρ

}

= K5
1− ρN

1− ρ
+K6N logN +K7

logN

N

1− ρT−N2

1− ρ
,
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where K5 = |bmin|(u − l)2, K6 = |bmin|K13, and K7 = |bmin|K14. Let h(ρ, T ) = K5
1−ρN
1−ρ + K6N logN +

K7
logN
N

1−ρT−N2

1−ρ and N =
⌊√

1−ρT
1−ρ

⌋
. When ρ→ 1, we have N = ⌊

√
T ⌋ and

lim
ρ→1

h(ρ, T ) = K5⌊
√
T ⌋+K6⌊

√
T ⌋ log⌊

√
T ⌋+K7 log⌊

√
T ⌋ (T − ⌊

√
T ⌋2)

⌊
√
T ⌋

= O(
√
T log T ).

When T → ∞, we have N =
⌊√

1
1−ρ

⌋
and

lim
T→∞

h(ρ, T ) = K5
1− ρN

1− ρ
+K6

⌊√
1

1− ρ

⌋
log

⌊√
1

1− ρ

⌋
+K7

1/(1− ρ)⌊√
1/(1− ρ)

⌋ log ⌊√ 1

1− ρ

⌋

= O
(√

1

1− ρ
log

(
1

1− ρ

))
.

■

B.3 Proof of Theorem 6

We first show Lemma A.9, which will be used to show Theorem 6.

Lemma A.9 Let π̂ denote our policy. Then there exist positive constants K15, Ť ∈ N, and ρ̌ ∈ [0, 1) such that,

under policy π̂, for all T ≥ Ť and ρ ≥ ρ̌, we have E(φ(θ)− φ(ϑt))
2 ≤ K15

η
τ for t ≥ 2c2τ .

Proof of Lemma A.9: For t ≥ 2c2τ , we have Jt ≥
∑2c2τ
s=1 (ps − p̄t)

2 ≥ c2τ
2 (p̃1 − p̃2)

2 = k1τ , where

k1 = c2
2 (p̃1 − p̃2)

2. By the mean value theorem, we have |φ(θ) − φ(ϑt)| ≤
√
2k2∥θ − ϑt∥, where k2 =

maxj∈{1,2}{maxθ{(∂φ(θ)/∂θj)2}}. By monotonicity of expectation, we have

E(φ(θ)− φ(ϑt))
2

≤ 2k2E∥θ − ϑt∥2

≤ 2k2E∥θ − θ̂t∥2

= 2k2

∫ ∞

0

P(∥θ − θ̂t∥2 > x, Jt ≥ k1τ)dx

≤ 4k2η

λk1τ
+ 2k2

∫ ∞

2η
λk1τ

γt exp(−λ(
√
x ∧ x)k1τ)dx

≤ 4k2η

λk1τ
+ 2k2

[∫ 1

2η
λk1τ

γt exp(−λxk1τ)dx+

∫ ∞

1

γt exp(−λ
√
xk1τ)dx

]

=
4k2η

λk1τ
+ 2k2

[
γt exp(−2η)

λk1τ
+
γt exp(−λk1τ)

λk1τ
+

2γt exp(−λk1τ)
λ2k21τ

2

]
≤ 4k2η

λk1τ
+ 2k2

[
γT exp(−2η)

λk1τ
+
γT exp(−λk1τ)

λk1τ
+

2γT exp(−λk1τ)
λ2k21τ

2

]
.

The third inequality holds by Lemma A.8. Note that

lim
ρ→1

T exp(−2η) = T−1 < log T = lim
ρ→1

η for T ≥ 2.
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lim
T→∞

lim
ρ→1

T exp(−λk1τ) = lim
T→∞

T exp
(
−λk1

[√
T
])

= 0 < lim
T→∞

log T = lim
T→∞

lim
ρ→1

η,

lim
T→∞

lim
ρ→1

T exp(−λk1τ)/τ = lim
T→∞

T exp
(
−λk1

[√
T
])
/
([√

T
])

= 0 < lim
T→∞

log T = lim
T→∞

lim
ρ→1

η.

Thus, there exists Ť ∈ N and ρ̌ ∈ [0, 1) such that for all T ≥ Ť and ρ ≥ ρ̌, we have

E(φ(θ)− φ(ϑt))
2

≤ 4k2η

λk1τ
+ 2k2

[
γT exp(−2η)

λk1τ
+
γT exp(−λk1τ)

λk1τ
+

2γT exp(−λk1τ)
λ2k21τ

2

]
≤ 4k2η

λk1τ
+ 2k2

[
γη

λk1τ
+

γη

λk1τ
+

2γη

λ2k21τ

]
≤ K15

η

τ
,

where K15 = 4k2
λk1

+ 4k2γ
λk1

+ 4k2γ
λ2k21

. ■

Proof of Theorem 6: Under policy π̂, we have

T−1∑
t=2c2τ

ρtE(φ(θ)− pt+1)
2 =

T−1∑
t=2c2τ

ρtE(φ(θ)− φ(ϑt))
2 ≤ K15

T−1∑
t=2c2τ

ρt
η

τ
= K15

η

τ

ρ2c2τ (1− ρT−2c2τ )

1− ρ
.

Then, we have

∆π̂(T, ρ) ≤ |bmin| sup
θ∈Θ

{
2c2τ−1∑
t=0

ρtE(pt+1 − φ(θ))2 +

T−1∑
t=2c2τ

ρtE(pt+1 − φ(θ))2

}

≤ |bmin|(u− l)2
1− ρ2c2τ

1− ρ
+ |bmin|K15

η

τ

ρ2c2τ (1− ρT−2c2τ )

1− ρ

= K8
1− ρ2c2τ

1− ρ
+K9

η

τ

ρ2c2τ − ρT

1− ρ
,

where K8 = |bmin|(u− l)2 and K9 = |bmin|K15. When ρ→ 1, we have τ =
[√

T
]
, η = log T , and

lim
ρ→1

∆π̂(T, ρ) ≤ 2c2K8τ +K9
η

τ
(T − 2c2τ) = O(

√
T log T ).

When T → ∞, we have τ =
[√

1
1−ρ

]
, η = log

(
1

1−ρ

)
, and

lim
T→∞

∆π̂(T, ρ) ≤ K8
1− ρ2c2τ

1− ρ
+K9

η

τ

1

1− ρ
= O

(√
1

1− ρ
log

(
1

1− ρ

))
.

■

Proof of Lemma 1: Using Lemma A.8 and condition (i), Keskin and Zeevi (2014) show that, there exists a

constant K12 such that

E(φ(θ)− pt+1)
2 ≤ K12 log t

λκ0
√
t

+ 2E(φ(ϑt)− pt+1)
2 for all t ≥ N,

where N is a constant which satisfies kN exp(− 1
2λκ0

√
N) ≤ 1. Using condition (ii), we have

T−1∑
t=N

E(φ(θ)− pt+1)
2
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≤ K12

T−1∑
t=N

log t

λκ0
√
t
+ 2

T−1∑
t=N

E(φ(ϑt)− pt+1)
2

≤ 2K12

λκ0

√
T log T + 2κ1

√
T .

Since β ∈ [bmin, bmax], we have

∆π(T, ρ) = sup
θ∈Θ

{
−β

T−1∑
t=0

ρtE(pt+1 − φ(θ))2

}

≤ |bmin| sup
θ∈Θ

{
N−1∑
t=0

E(pt+1 − φ(θ))2 +

T−1∑
t=N

E(pt+1 − φ(θ))2

}

≤ |bmin|
{
N(u− l)2 +

2K12

λκ0

√
T log T + 2κ1

√
T

}
≤ K16

√
T log T,

where K16 = |bmin|(N(u− l)2 + 2K12

λκ0
+ 2κ1). ■

Appendix C Proofs of the Results in Section 4

In this section, we consider the setting in Section 4 where the effective discount rate per decision period is

ρ(T ) = (ρ0)
1/T for ρ0 ∈ (0, 1). We show that for the models in BR and KZ, the regret under any policy is

Ω(
√
T ) (Propositions A.1 and A.4). For the model in BR, we show that the regret under our policy as well that

under the MLE-CYCLE policy in BR is O(
√
T ) (Propositions A.2 and A.3). For the model of KZ, we show that

the regret is O(log T
√
T ) under three policies – namely, the two variants of the greedy Iterated-Least-Squares

policy in KZ and a different policy that we propose (Propositions A.5 and A.6).

Proposition A.1 Consider the problem class CLB defined in Theorem 1. For any policy ψ and ρ(T ) = (ρ0)
1/T ,

there exists a parameter z ∈ Z, such that

Regret(z, CLB , T, ρ(T ), ψ) = Ω(
√
T ).

Proof of Proposition A.1: Recall from Theorem 1 that there exists a parameter z ∈ Z such that

Regret(z, CLB , T, ρ, ψ) ≥ K0

√ ρ

1− ρ
(1− ρT−1) +

√
ρT (1− ρT−1)

1− ρ

 .

For T ≥ 2 and ρ(T ) = (ρ0)
1/T , we have

Regret(z, CLB , T, ρ(T ), ψ)

≥ K0

√ (ρ0)1/T

1− (ρ0)1/T

(
1− (ρ0)

(1−1/T )
)
+

√
ρ0
(
1− (ρ0)(1−1/T )

)
1− (ρ0)1/T
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≥ K0

(√
(ρ0)1/2

(
1− (ρ0)

(1−1/2)
)√ 1

1− (ρ0)1/T
+
√
ρ0
(
1− (ρ0)(1−1/2)

)√ 1

1− (ρ0)1/T

)

= K0

(√
(ρ0)1/2

(
1− (ρ0)

(1−1/2)
)
+
√
ρ0
(
1− (ρ0)(1−1/2)

))√ 1

1− (ρ0)1/T

= Ω(
√
T ).

■

Proposition A.2 For any problem class C satisfying Assumptions 1 and 2 with corresponding exploration prices

p̄ ∈ Pk and ρ(T ) = (ρ0)
1/T , our policy ψ̂ (defined in Section 2.2) satisfies

Regret(z, C, T, ρ(T ), ψ̂) = O
(√

T
)
.

Proof of Proposition A.2: Recall from Theorem 2, our policy ψ̂ satisfies

Regret(z, C, T, ρ, ψ̂) ≤ K1
1− ρkτ

1− ρ
+K2

ρkτ − ρT

(1− ρ)τ
,

where τ =
[√

1−ρT
1−ρ

]
. For ρ(T ) = (ρ0)

1/T , we have

Regret(z, C, T, ρ(T ), ψ̂) ≤ K1
1− (ρ0)

kτ/T

1− (ρ0)1/T
+K2

(ρ0)
kτ/T − ρ0(

1− (ρ0)1/T
)
τ

= O

(
1− (ρ0)

−2k
√
1−ρ0

√
1−(ρ0)1/T / log ρ0

1− (ρ0)1/T

)
+O

(
1√

1− (ρ0)1/T

)

= O

(
1√

1− (ρ0)1/T

)
= O

(√
T
)
.

■

Proposition A.3 For any problem class C satisfying Assumptions 1 and 2 with corresponding exploration prices

p̄ ∈ Pk and ρ(T ) = (ρ0)
1/T , the MLE-CYCLE policy ψ̌ in BR satisfies

Regret(z, C, T, ρ(T ), ψ̌) = O
(√

T
)
.

Proof of Proposition A.3: Recall from Theorem 3, the MLE-CYCLE policy ψ̌ satisfies

Regret(z, C, T, ρ, ψ̂) ≤ K3

1 +

⌊
√
2T⌋∑

h=1

ρh
2/2

 .

For ρ(T ) = (ρ0)
1/T , we have

Regret(z, C, T, ρ(T ), ψ̂) ≤ K3 +

⌊
√
2T⌋∑

h=1

(ρ0)
h2/(2T )K3
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≤ K3 +K3

∫ √
2T

0

(ρ0)
h2/(2T )dh

= K3 +K3

∫ √
2T

0

elog(ρ0)h
2/(2T )dh

= K3 +K3

√
1

2

∫ T

0

elog(ρ0)x/T
√

1

x
dx.

The last equality holds by letting x = h2/2. When T → ∞,

lim
T→∞

K3

(
1 +

√
1

2

∫ T

0

elog(ρ0)x/T
√

1

x
dx

)
= lim

T→∞
K3

(
1 +

√
1

2

√
1

− log(ρ0)

√
T

∫ − log(ρ0)

0

e−ww−1/2dw

)

≤ K3

(
1 +

√
π

2

√
1

− log(ρ0)

√
T

)
= O

(√
T
)
.

The first equality holds by letting w = − log(ρ0)x/T . The inequality holds since∫ − log(ρ0)

0

e−ww−1/2dw <

∫ ∞

0

e−ww−1/2dw = Γ(1/2) =
√
π.

■

Next, we consider the model in KZ with discounting where the discount factor ρ(T ) = (ρ0)
1/T .

Proposition A.4 For any policy π and ρ(T ) = (ρ0)
1/T , we have

∆π(T, ρ(T )) = Ω
(√

T
)
.

Proof of Proposition A.4: Recall from Theorem 4, we have

∆π(T, ρ) ≥ K4

√
ρ(1− ρ2T−2)

1− ρ2
for any policy π, ρ ∈ [0, 1), and T ≥ 3.

For ρ(T ) = (ρ0)
1/T , we have

∆π(T, ρ(T ))

≥ K4

√
(ρ0)1/T (1− (ρ0)(2T−2)/T )

1− (ρ0)2/T

≥ K4

√
ρ0(1− ρ0)

√
1

1− (ρ0)2/T

= Ω(
√
T ).

■

Proposition A.5 Let π be a pricing policy that satisfies the conditions in Theorem 5. Then, we have

∆π(T, ρ(T )) = O
(√

T log T
)
.

A14



Proof of Proposition A.5: Recall from Theorem 5 that the regret under policy π satisfies

∆π(T, ρ) ≤ K5
1− ρN

1− ρ
+K6N logN +K7

logN

N

1− ρT−N2

1− ρ
, for N =

√1− ρT

1− ρ

 .
For ρ(T ) = ρ

1/T
0 , we have

∆π(T, ρ(T ))

≤ K5
1− (ρ0)

N/T

1− (ρ0)1/T
+K6N logN +K7

logN

N

1− (ρ0)
(T−N2)/T

1− (ρ0)1/T

= O

(
1− (ρ0)

−2
√
1−ρ0

√
1−(ρ0)1/T / log ρ0

1− (ρ0)1/T

)
+O

(
1√

1− (ρ0)1/T
log

(
1

1− (ρ0)1/T

))
+

O

(
1√

1− (ρ0)1/T
log

(
1

1− (ρ0)1/T

))

= O

(
1√

1− (ρ0)1/T
log

(
1

1− (ρ0)1/T

))
= O

(
log T

√
T
)
.

■

Proposition A.6 Our policy π̂ in Section 3.2.3 satisfies

∆π̂(T, ρ(T )) = O
(√

T log T
)
.

Proof of Proposition A.6: Recall from Theorem 6 that our policy π̂ satisfies

∆π̂(T, ρ) ≤ K8
1− ρ2c2τ

1− ρ
+K9

η

τ

ρ2c2τ − ρT

1− ρ
,

where τ =
[√

1−ρT
1−ρ

]
and η = log

(
1−ρT
1−ρ

)
. For ρ(T ) = (ρ0)

1/T , we have

∆π̂(T, ρ(T ))

≤ K8
1− (ρ0)

2c2τ/T

1− (ρ0)1/T
+K9

η

τ

(ρ0)
2c2τ/T − ρ0

1− (ρ0)1/T

= O

(
1− (ρ0)

−4c2
√
1−ρ0

√
1−(ρ0)1/T / log ρ0

1− (ρ0)1/T

)
+O

(
1√

1− (ρ0)1/T
log

(
1− ρ0

1− (ρ0)1/T

))

= O

(
1√

1− (ρ0)1/T
log

(
1

1− (ρ0)1/T

))
= O

(
log T

√
T
)
.

■

Appendix D Number of Exploration Periods as a Function of the Discount Factor

Table A.1 below shows the number of exploration periods as a function of the discount factor ρ for our policies,

for policy MLE-CYCLE in BR, and for policy ILS-d in KZ.
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Table A.1: The number of exploration periods as a function of ρ under our policy, policy MLE-CYCLE
in BR, and policy ILS-d in KZ, for T = 40, 000.

log10

(
1

1−ρ

)
ρ our policy MLE-CYCLE ILS-d

1 0.9 6 562 399

2 0.99 20 562 399

3 0.999 64 562 399

4 0.9999 198 562 399

5 0.99999 364 562 399

6 0.999999 396 562 399

We do not report the number of exploration periods for CILS in KZ because there is no clear boundary

between exploration and exploitation under the CILS policy, thus making it difficult to determine the exact

length of exploration. We now elaborate. Recall that under the CILS policy, in each period t, we first compute

the difference between the greedy ILS price φ(ϑt−1) in period t and the average price p̄t−1 in the first t−1 periods,

denoted by δt = φ(ϑt−1)− p̄t−1. Then, for a positive constant c1, the CILS policy charges p̄t−1+sgn(δt)c1t
−1/4

if |δt| < c1t
−1/4 and φ(ϑt−1) otherwise. When |δt| ≥ c1t

−1/4, the CILS policy uses the greedy price φ(ϑt−1) for

exploitation. However, when |δt| < c1t
−1/4, it is unclear whether the price p̄t−1 + sgn(δt)c1t

−1/4 is used purely

exploration or exploitation. On the one hand, we exploit the average price p̄t−1, which is dynamically updated

as time t increases and is sufficiently close to the greedy price when t is large. On the other hand, while we

use a price deviation (sgn(δt)c1t
−1/4) from the average price p̄t−1 for exploration, this deviation decreases with

time t and is relatively small, so that the deviation from the greedy or “exploitation” price is not too much.

That is, the CILS policy focuses more on exploitation and less on exploration as time t increases. When t is

sufficiently large, the offered price can be very close to the greedy price. Therefore, there is no clear or simple

answer to whether the price is used for exploration or exploitation. Alternatively, one can say that the price is

used for both exploration and exploitation, and balances the tradeoff between the two. Since there is no clear

definition for exploration periods in CILS, we do not report that number for the CILS policy in Table A.1.

Appendix E Additional Numerical Experience

We show the robustness of the superior performance of our policy when ρ is sufficient close to 1. In particular,

for ρ = 0.999999, we numerically examine the behavior of the regret under different policies with respect to

the time horizon T by varying T from 5000 to 40000, in increments of 5000, in the settings of both BR (see

Section 2.3) and KZ (see Section 3.3). Figure A.1 (resp., Figure A.2) plots the relative difference between the

average regret under policy MLE-CYCLE in BR and that under our policy for the linear (resp., logit) model.

A16



Figure A.1: The relative percentage difference between the average regret under policy MLE-CYCLE
and that under our policy for a linear model (ρ = 0.999999).
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Note: Regret1 is the average regret under MLE-CYCLE and Regret2 is the average regret under our policy.

Figure A.3 (resp., Figure A.4) plots the relative difference between the average regret under policy ILS-d (resp.,

CILS) in KZ and that under our policy. We also provide a companion table (Table A.2) to Figures A.1, A.2,

and A.3 to show the number of exploration periods as a function of T for our policy, for policy MLE-CYCLE

in BR, and for policy ILS-d in KZ. As seen in Table A.2, the exploration length of our policy is similar to that

of ILS-d. As seen in Figures A.1, A.2, A.3, and A.4, our policy consistently performs better when ρ is sufficient

close to 1.

Table A.2: The number of exploration periods as a function of T under our policy, policy MLE-CYCLE
in BR, and policy ILS-d in KZ, for ρ = 0.999999.

T our policy MLE-CYCLE ILS-d

5000 142 196 140

10000 200 278 199

15000 244 342 244

20000 282 396 282

25000 314 444 316

30000 344 486 346

35000 370 526 374

40000 396 562 399
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Figure A.2: The relative percentage difference between the average regret under policy MLE-CYCLE
and that under our policy for a logit model (ρ = 0.999999).
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Note: Regret3 is the average regret under MLE-CYCLE and Regret4 is the average regret under our policy.

Figure A.3: The relative percentage difference between the average regret under policy ILS-d and that
under our policy (ρ = 0.999999).
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Note: Regret5 is the average regret under ILS-d and Regret7 is the average regret under our policy.
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Figure A.4: The relative percentage difference between the average regret under policy CILS and that
under our policy (ρ = 0.999999).
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Note: Regret6 is the average regret under CILS and Regret7 is the average regret under our policy.
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