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SUMMARY 24 

The ensemble Kalman filter (EnKF) is recognized as a powerful data assimilation 25 

technique that generates an ensemble of model variables through stochastic perturbations 26 

of forcing data and observations. However, relatively little guidance exists with regard to 27 

the proper specification of the magnitude of the perturbation and the ensemble size, posing 28 

a significant challenge in optimally implementing the EnKF. This paper presents a robust 29 

data assimilation system (RDAS), in which a multi-factorial design of the EnKF 30 

experiments is first proposed for hydrologic ensemble predictions. A multi-way analysis of 31 

variance is then used to examine potential interactions among factors affecting the EnKF 32 

experiments, achieving optimality of the RDAS with maximized performance of 33 

hydrologic predictions. The RDAS is applied to the Xiangxi River watershed which is the 34 

most representative watershed in China’s Three Gorges Reservoir region to demonstrate 35 

its validity and applicability. Results reveal that the pairwise interaction between perturbed 36 

precipitation and streamflow observations has the most significant impact on the 37 

performance of the EnKF system, and their interactions vary dynamically across different 38 

settings of the ensemble size and the evapotranspiration perturbation. In addition, the 39 

interactions among experimental factors vary greatly in magnitude and direction depending 40 

on different statistical metrics for model evaluation including the Nash–Sutcliffe efficiency 41 

and the Box–Cox transformed root-mean-square error. It is thus necessary to test various 42 

evaluation metrics in order to enhance the robustness of hydrologic prediction systems. 43 

 44 

Keywords: Ensemble Kalman filter; Data assimilation; Hydrologic ensemble prediction; 45 

Interaction; Streamflow; Uncertainty 46 
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 47 

1. Introduction 48 

Since hydrologic models are mathematical representations of complex watershed 49 

processes, uncertainty is pervasive throughout hydrologic predictions (DeChant and 50 

Moradkhani, 2014). Uncertainty in hydrologic predictions originates from various sources, 51 

including the descriptions of boundary and initial conditions, the errors in model forcing 52 

data, difficulty in obtaining accurate parameter estimates, and model structural deficiencies 53 

(Ajami et al., 2007). Therefore, efficient quantification and reduction of uncertainty are 54 

necessary to provide reliable hydrologic predictions (Moradkhani et al., 2012; Wang et al., 55 

2015c). 56 

Over the past few decades, tremendous efforts have been made in the development 57 

and application of sequential data assimilation techniques for explicitly dealing with 58 

various sources of uncertainty in hydrologic modeling (Weerts and El Serafy, 2006; Liu 59 

and Gupta, 2007; Ryu et al., 2009; Gharamti et al., 2013; Panzeri et al., 2014; 60 

Randrianasolo et al., 2014; Khan and Valeo, 2016; Wang et al., 2017). Sequential data 61 

assimilation techniques continuously update model states when new observations become 62 

available to improve the forecast accuracy (Vrugt et al., 2005). The Kalman filter (KF) is 63 

the most commonly used sequential data assimilation technique, which was developed in 64 

the 1960s for optimal control of linear dynamic systems (Kalman, 1960). For nonlinear 65 

dynamics, the extended Kalman filter (EKF) can be used, which linearizes the error 66 

covariance equation by using a tangent linear operator. However, EKF produces unstable 67 

results when the nonlinearity in dynamic systems is strong and requires considerable 68 

computational effort due to the error covariance propagation (Evensen, 1992). As a result, 69 
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the ensemble Kalman filter (EnKF) was introduced by Evensen (1994). The EnKF takes 70 

advantage of the Monte Carlo method to approximate the error covariance evolution 71 

equation used in the EKF, which is capable of providing the forecast error estimate with a 72 

significantly lower computational cost and without any closure problem in the error 73 

covariance evolution equation.  74 

Due to its attractive features of real-time adjustment and efficient implementation, the 75 

EnKF has been extensively used for recursive estimation of hydrologic model parameters 76 

and state variables (Xie and Zhang, 2010; Cammalleri and Ciraolo, 2012; DeChant and 77 

Moradkhani, 2012; Rafieeinasab et al., 2014; Gharamti et al., 2015; Liu et al., 2016; 78 

Pathiraja et al., 2016b). For example, Moradkhani et al. (2005) proposed a dual state-79 

parameter estimation approach based on the EnKF for sequential estimation of both 80 

parameters and state variables of a hydrologic model. Wang et al. (2009) proposed a 81 

constrained EnKF framework for simultaneous state estimation and sequential parameter 82 

learning in hydrologic modeling, in which the naive method, the projection and 83 

accept/reject methods were used to deal with inequality constraints. Samuel et al. (2014) 84 

evaluated the variations of streamflow and soil moisture by using the EnKF with dual state-85 

parameter estimation for streamflow assimilation, soil moisture assimilation, and combined 86 

assimilation of streamflow and soil moisture. Pathiraja et al. (2016a) investigated the 87 

potential for data assimilation by using the EnKF to detect known temporal patterns in 88 

model parameters from streamflow observations. The EnKF is recognized as a powerful 89 

data assimilation technique that generates an ensemble of model variables through 90 

stochastic perturbations of forcing data and observations (inputs and outputs). Thus, 91 

identification of perturbation factors and selection of the ensemble size are key features of 92 
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the EnKF (Moradkhani et al., 2005). However, relatively little guidance exists in literature 93 

with regard to the proper specification of the magnitude of the perturbation and the 94 

ensemble size, posing a significant challenge in optimally implementing the EnKF (Crow 95 

and Loon, 2006).  96 

Since inappropriate specification of factors affecting the EnKF experiment can 97 

degrade the performance of the data assimilation system, sensitivity experiments are often 98 

carried out for identifying error parameters and estimating the ensemble size (Clark et al., 99 

2008; Sun et al., 2009; McMillan et al., 2013; Rasmussen et al., 2015). However, the 100 

sensitivity analysis experiments are limited in determining optimal settings of the EnKF 101 

applied to a particular problem. Thus, Yin et al. (2015) used a series of mathematical 102 

derivations to derive the optimal ensemble size of the EnKF used for a sequential soil 103 

moisture data assimilation system. In the EnKF, stochastic perturbations account for 104 

uncertainties in model parameters, inputs, and outputs. Specification of perturbation factors 105 

is a key feature of the EnKF, which plays a crucial role in the performance of sequential 106 

data assimilation experiments (Clark et al., 2008).  107 

As a recursive scheme for estimating state variables and model parameters, the 108 

experimental factors involved in the EnKF are actually correlated with each other, and their 109 

interactions have a remarkable influence on the behavior of nonlinear dynamic systems. 110 

For example, many of the highly sensitive factors may provide redundant and misleading 111 

information regarding the variability of response variables since their sensitivities may be 112 

correlated with those of the other factors. As a result, failure to account for potential 113 

interactions among experimental factors can degrade the performance of the EnKF system 114 

(Crow and Loon, 2006; Thiboult and Anctil, 2015). It is thus necessary to examine the 115 
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interactions among experimental factors and to quantify their contributions to the variation 116 

in model responses in order to maximize the predictive performance. 117 

In this paper, we develop a robust data assimilation system (RDAS) with a factorial 118 

experimental design framework to enhance the effectiveness and robustness of the EnKF 119 

for hydrologic ensemble predictions. A multi-factorial EnKF method will be proposed by 120 

combining the strengths of multivariate hypothesis testing and sequential data assimilation 121 

techniques. In the RDAS, the EnKF will be carried out under various combinations of 122 

factors with different scenarios, leading to a diverse set of EnKF experiments. The multi-123 

way analysis of variance (ANOVA) will then be used to uncover dynamic interactions 124 

among factors involved in the EnKF experiments, which provides meaningful insights for 125 

advancing the understanding of the sequential data assimilation process and maximizing 126 

the EnKF performance. The RDAS will be applied to predict daily streamflow in the 127 

Xiangxi River watershed in China since daily streamflow predictions play a key role in 128 

flood risk assessment and management. 129 

This paper is organized as follows. Section 2 introduces the framework of the 130 

proposed RDAS for hydrologic ensemble predictions. Section 3 provides details on the 131 

study area and the experimental setup.  Section 4 presents a systematic analysis of multi-132 

factorial EnKF experiments along with a thorough discussion of interactions among 133 

experimental factors affecting the performance of the EnKF system. Finally, conclusions 134 

are drawn in Section 5. 135 

 136 

2. Development of robust data assimilation system  137 
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The RDAS takes into account potential interactions among experimental factors 138 

influencing the EnKF data assimilation and quantifies their joint effects on the EnKF 139 

performance. An overview of the steps involved within the RDAS framework is provided 140 

as follows: 1) selection of the EnKF experimental factors, 2) factorial design of the EnKF 141 

experiments, 3) execution of ensemble data assimilation experiments, 4) multi-way 142 

ANOVA, 5) examination of dynamic interactions among experimental factors, 6) 143 

quantification of the joint effects of experimental factors on the EnKF performance, and 7) 144 

hydrologic ensemble predictions. The aforementioned steps can be categorized into four 145 

parts: EnKF, multi-factorial ANOVA, multi-factorial EnKF, and selection of statistical 146 

metrics for model evaluation.  147 

 148 

2.1. Ensemble Kalman filter 149 

The EnKF is a sequential data assimilation technique that makes use of Monte Carlo 150 

integration methods to approximate the error covariance matrix by a stochastic ensemble 151 

of model realizations (Evensen, 2003). In contrast to the extended Kalman filter (EKF), the 152 

EnKF represents the error covariance evolution through a set of model realizations rather 153 

than an explicit mathematical expression, which is particularly useful for nonlinear 154 

dynamic models. As a result, the ensemble of model states is integrated forward in time to 155 

predict error statistics (DeChant and Moradkhani, 2012). The model forecast can be made 156 

through the EnKF as follows: 157 

   , 1 , , 1 , 1 , 1 , 1 1, , ,      ~ 0, m

i t i t i t i t i t i t tx f x u N    

        ,        (1) 158 

where i and t denote the ensemble number and the time step, respectively; ,i tx
 and , 1i tx

  159 

represent the posterior model states at the previous time step and the predicted model states 160 
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at the current time step, respectively; f represents the forward model that propagates the 161 

system states from time t to t+1 in response to model inputs ui,t+1 and parameters θi,t+1; and 162 

ωi,t+1 represent the model errors that follow a Gaussian distribution with zero mean and 163 

covariance 1

m

t . As for the recursive parameter estimation through the EnKF, it is assumed 164 

that model parameters are perturbed by a small random noise in order to maintain diversity 165 

in posterior parameters: 166 

, 1 , ,( ),     i t i t i tS     

           (2) 167 

where τ is a small tuning parameter which was set to 0.01 in this study, and ,( )i tS  
 is the 168 

standard deviation of the prior parameter distribution at the previous time step (DeChant 169 

and Moradkhani, 2012).  170 

Prior to the update of model states and parameters, predictions can be made by: 171 

 , 1 , 1 , 1, ,     i t i t i ty h x   

           (3) 172 

where , 1i ty

  is the prediction, and h is the operator that relates state variables and parameters 173 

to measured variables (streamflow) and yields the expected value of the prediction given 174 

model states and parameters. After predictions are obtained, the posterior states and 175 

parameters are estimated with the Kalman update equations as follows: 176 

, 1 , 1 1 , 1 , 1i t i t xy t i t i tx x K y y  

    
      ,        , 1 1~ 0, y

i t tN   ,    (4) 177 

, 1 , 1 1 , 1 , 1i t i t y t i t i tK y y    

    
      ,        , 1 1~ 0, y

i t tN   ,            (5) 178 

where yt+1 is the observed value, εi,t+1 is the observation error which is assumed to be 179 

Gaussian and independent of mode error ωt+1 (Moradkhani et al., 2005), and Kxy and Kθy 180 

represent the Kalman gains for states and parameters, respectively: 181 
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1

1 1 1 1

x xy yy y

t t t tK


   
      ,           (6) 182 

1

1 1 1 1

y yy y

t t t tK  

   
      .            (7) 183 

where 1

xy

t   is the cross covariance of ensembles of state variables , 1i tx

   with predicted 184 

observations , 1i ty

  , 1

y

t



   is the cross covariance of ensembles of model parameters , 1i t 

  185 

with predicted observations , 1i ty

 , 1

yy

t  is the variance of predicted observations, and 1

y

t   186 

is the observation error variance (Dechant and Moradkhani, 2011).  187 

Although critical issues for the EnKF data assimilation have been introduced in the 188 

literature, little effort has been made to explicitly examine the potential interactions among 189 

experimental factors affecting the EnKF data assimilation, including the ensemble size (i) 190 

and random perturbations to model parameters (θ), inputs (u), and outputs (y). Multi-191 

factorial ANOVA is thus proposed to reveal the latent interactions among experimental 192 

factors and their joint effects on the EnKF performance.  193 

 194 

2.2. Multi-factorial analysis of variance 195 

Multi-factorial ANOVA is a powerful tool for examining the effects of multiple factor 196 

variables and their interactions on response variables by conducting hypothesis tests with 197 

the F-statistic. The null hypothesis assumes that the group means for all response variables 198 

are equal while the alternative hypothesis states that at least one mean is different 199 

(Montgomery and Runger, 2013).  200 

In a factorial experiment, all possible combinations of the levels of factors are 201 

investigated. For example, if there are a levels of factor A, b levels of factor B, and c levels 202 

of factor C, there will be a total of abcn observations in a complete factorial experiment 203 
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with n replicates. ANOVA is derived from the partitioning of total variability into various 204 

components due to different sources of variation. The ANOVA model for such a factorial 205 

experiment can thus be expressed as: 206 

1,2,...

1,2,...
( ) ( ) ( ) ( )    

1,2,...

1,2,...

ijkl i j k ij ik jk ijk ijkl

i a

j b
y

k c

l n

        





         


 

.   (8) 207 

where μ is the overall mean effect, τi is the effect of the ith level of factor A, βi is the effect 208 

of the jth level of factor B, γk is the effect of the kth level of factor C, (τβ)ij is the effect of 209 

the interaction between factors A and B, (τγ)ik is the effect of the interaction between factors 210 

A and C, (βγ)jk is the effect of the interaction between factors B and C, (τβγ)ijk is the effect 211 

of the interaction between factors A, B, and C, and εijkl is the random error component. 212 

The ANOVA model contains three main effects, three two-factor interactions, a three-213 

factor interaction, and an error term. The effects are defined as deviations from the overall 214 

mean (Montgomery, 2000). The F-statistic can then be used to test the statistical 215 

significance for each of the factors as well as their interactions (Wang et al., 2015b). The 216 

multi-factorial ANOVA approach is useful in testing differences between two or more 217 

means by analyzing variances from multiple sources (Wu and Hamada, 2009; Shen et al., 218 

2012; Liu et al., 2016; Wang et al., 2015a, 2016a; Zeng et al., 2016), and thus it can be used 219 

to reveal the potential interactions among experimental factors involved in the EnKF 220 

experiments. 221 

 222 

2.3. Multi-factorial ensemble Kalman filter 223 

To enhance the effectiveness and robustness of sequential data assimilation techniques, 224 
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a multi-factorial EnKF method is proposed by merging the strengths of factorial ANOVA 225 

and the EnKF. The multi-factorial EnKF method is capable not only of uncovering 226 

interactions among perturbation factors influencing the EnKF, but also of quantifying and 227 

reducing uncertainties in hydrologic ensemble predictions.  228 

To tackle various sources of uncertainty including input and output measurement 229 

errors as well as parameter uncertainty, stochastic perturbations were used in the EnKF by 230 

adding noise to the forcing data (precipitation and evapotranspiration) and streamflow 231 

observations in this study.  Four experimental factors were thus taken into account in the 232 

data assimilation experiment, including the ensemble size (ES), precipitation noise (PN), 233 

evapotranspiration noise (EN), and observation noise (ON) added to the EnKF. Each factor 234 

had three levels (scenarios) of interest based on . In fact, the EnKF experimental factors 235 

are correlated with each other in the data assimilation experiment, and the magnitude and 236 

direction of pairwise interactions between experimental factors vary along with different 237 

settings of other factors, leading to nonlinear dynamics of interacting factors. It is thus 238 

necessary to explore dynamic interactions among perturbation factors in order to maximize 239 

the performance of the EnKF system. 240 

As shown in Fig. 1, a 34 factorial experimental design can be constructed, in which 241 

the EnKF data assimilation experiment is conducted under each combination of 242 

experimental factors, leading to hydrologic ensemble predictions. In the 34 system of 243 

factorial designs, there are 34 factorial combinations with 34 – 1 degrees of freedom 244 

between them. If there are n replicated experiments, there will be n34 – 1 total degrees of 245 

freedom and 34(n – 1) degrees of freedom for error. These factorial combinations allow 246 

sums of squares to be computed for four main effects, six two-factor interactions, three 247 
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three-factor interactions, and one four-factor interaction (Montgomery, 2000; Wang et al., 248 

2016b).  249 

After the sums of squares for effects are computed through the ANOVA model, the F 250 

test can be performed to reveal the statistical significance for each of the four factors and 251 

their interactions. As a result, the pairwise interactions between the EnKF factors can be 252 

calculated by: 253 

4 4 4

4 4 4,   ,   ,

3 ( 1) 3 ( 1) 3 ( 1)

ES PN ES EN ES ON

ES PN ES EN ES ON
E E E

SS SS SS

F F F
SS SS SS

n n n

  

    

  

  (9) 254 

4 4 4

4 4 4,   ,   

3 ( 1) 3 ( 1) 3 ( 1)

PN EN PN ON EN ON

PN EN PN ON EN ON
E E E

SS SS SS

F F F
SS SS SS

n n n

  

     

  

     (10) 255 

where SSES×PN, SSES×EN, SSES×ON, SSPN×EN, SSPN×ON, SSEN×ON, and SSE represent the sum of 256 

squares for the pairwise interactions between the ensemble size and the precipitation noise, 257 

those between the ensemble size and the evapotranspiration noise, those between the 258 

ensemble size and the observation noise, those between the precipitation noise and the 259 

evapotranspiration noise, those between the precipitation noise and the observation noise, 260 

those between the evapotranspiration noise and the observation noise, and the error 261 

component, respectively. The factorial data assimilation experiment with the EnKF is 262 

useful for maximizing the performance of hydrologic ensemble predictions through 263 

robustly examining dynamic interactions among experimental factors. 264 

 265 

-------------------------- 266 

Place Fig. 1 here 267 

-------------------------- 268 
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 269 

2.4. Statistical metrics for model evaluation 270 

Two statistical metrics, the Nash–Sutcliffe efficiency (NSE) and the Box–Cox 271 

transformed root-mean-square error (TRMSE), are applied to evaluate prediction errors. 272 

The NSE is commonly used to emphasize the predictive capacity of high flows due to the 273 

use of squared residuals, and can be defined as: 274 

2

, ,

1

2

,

1

( )

NSE 1

( )

T

s t o t

t

T

o t o

t

Q Q

Q Q







 






.         (11) 275 

where T is the number of time steps, Qo,t is the observed discharge at time t, Qs,t is the 276 

predicted discharge at time t, and oQ  is the mean of observed discharges. NSE ranges from 277 

–∞ to 1 (Nash and Sutcliffe, 1970). The TRMSE emphasizes low-flow prediction errors, 278 

and can be defined as:  279 

2

, ,

1

1 ˆ ˆTRMSE ( )
T

s t o t

t

Q Q
T 

  ,           (12)280 

(1 ) 1ˆ Q
Q





 
 .                    (13) 281 

where ,
ˆ

s tQ   is the transformed predicted discharge at time t, ,
ˆ

o tQ   is the transformed 282 

observed discharge at time t, and Q̂  represents the Box-Cox transformation of discharge 283 

Q  (Box and Cox, 1964), where λ = 0.3 as recommend by Misirli et al. (2013). 284 

In this paper, both NSE and TRMSE metrics were used to examine the performance 285 

of hydrologic ensemble predictions through the EnKF data assimilation experiments. In 286 

addition, parameter identification and interaction detection were performed based on 287 
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different evaluation metrics, enhancing the robustness of hydrologic data assimilation. 288 

 289 

3. Experimental setup 290 

3.1. Site and model descriptions 291 

The robust data assimilation system (RDAS) is applied to predict daily streamflow in 292 

the Xiangxi River watershed. As shown in Fig. 2, the Xiangxi River is the largest tributary 293 

of the Three Gorges Reservoir (TGR) in Central China’s Hubei Province. The Xiangxi 294 

River watershed with a total area of 3,099 km2 lies in the subtropical region, and 295 

experiences a typical continental monsoon climate with substantial temperature variations 296 

in Spring and concentrated rainfalls in Summer. The weather is rainy in Autumn and snowy 297 

in Winter. It is the most representative watershed in the TGR region in terms of topographic 298 

properties, runoff volumes, and economic conditions (Han et al., 2014). In this study, a 299 

total of three years of meteorological and hydrological data from January 1994 to 300 

December 1996 were used for assimilating daily streamflow in the Xiangxi River 301 

watershed. The three years of data were selected because there were continuous 302 

observational data and relatively little human interference in the natural river flow during 303 

the period of time, ensuring the data quality and maximizing the reliability of hydrologic 304 

predictions. 305 

 306 

-------------------------- 307 

Place Fig. 2 here 308 

-------------------------- 309 

 310 
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Data assimilation experiments with the EnKF were undertaken by using HyMOD 311 

which is a well-known rainfall-runoff model with a daily time step (Moore, 1985). The 312 

runoff production in HyMOD is characterized as a rainfall excess process, and the runoff 313 

is determined according to a probability-distributed storage capacity model (Moore, 2007; 314 

Bulygina and Gupta, 2011; Young, 2013). The catchment is considered as a finite number 315 

of points, and each of them has a certain soil moisture capacity denoted as c [L]. Due to 316 

spatial variability such as soil type and depth within the catchment, the variability of soil 317 

moisture capacities can be characterized by a cumulative distribution function (CDF) 318 

defined as: 319 

exp

max

max

( ) 1 1      0

b

c
F c c C

C

 
     

 
.          (14) 320 

where Cmax [L] is the maximum soil moisture capacity, and bexp [-] is the degree of spatial 321 

variability in soil moisture capacities and affects the shape of the CDF. The CDF indicates 322 

the probability of occurrence of a specific soil moisture capacity across the catchment. The 323 

HyMOD model partitions excess rainfall into surface and subsurface soil moisture storage, 324 

denoted as S [L], through a partitioning factor β [-]. The surface storage is characterized by 325 

three quick-flow tanks (S1, S2, and S3), and the subsurface storage is represented by a single 326 

slow-flow tank (Ss). The residence time of slow- and quick-flow tanks are represented as 327 

Rs and Rq [T], respectively. The generated streamflow is the addition of discharges from 328 

slow- and quick-flow tanks. The input data of daily precipitation P [mm/d] and potential 329 

evapotranspiration ET [mm/d] are used to drive the HyMOD model.  330 

HyMOD is characterized by five state variables (S, Ss, S1, S2, and S3) and five 331 

parameters (Cmax, bexp, β, Rs, and Rq). The initial ranges of model parameters are given in 332 
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Table 1. To properly assess the performance of the RDAS, a predefined set of “true” model 333 

parameters and the observed forcing data including daily precipitation and potential 334 

evapotranspiration were used to generate synthetic streamflow observations. The EnKF 335 

was then performed to assimilate the synthetic streamflow observations, and the 336 

convergence of model parameters to the “true” values was evaluated accordingly. Since 337 

uncertainty inevitably exists in the forcing data and streamflow observations in practice, 338 

stochastic perturbations are employed by adding noise to the forcing data and observations 339 

in order to account for various sources of uncertainty, leading to an ensemble of model 340 

variables. As a result, specification of perturbation factors and the ensemble size is a key 341 

feature of the EnKF, which plays an important role in the performance of hydrologic 342 

ensemble predictions.  343 

 344 

-------------------------- 345 

Place Table 1 here 346 

-------------------------- 347 

 348 

3.2. Factorial design of ensemble data assimilation experiments 349 

To develop the RDAS for hydrologic ensemble predictions in the Xiangxi River 350 

watershed, a 34 full factorial design that involved four factors with each having three levels 351 

was first constructed. As shown in Fig. 3, experimental factors represent the ensemble size 352 

and random perturbations added to precipitation, potential evapotranspiration, and 353 

streamflow observation in the EnKF data assimilation experiment. The precipitation data 354 

were log-normally perturbed with three relative errors of 10%, 20%, and 30%, while 355 

potential evapotranspiration and streamflow observation were normally perturbed with the 356 

error scenarios of 10%, 20%, and 30%, respectively. In addition, three ensemble sizes of 357 
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30, 50, and 80 were taken into account in the factorial experimental design. As a result, the 358 

34 factorial design contained 81 combinations of the four factors under three scenarios. 359 

The EnKF data assimilation experiment was conducted under each factorial 360 

combination, leading to hydrologic ensemble predictions. Such a factorial design of 361 

ensemble data assimilation experiments is able to reveal meaningful implications for 362 

maximizing the EnKF performance through examining potential interactions among 363 

experimental factors. In addition, the factorial experimental design is useful for enhancing 364 

the effectiveness and robustness of sequential data assimilation methods as well as for 365 

quantifying and reducing uncertainty in hydrologic predictions. 366 

 367 

-------------------------- 368 

Place Fig. 3 here 369 

-------------------------- 370 

 371 

4. Results and discussion 372 

4.1. Examination of interactions among experimental factors affecting hydrologic data 373 

assimilation 374 

According to the 34 factorial design, a total of 81 NSE and TRMSE values were 375 

obtained through the EnKF data assimilation experiments under different combinations of 376 

factor settings (as shown in Fig. 4). The multi-factorial ANOVA was then performed to 377 

examine the interactions among factors affecting the performance of hydrologic 378 

predictions. To check the Gaussian assumption of the residual distribution for the multi-379 

factorial ANOVA, Fig. 5 presents the normal probability plots of residuals for the NSE and 380 

TRMSE metrics, respectively. As the resulting plot is approximately linear, this means that 381 
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the Gaussian assumption of the residual distribution is valid. The Shapiro–Wilk test was 382 

also performed as a rigorous statistical checking for normality of residuals. The results with 383 

P-values being greater than 0.05 verify that residuals are normally distributed. 384 

 385 

---------------------------------- 386 

Place Figs. 4 and 5 here 387 

---------------------------------- 388 

 389 

Fig. 6 depicts the response desirability in terms of maximum NSE and minimum 390 

TRMSE produced in different regions of the plane defined by pairs of experimental factors, 391 

where each region of the plane represents a different combination of the levels of two 392 

factors. The response desirability indicates which levels of experimental factors produce 393 

the most desirable predicted response on NSE and TRMSE, and its values range from 0.0 394 

for an undesirable response to 1.0 for a highly desirable response. As shown in Fig. 6(a), 395 

the pairwise interactions between the ensemble size and other factors involved in EnKF 396 

data assimilation experiments tend to produce relatively high desirability values of the 397 

response on NSE when the ensemble size is set to 30 and 80. Likewise, the pairwise 398 

interaction between the precipitation noise and other factors would generate a relatively 399 

high response desirability when the settings of the precipitation noise are 10% and 30%. In 400 

addition, when the setting of the evapotranspiration noise is 20%, its interactions with other 401 

factors would lead to a high response desirability.  402 

Different from the desirability values of the response on NSE, when the setting of the 403 

ensemble size is 50, its interactions with other factors tend to produce relatively large 404 

desirability values of the response on TRMSE, as shown in Fig. 6(b). Our findings reveal 405 
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dynamic interactions between experimental factors affecting the EnKF data assimilation 406 

and their contributions to the variation of overall desirability values of responses in terms 407 

of different statistical metrics for model evaluation. These findings are useful for 408 

identifying the optimal settings of experimental factors so as to produce related responses 409 

with the highest overall desirability, thus maximizing the performance of hydrologic 410 

predictions. 411 

 412 

-------------------------- 413 

Place Fig. 6 here 414 

-------------------------- 415 

 416 

Fig. 7 shows the F- and t-values derived from the factorial ANOVA for all pairwise 417 

interactions between the EnKF experimental factors. Results reveal that the interaction 418 

between the precipitation noise and the streamflow observation noise has the largest impact 419 

on the predictive performance in terms of NSE and TRMSE. To further examine the 420 

nonlinear relationships between the settings of correlated factors and the resulting 421 

predictive performance, Fig. 8 presents the fitted surfaces of NSE and TRMSE for the most 422 

significant pairwise interactions between the precipitation noise and the streamflow 423 

observation noise. The fitted surface of NSE reveals that, when the precipitation noise is at 424 

its low (10%) and medium (20%) levels, there is an increasing trend in the NSE value when 425 

changing the observation noise from its low (10%) and high (30%) levels to its medium 426 

level (20%). When the precipitation noise is at its high level (30%), the NSE value increases 427 

across the high, medium, and low levels of the observation noise, and thus the maximum 428 
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value of NSE would be obtained when the precipitation noise is at its high level and the 429 

observation noise is at its low level.  430 

As for the fitted surface of TRMSE, when the precipitation noise is at its low level, 431 

the TRMSE value decreases across the low, medium, and high levels of the observation 432 

noise, and thus the minimum value of TRMSE would be obtained when the precipitation 433 

noise is at its low level and the observation noise is at its high level. Results reveal that the 434 

pairwise interaction between the precipitation noise and the streamflow observation noise 435 

added to the EnKF system varies greatly in magnitude and direction depending on different 436 

statistical metrics for model evaluation. It is thus necessary to investigate interactions 437 

among experimental factors influencing the EnKF data assimilation based on various 438 

evaluation metrics so as to maximize the predictive performance.  439 

 440 

--------------------------------- 441 

Place Figs. 7 and 8 here 442 

--------------------------------- 443 

 444 

To further explore multi-factor interactions in hydrologic data assimilation with the 445 

EnKF, Fig. 9 shows the variations of marginal means of NSE and TRMSE with 95% 446 

confidence intervals for all three-way interactions. Our findings reveal complex 447 

interactions among multiple experimental factors affecting the EnKF data assimilation and 448 

their contributions to the accuracy of hydrologic predictions. For example, Fig. 9(c) shows 449 

a considerable difference in the variation of NSE associated with the three levels (scenarios) 450 

of the streamflow observation noise over the levels of the precipitation noise, collapsed 451 

across the levels of the evapotranspiration noise, implying that the interaction between the 452 
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settings of the precipitation noise and the streamflow observation noise varies significantly 453 

depending on the settings of the evapotranspiration noise. Such a multi-way interaction 454 

analysis reveals that the maximum value of NSE would be obtained when the settings of 455 

precipitation noise, evapotranspiration noise, and streamflow observation noise are 30%, 456 

20%, and 10%, respectively.  457 

As shown in Fig. 9(f), when the setting of the evapotranspiration noise is 20%, 458 

increasing the streamflow observation noise leads to a decreasing value of TRMSE at the 459 

low level (10%) of the precipitation noise but an increasing value of TRMSE at the high 460 

level (30%) of the precipitation noise. The minimum value of TRMSE would be obtained 461 

when the settings for precipitation noise, evapotranspiration noise, and streamflow 462 

observation noise are 10%, 20%, and 30%, respectively. Our findings indicate that the 463 

magnitude and direction of interactions among experimental factors vary dynamically in 464 

the EnKF data assimilation process. It is thus necessary to explore dynamic interactions 465 

among perturbed errors added to the EnKF and reveal their contributions to the 466 

performance of hydrologic predictions, advancing our understanding of the sequential data 467 

assimilation process. 468 

 469 

-------------------------- 470 

Place Fig. 9 here 471 

-------------------------- 472 

 473 

4.2. Ensemble streamflow predictions through robust data assimilation system 474 

Based on the factorial design and analysis of the EnKF data assimilation experiments, 475 

the optimal combinations of factor settings can be identified for different evaluation metrics. 476 
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To maximize the performance of the EnKF system in terms of NSE, the optimal settings 477 

of the ensemble size and the perturbed errors added to precipitation, evapotranspiration, 478 

and streamflow observation data would be 80, 30%, 20%, and 10%, respectively. To 479 

minimize the TRMSE value, the optimal settings of the corresponding factors would be 50, 480 

10%, 20%, and 30%, respectively. The EnKF data assimilation system with maximized 481 

performance can then be employed for recursive parameter estimation and streamflow 482 

predictions by using the HyMOD model.  483 

Fig. 10 depicts the time evolution of model parameters with 90% confidence intervals 484 

derived from streamflow assimilation based on the NSE metric over a period of three years 485 

from January 1994 to December 1996.  It is indicated that all parameters are seen to 486 

converge toward the “true” values defined as: Cmax = 657 mm, bexp = 5.54, β = 0.72, Rs = 487 

0.15 d, and Rq = 0.70 d. The maximum storage capacity of the watershed denoted by Cmax 488 

is the most identifiable parameter because Cmax shows the fastest convergence with the 489 

smallest uncertainty bound. In contrast, the slow-flow tank parameter Rs is less identifiable 490 

than the others as Rs shows the slowest convergence. This is because the maximum storage 491 

capacity of the watershed is strongly correlated with the streamflow observation, whereas 492 

the slow-flow tank has the minimum contribution to the volume of generated streamflow. 493 

When TRMSE is used as the evaluation metric for streamflow assimilation, there will be a 494 

different recursive pattern of parameter evolution. 495 

As shown in Fig. 11, all parameters converge toward the “true” values given as: Cmax 496 

= 123 mm, bexp = 5.47, β = 0.52, Rs = 0.04 d, and Rq = 0.47 d. Results reveal that parameter 497 

estimates vary significantly depending on different statistical metrics for model evaluation. 498 

For example, although Cmax is still the most identifiable parameter with the smallest 499 
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uncertainty bound, it converges to a much lower “true” value of 123 mm as compared with 500 

the value of 657 mm derived for the NSE metric. This is because the NSE metric 501 

emphasizes the predictive capacity of high flows due to the use of squared residuals while 502 

the TRMSE metric emphasizes low-flow prediction errors, leading to different parameter 503 

sets that achieve optimum predictive performance. It is thus necessary to perform an 504 

uncertainty assessment of model parameters and predictions based on different statistical 505 

metrics for model evaluation, enhancing our understanding of catchment behavior.  506 

In practical applications, the optimal settings of the EnKF data assimilation system 507 

and the derived parameter set should be applied depending on the prediction of different 508 

hydrologic events. For example, the settings of the EnKF system and the parameter set 509 

derived based on the NSE metric can be used to predict flood events since the NSE 510 

emphasizes the predictive accuracy of high flows. In addition, the multi-objective 511 

optimization techniques can be used to achieve the best compromise between different 512 

evaluation metrics, which will provide meaningful guidance on the settings of the EnKF 513 

system and the parameter set used in practice. 514 

 515 

------------------------------------ 516 

Place Figs. 10 and 11 here 517 

------------------------------------ 518 

 519 

Fig. 12 presents a comparison between assimilated daily streamflows and 520 

observations over a period of three years from January 1994 to December 1996 in the 521 

Xiangxi River watershed. Results of streamflow predictions with 90% confidence intervals 522 

are derived from the ensemble of model outputs at each time step. Generally, there is good 523 
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agreement between simulated and observed streamflow time series based on both NSE and 524 

TRMSE metrics, indicating that the RDAS is able to reasonably capture the rainfall-runoff 525 

relationship in the Xiangxi River watershed. Nevertheless, some of the high-flow events 526 

do not lie within the uncertainty bounds of streamflow predictions since the attribution of 527 

uncertainties to parameter estimates only is insufficient. Future studies will be undertaken 528 

to take into account other sources of uncertainty, such as those attributable to model 529 

structural errors in the RDAS. 530 

 531 

-------------------------- 532 

Place Fig. 12 here 533 

-------------------------- 534 

 535 

5. Conclusions 536 

In this study, we developed a robust data assimilation system (RDAS) for hydrologic 537 

ensemble predictions based on a multi-factorial experimental design. The factorial design 538 

and analysis of hydrologic data assimilation experiments can examine interactions among 539 

the EnKF factors including the ensemble size and random perturbations added to 540 

precipitation, potential evapotranspiration, and streamflow observation data. Thus, the 541 

RDAS is useful to enhance the robustness of the EnKF data assimilation for quantification 542 

and reduction of uncertainty in hydrologic predictions. The RDAS was applied to predict 543 

daily streamflow in the Xiangxi River watershed located in China’s Hubei Province. The 544 

NSE and TRMSE metrics were used to represent different hydrologic characteristics for 545 

sensitivity analysis, parameter estimation, and streamflow prediction. 546 
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Our results uncover that the pairwise interaction between perturbed precipitation and 547 

streamflow observations has the most significant impact on the performance of the EnKF 548 

system applied to the Xiangxi River watershed based on both NSE and TRMSE metrics, 549 

and their interactions vary greatly in magnitude and direction across different settings of 550 

the ensemble size and the evapotranspiration perturbation. Investigating single factors (e.g., 551 

the optimal ensemble size) with limited sensitivity experiments is thus inappropriate; 552 

instead, a systematic and comprehensive analysis of multi-way interactions among 553 

experimental factors is crucial for reaching the maximum efficiency of the EnKF data 554 

assimilation system. Our findings are useful for advancing the understanding of the 555 

sequential data assimilation process and for maximizing the performance of hydrologic 556 

predictions through identifying the optimal combinations of factor settings.  557 

The EnKF data assimilation system with maximized performance was then employed 558 

for recursive parameter estimation and streamflow predictions by using the HyMOD model. 559 

Our findings reveal that identification of model parameters is conditional on different 560 

statistical metrics for model evaluation since there is a different recursive pattern of 561 

parameter evolution for the NSE and TRMSE metrics. The maximum storage capacity of 562 

the watershed is the most identifiable parameter with the fastest convergence and the 563 

smallest uncertainty bound in this case, but there are varying tracks of recursively 564 

estimating the corresponding time-evolving posterior distribution based on the NSE and 565 

TRMSE metrics. It is thus necessary to test various evaluation metrics in order to enhance 566 

the robustness of hydrologic prediction systems, especially when performing sensitivity 567 

analysis and parameter identification. By comparing assimilated daily streamflows against 568 
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observations over a period of three years, the RDAS is shown to be capable of capturing 569 

well the rainfall-runoff relationship of the Xiangxi River watershed.  570 

The RDAS is useful for advancing our understanding of the nonlinear dynamics of 571 

interacting factors influencing the EnKF data assimilation experiment, which has a strong 572 

potential to strengthen our capability in providing hydrometeorological forecasting. The 573 

RDAS is not restricted to hydrologic ensemble predictions; instead, the proposed 574 

framework of the RDAS is applicable to various ensemble prediction experiments with 575 

sequential data assimilation. 576 
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