
Agriculture phenology monitoring using NDVI time series based on remote sensing 

satellites: A case study of Guangdong, China 

Komal Choudhary*1, 2, 4, Wenzhong Shi1, Mukesh Singh Boori 2, 3, Samuel Corgne4 

1 The Hong Kong Polytechnic University, Hong Kong, China 

2 Samara National Research University, Samara, Russia  

3American Sentinel University, Colorado, USA  

4University of Rennes 2, Rennes, France 

Abstract 

This article presents the use of the Normalized Difference Vegetation Index (NDVI) time series 

based change detection method for agriculture phenology monitoring. NDVI makes use of the 

multi-spectral remote sensing data band combinations techniques to find out landscape such as 

agriculture, vegetation, land use/cover, water bodies and forest. Geographic Information System 

(GIS) technology is becoming an essential tool to combine multiple maps and information from 

different sources such as satellite, field and socio-economic data. Landsat 8 and Sentinel-2 satellite 

data were used to generate NDVI time series from Sep. 2017 to Nov. 2018. This research work 

was the procedure by pre-processing, signal filtering and interpolation of monthly NDVI time 

series that represent a complete crop phonological cycle. NDVI method is applied according to its 

specialty range from -1 to +1. We divided the whole agriculture area into five parts according to 

NDVI Values such as no agriculture, low agriculture, medium agriculture, high agriculture and 

very high agriculture area. The simulation results show that the NDVI is highly useful in detecting 

the surface feature of the area, which is extremely beneficial for sustainable development of 

agriculture, and decision making. The methodology of reform NDVI time series has been feasible 

to improve crop phenology mapping. 
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1. Introduction

Remote sensing imagery is extremely significant to acquire a greater knowledge of Earth’s 

ecology. It is the science and art of acquiring information in the form of spectral, spatial, and 

temporal forms about certain objects, areas such as agriculture, vegetation, LULC classification 
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and water resources (Ahmadi et al., 2012). Agriculture is a production system that promotes 

variable management practices within an area according to specific site conditions. This system is 

based on the new tools and sources of information provided by modern technologies. These include 

remote sensing techniques, global positioning systems (GPS), geographic information systems 

(GIS) and different applicants (vulnerability, risk assessment, climate change, vegetation etc.…). 

Remote sensing data can be used to accurate estimation of crop condition by relationship in 

between multispectral reflectance, crop temperature, photosynthesis etc. which pioneered the 

technique of combining spectral data and meteorological data for crop growth and yield estimation 

(Alex et al., 2018). The beneficial use of spatial imagery in agriculture for crop management is 

known as 1929 when aerial photography was used for mapping of soil. Four major requirements 

are required for agriculture monitoring: continuous coverage, rapid data distribution, high 

resolutions, and integration (Atzberger et al., 2013). Remote sensing imagery-based crop 

management systems help to identify crop area management, soil mapping, crop yield forecasting, 

seasonal variations, DEM, damage control etc. 

Agriculture remote sensing information advantage is the basis of remote sensing application. In 

depth understanding of the crop rotation process plays an important role in the quantitative remote 

sensing crop monitoring (Aadhar et al., 2017). Agriculture quantitative remote sensing is an 

important way to achieve major crop information through NDVI. This field can provide valuable 

reference information for agriculture management and be used as input data for crop development 

models. There are several vegetation indices to highlight vegetation areas on the remote sensing 

scene. NDVI is one of the important topics of crop quantitative remote sensing (Chen et al., 2011, 

Esch et al., 2014). This is an important agriculture index, which is applied in research on global 

and local environments. This article shows how the differences between the visible red and near 

infrared bands of satellite images could be used to identify areas containing important agriculture 

and vegetation different characteristics. 

In the research Sentinel-2 data generalized Normalized Difference Vegetation Index (NDVI) time 

series with NDVI data derived from Landsat 8 for land-cover mapping. Sentinel-2 data was 

launched in 2015 (Estel et al., 2016). Landsat- 8 data also has a high resolution which makes it 

more suitable for mapping crop fields with smaller areas such as the Guangdong provision. This 



study has confirmed that phonological features, including the maximum, minimum and NDVI 

mean values calculated from fused NDVI data, are relevant for classifying various vegetation and 

agriculture categories such as forest, scrubland, and crop classes. Cropland mapping based on time 

series analysis is challenged such as (1) the lack of samples used to supervised classification (2) 

missing temporal data caused by clouds shadowing (3) monthly changes of phonological cycles 

caused by weather in the agriculture field. Some algorithms, data Fusion and filtering are provided 

to be a scientific solution to handle these challenges. Remote sensing data used in numerous fields 

such as: Land use/land cover classification, crop monitoring, soil moisture assessment, soil type 

categorization, vegetation classification, crop classification, etc. (Fan et al., 2012). In this article, 

the multispectral image of Guangdong is used to calculate features, such as vegetation, water 

body, bare land, mangrove, agriculture, settlements, and forest are presented in this image and to 

subsequently make these extracted features available for further analysis to avoid any kind of 

natural disasters. 

The main aim of this study was the design of a monthly reproducible crop mapping and monitoring, 

which could face temporarily and spatially fragmented remote sensing data. In addition to the idea 

of crop phenology, the coordination of spatial precise data on agriculture land use/cover from data 

sources was an important factor in obtaining desired information (Gnyp et al., 2014). We have 

collected it for integrating remote sensing and GIS methods based on supporting information and 

expert knowledge on crop phenology in a multi-data approach. This method has been applied for 

the monthly crop monitoring from Sep.2017 to Nov.2018. The recognition of the monthly crop 

mapping system and the results received clearly depicts the high NDVI show in April and 

September months. The southern part of Guangdong provision in southern China was selected as 

a study area because crops have been planted there for more than forty years (Gommes et al., 2017) 

and it is one of the key bases of crop monitoring. Rice is a major crop, which is cultivated twice 

per year and three crops near the Pearl River delta (Hansen et al., 2012). 

The main objectives of this study were: (1) The satellite data and preprocessing expected to allow 

their meaningful comparison were described (2) Appropriate critical processing methodology 

including smoothing and monthly NDVI time-series interpolation (3) Remove the phenology 



parameters from the NDVI time series to mark the crop rotation events (4) Evaluated the 

effectiveness of analyzing Sentinel-2 and Landsat-8 data derived phenology parameters. 

2. Study area

Fig: 1 Location map of the study area in Guangdong, China 

 Four subdivision parts Huidong (Huizhou), Haifeng (Shanwei), Luhe (Shanwei) and Shanwei 

(Shanwei) of Guangdong province, China was chosen as a study area (fig. 1). It is in the South 

China Sea coast with complex geomorphology. Most of the area has a humid subtropical climate. 

It has a wet season from April to September with long hot and dry seasons. From November to 

January, it has short and mild weather. February, March, and October are transition months. During 

these months, the state of wetness can be reduced to a great extent throughout the province. For 

example, the northern region is often wet, but the south is dry in March and April months. In 

September, the pattern is reversed. Average daily temperatures in January and July are 18°C (64°F) 

and 33°C (91°F), respectively, although the humidity makes it feel much hotter in summer. 

Rice is the leading crop and other secondary crops are sweet potatoes, peanuts (groundnuts), wheat 

and tea. Two crops of rice a year can be grown on most cultivated land and near the Pearl River 



Delta three crops are not unusual. Several industrial crops, including rubber, sisal, palm oil, coffee, 

black paper are successfully raised. Also 300 kinds of fruits are grown such as citrus, litchi, 

pineapple, bananas etc. In general, the province’s soils are poor, as high temperatures and plentiful 

rainfall result in bleaching and leaching. With greater reliance on the use of chemical fertilizers, 

farming and irrigation have become increasingly mechanized in the study area. 

3. Materials and methods

3.1 Datasets 

To obtain adequate spatial and temporal coverage of the study area monthly and at a lower cost, 

multispectral data was downloaded from the United States geological survey (USGS) website. We 

applied Landsat 8 (OLI) and Sentinel-2B data for surface reflectance information. The most 

modern satellites are Sentinel-2 and Landsat 8, which provide free data for long periods with high-

frequency (Harmon et al., 2005). The high-quality satellite images were present in 15 m and 30 m 

with a 16-day revisit period in Landsat data (He et al., 2017). The latter is equipped with Sentinel-

2B multispectral instruments, which can obtain 13 bands information in various spatial proposals 

such as 10 meters, 20 meters and 60 meters. Sentinel-2 is more advanced than Landsat 8 along 

with its excellent qualities, such as the rising number of bands, fast repeat time, etc. Sentinel-2B 

provides more details in the NIR band range and Red bands, which is helpful for agriculture, forest, 

and vegetation phenological analysis. 

3.2 Pre-processing 

This research work was benefited from ground-based information collected from remote sensing 

and GIS. We have downloaded all month’s images of 2017-2018. Then completed image pre-

processing steps like remove all radiometric, geometrics distortion and project all datasets in world 

geodetic system (WGS-1984 UTM – Zone 50N) projection. After that, all noise or sensors related 

errors such as droplines was removed and each pixel was geocoded as its exact location on globe 

and used best band combination to identify specific features in false color composite images (Liang 

et al., 2015). So finally, all data were vectorized and interpolated as grid datasets so that easy to 

use in GIS format analysis, which was helping to derive meteorological information, agriculture 

information and forest information. We also use filters to remove noise in images, enhancement 

techniques for better feature identification and in last best band combination as NDVI. 



3.3 Normalized difference vegetation index (NDVI) time series 

The temporal phenology of the target classes was calculated using the red and near-infrared bands 

generated NDVI: 

NDVI =
𝑁𝐼𝑅 − Red

𝑁𝐼𝑅 + 𝑅𝑒𝑑

NDVI is among the most frequently applied vegetation indices in agriculture research (Meng et 

al., 2009). It was computed using from Red and near-infrared bands in ArcGIS software. The red 

band was selected as band 4 and the NIR band 8a in the Sentinel-2B satellite to acquire the best 

possible results for NDVI analysis. We selected NIR band 8a because its wavelength (0.865) is 

like Landsat 8 NIR band 5 wavelength (0.865) (Sakamoto et al., 2005, Shi et al., 2014). Band 4 is 

a red band in Landsat 8 OLI. Optical sensors cannot observe earth surface continuously due to 

cloud cover especially in rainy sessions. Consequently, remote sensing techniques are disrupted 

by noise resulting from deteriorating atmospheric changes. Thus, noise reduction is necessary 

before further analysis. 

Many regional filtering techniques necessitate the depiction of a time series that constantly and 

properly interval. Though, there is a difficulty during data collection on some days, due to missing 

data in a particular time and harsh climatic conditions. However, approached were contacted to 

manipulate time-series data, the signal processing-based method cannot work well in the location 

time series data from the same time-period. So, when the time series was used, then a major 

problem was reconstructing the completeness of time-series dataset. 

3.4 Interpolating monthly NDVI images 

Given that many methods have been devoted to reorganizing the trajectory of a time series, a viable 

approach to emulate satellite data NDVI time-series should be proposed to ensure integrity before 

seasonal analysis (Tang et al., 2010). The method for generating a monthly time series is usually 

summarized as feature fitting. Conversely, the results of some curve fitting methods are very 

strictly then the effectiveness of real detection can be reduced to effectiveness of detecting 



phenomenon of agriculture (Xiang et al., 2007, Yan et al., 2016). The linear interpolation algorithm 

between the two images can be described as follows: 

𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼0
𝐷𝑂𝑌 − 𝐷𝑂𝑌0

=
𝑁𝐷𝑉𝐼1 − 𝑁𝐷𝑉𝐼0
𝐷𝑂𝑌1 − 𝐷𝑂𝑌0

Where, NDVI represents the missing day to be interposed. NDVI1, NDVI0 represents the valid 

observations used for the interpolation. Therefore, NDVI is considered as a liner relation between 

NDVI0 and NDVI1:

NDVI = 𝑁𝐷𝑉𝐼0 + (𝑁𝐷𝑉𝐼1 − 𝑁𝐷𝑉𝐼0) ∗
𝐷𝑂𝑌 − 𝐷𝑂𝑌0
𝐷𝑂𝑌1 + 𝐷𝑂𝑌0

Therefore, every NDVI for such a particular day can be obtained among two good observations. 

Apparently, the frequency of NDVI images determines how well the liner interpolation performs. 

We used ArcGIS software to achieve an image based monthly NDVI time series. 

4. Results & Discussion

NDVI time series has been used to examine the relation between spectral variability and changes 

in the agriculture growth rate or phenology change. It is also useful to determine the changes in 

agriculture production. The results, which are indicated in Figure 2, represent different months 

NDVI time series of the study area. 
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Fig. 2. Remote sensing satellites based NDVI time series maps. 

 

We initially accomplish LULC classification and determine the relevant land cover categories in 

the study region: farmland, bare land, forest, mangrove, water, and built-up land before analyzing 

all images (Fig. 2). It was important to know the exact area and location of the agriculture fields 

in the study area. We found that multispectral images are giving the best results for all the 

characteristics of the NDVI values with the changes of the every month. In this work, NDVI values 

were same as shown in figure 2 and 3. The lowest values were found on low vegetation and highest 

values for crop flowering time. From no vegetation class maximum reflection was from the soil so 

the NDVI values was low and from crop land NIR and Red bands produces high reflection so 

produce high NDVI values. The NDVI time series demonstrated a phenology high associated with 

crop growth. As its high value indicated in April and September months and low value indicated 

in June month (Fig. 3). The NDVI time series from January to December shows the differences of 

the entire year in figure 3. 
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Fig. 3. Mapping crop phenology using NDVI time series from 2017 – 2018. 

 

To categorize the crop varieties, all the data were verified to the crop calendar. The type of crop 

in this study area is seasonal; hence the value of NDVI varies from time to time. The NDVI graph 

demonstrates the low values indicated from the months of June and July as well as high in April 

and September. Results indicated the winter wheat crop date of season start/end (October/May) 

planting and harvest, date of spring wheat season start/end (April/September). In the month of 

March and April, the winter wheat crop reaches its peak. Rice planting time is February/July and 

harvesting time is Jun/November. The highest values of NDVI were collected in the month of 

April and October. Rice is partially covered with water in June, so reducing NDVI values and 

reaching the peak NDVI values at the beginning of August / September. In summary crop 

phenology graph associated with crop calendar. NDVI measurements were used to compute total 

agricultural data. To begin, we define NDVI values according to table 1. 

 

Table 1 NDVI Classification 

NDVI Class Agriculture condition/health 

                   > 0.7 Very high agriculture 

0.6 – 0.7 High agriculture 

0.4 – 0.6 Medium agriculture 

0 – 0.4 Low agriculture 

< 0 No agriculture 

 

 

We choice four city, so first we split whole vegetation section according to NDVI classification 

(table 1). After that we separated the agriculture land and divided according to NDVI classes. The 

highest NDVI value (0.51 NDVI) was recorded in April/September, while the lowest was recorded 



in June (0.24 NDVI). In the summer, the maximum NDVI values in the study area approach 0.96, 

indicating very robust agriculture due to favorable meteorological conditions (fig. 4). Therefore, 

this area has high production rates. NDVI values grow faster from November (from sowing and 

emergence) to February. It reached its highest growth in March. Also, it’s remained relatively 

stable in April and May. It recorded its highest growth rate in March and remained stable in April 

and May.   

 

NDVI 

minimum, 

maximum 

and mean 

Agricultur

e 

 
NDVI 

minimum, 

maximum 

and mean 

Vegetation 

 
 

Fig. 4 Crop phenology graph in the study area with minimum, maximum and NDVI mean. 

 

After that, NDVI gradually declined and its maturated time in May and harvesting time in June. 

In vegetation low NDVI months are January, June, July and high NDVI months are November, 

December, April (table 2).  

 

Table 2 Agriculture and vegetation NDVI changes from Sep.2017 to Nov.2018. 

 Vegetation Agriculture 

NDVI  Minimum Maximum NDVI 

mean 

Minimum Maximum NDVI 

mean 



Sep.17 -0.44 0.66 0.38 -0.44 0.66 0.34 

Oct.17 -0.6 0.96 0.56 -0.56 0.67 0.36 

Nov.17 -0.98 0.96 0.61 -0.37 0.81 0.4 

Dec.17 -0.34 0.97 0.56 -0.22 0.81 0.42 

Jan.18 -0.62 0.84 0.51 -0.62 0.82 0.44 

Feb.18 -0.48 0.82 0.48 -0.22 0.84 0.46 

Mar.18 -0.62 0.82 0.48 -0.52 0.89 0.49 

Apr.18 -0.42 1 0.56 -0.86 0.96 0.51 

May.18 -0.66 1 0.56 -0.62 0.88 0.48 

Jun.18 -0.67 0.82 0.48 -0.23 0.56 0.24 

Jul.18 -0.66 0.82 0.49 -0.42 0.69 0.39 

Aug.18 -0.44 0.88 0.52 -0.44 0.76 0.5 

Sep.18 -0.94 1 0.55 -0.86 0.96 0.47 

Oct.18 -0.98 0.98 0.57 -0.98 0.82 0.35 

Nov.18 -1 0.97 0.56 -0.98 0.84 0.47 

 

As NDVI time series crop phenology was show that total vegetation area is 6601.16 km2 and 

agriculture area is 2010.46 km2. Hence, during this period the maximum agriculture sector comes 

from the medium NDVI sector (fig 6). From October to May we find all NDVI values classes 

(table 3) in agriculture area and in vegetation area month are September to May which is show that 

in 2018 vegetation was increase (fig. 5). 

 

 

Table.3 Agriculture and vegetation area (km2) change metrics from Sep.2017 to Nov.2018.  

NDVI 

Class 

Very 

high 

High Medium Low No Very 

high 

High Medium Low No 

NDVI 

Value 

>0.7 0.6-0.7 0.4-0.6 0-0.4 <0 >0.7 0.6-

0.7 

0.4-0.6 0-0.4 <0 

 Vegetation Agriculture 

Sep.17  30.96 4628.09 2355.62 186.48  202.72 1013.44 702.29 86.01 



Oct.17 190.16 1058.09 3790.08 2611.28 141.55  459.74 929.96 582.98 37.78 

Nov.17 241.01 1080.1 2600.08 2900.02 173.46  520.21 402.61 1000.13 87.72 

Dec.17 260.01 1070.2 2206.57 2803.08 159.5 110.1 796.2 130.71 900.8 72.75 

Jan.18 1790.59 1881.08 1706.66 1035.38 187.45 167.01 402.13 680.31 693.9 67.11 

Feb.18 1003.02 2012.02 2369.94 1056.87 159.31 110.2 599.05 133.49 1185.15 82.57 

Mar.18 1489.48 2665.55 1082.49 1233.77 129.87 111.06 361.65 832.54 664.76 40.45 

Apr.18 2462.48 1399.22 1731.25 900.97 107.26 207.2 240.35 901.73 624.18 37.01 

May.18 1672.44 2860.12 1224.46 658.06 186.08 120.76 640.67 826.13 363.42 59.48 

Jun.18  2860.06 1423.46 2131.56 186.09  421.15 746.13 884.18 59.48 

Jul.18  1931.33 3799.17 685.82 184.84  644.65 938.58 366.48 60.75 

Aug.18  327.76 4031.14 2055.62 186.64  215.31 1000.85 702.29 92.01 

Sep.18 441.45 2043.08 2181.16 1748.32 176.15  306.29 910.68 738.89 53.63 

Oct.18 1099.55 1728.78 2944.68 648.27 179.88 142.92 565.2 910.25 336.33 55.76 

Nov.18 1397.8 2640.08 1595.26 795.63 172.88 155.28 593.41 761.45 449.85 44.47 

 

Winter wheat planting time is September and harvesting time is end of May. During this period 

we find very high NDVI classes in the December to April with 1,124.53 km2 area.  

 

  

 
 

Fig. 5. Vegetation NDVI area graph. 



 

Summer wheat planting time is April/ May months and harvesting time is October / November. In 

this time sun light is too much that`s why all crop is growing too fast to maturity. Very high area 

covered by medium NDVI sector. North study areas most cropping is wheat and rice but near the 

sea area rice is a major crop that’s why here NDVI values are low.  

 

  

 
 

Fig. 6. Winter wheat & Spring wheat NDVI area graph (Agriculture) 

 

We can immediately detect NDVI standard statistical variations inside the monthly NDVI graphs 

(fig. 7). We use Google Earth for accuracy evaluation because it has very high-resolution imagery. 

For example, the maximum likelihood supervised classification method was used to successfully 

identify the planting areas of wheat and rice crop areas. Remote sensing will help in identifying 

yield monitoring the related agriculture areas. Estimation of crop yield by using the vegetation 

index can achieve the overall accuracy of approximately 92%. 

 

 



   

   
Fig. 7. Field photographs. (Sources: Google) 

 

 

5. Conclusion 

In this study, we propose an elaborate analysis technique for create of NDVI time-series with the 

smoothing technique of the filter being aimed to minimize the error component from the original 

equation. Without involving multi-temporal remote sensing data of different sensor, the 

information content on the major agricultural crops could not be obtained. With multispectral data, 

many crops differ from one to another in a certain stage in the growing phase. The Sentinel data 

have great feasible in agriculture monitoring, especially mapping of crop planting areas, 

monitoring of crop growth, and estimating crop yield (Wang et al., 2019). 

 

We described the technique of NDVI time analysis in phenology categorization. The NDVI 

method gives better results were obtained using the spectral band defined by crop multipurpose 

NDVI profile and additional multi-temporal. The calculated agriculture requirements were 

consistent with available reference information. Depending on the time of crops, other temporal 

features could be determined of classification. 

 

Furthermore, a technique for recreating time-series was established, while it will be improved in 

the mapping of plant phenology by the previous researcher. The planting and harvesting dates can 

be beneficial for water management, fertilization, nutrition, and cultivation assessments. Future 

work will consider additional usage of radar data, for which some initial tests were very promising 

because they show an overall accuracy increase.  
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