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Abstract— Craters are dominant geomorphological features on 

the surfaces of the Moon, Mars, and other planets. The 

distribution of craters provides valuable information on the 

planetary surface geology. Machine learning is a widely used 

approach to detect craters on planetary surface data. A critical 

step in machine learning is the determination of training samples. 

In previous studies, the training samples were mainly selected 

manually, which usually leads to insufficient numbers due to the 

high cost and unfavorable quality. Surface imagery and digital 

elevation models (DEMs) are now commonly available for 

planetary surfaces; this offers new opportunities for crater 

detection with better performance. This paper presents a novel 

active machine learning approach, in which the imagery and 

DEMs covering the same region are used for collecting training 

samples with more automation and better performance. In the 

training process, the approach actively asks for annotations for the 

2D features derived from imagery with inputs from 3D features 

derived from the DEMs. Thus, the training pool can be updated 

accordingly, and the model can be retrained. This process can be 

conducted several times to obtain training samples in sufficient 

number and of favorable quality, from which a classifier with 

better performance can be generated, and it can then be used for 

automatic crater detection in other regions. The proposed 

approach highlights two advantages: 1) automatical generation of 

a large number of high-quality training samples, and 2) 

prioritization of training samples near the classification boundary 

so as to learn more quickly. Two sets of test data on the Moon and 

Mars were used for experimental validation. The performance of 

the proposed approach was superior to that of a regular machine 

learning method. 

Index Terms—Craters; Machine Learning; Imagery; Moon; 

Mars 

I. INTRODUCTION

RATERS on planetary surfaces are among the most studied

geomorphological features in planetary science. Crater 

distribution provides fundamental insights into geological 

processes and is used to reveal the ages of various geologic 

formations on a celestial body [1], [2]. The spatial distribution 

of craters also serves as an important consideration in planetary 

exploration missions when selecting candidate landing sites [3], 

[4]. 

Craters are normally detected from planetary surface images 
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and/or digital elevation models (DEMs) with manual 

digitization [2] or computer-assisted methods. Manual 

detection is time-consuming and difficult to deal with large 

datasets, so numerous attempts have been made to create 

reliable methods for automatic crater detection. Salamunićcar 

et al. [5] tabulated 77 crater detection approaches from the 

literature and categorized them into three main types: DEM-

based methods, image-based methods, and integrated methods 

based on both images and DEMs. DEM-based methods are 

based mainly on the analysis of slopes, horizontal and vertical 

structures, and the relationships among them. Techniques such 

as slope measurement [6]-[9], template matching [10], Hough 

transform [11], and machine learning [12] have been used for 

crater detection with DEMs. DEMs contain 3D information, 

and the morphological information of craters can be completely 

extracted. However, because DEMs usually have a relatively 

lower resolution and fewer DEM data are available than 

images, crater detection based on images has been more 

popular. Image-based crater detection approaches can be 

divided into rule-based methods and machine learning-based 

methods. Rule-based methods usually set a number of rules by 

experts and rely on pattern-recognition techniques to identify 

crater rims in images as circular or elliptical features. The 

original image is usually preprocessed to enhance the edges of 

the craters, and crater detection is achieved with methods such 

as Hough transform [13], [14], ellipse fitting [15], genetic 

algorithms [16], Gist features [17], watershed transform [18], 

pattern recognition [19], radial-consistency algorithms [20], or 

combinations of the above methods. 

With the popularity in the field of computer vision, machine 

learning has been widely adopted in crater-detection tasks [21]-

[24] and other similar feature detection tasks from remote

sensing data [25]-[27]. Due to the variety of crater structures,

machine learning based methods usually show more robust

performance than the rule-based methods. The machine

learning methods use samples to train a classifier to detect

craters. Instead of relying on an expert’s domain knowledge,

machine learning methods learn the optimal filters and features

based on a great number of training examples. In the learning

phase, crater areas and non-crater areas are fed into a model to
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form a classifier. In the detection phase, the previously trained 

classifier detects craters in a new set of images. The machine 

learning methods for crater detection are mainly based on 

strategies such as the scalable template model [28], [29], 

convolutional neural networks [24], boosting and modified 

boosting methods [22], [23], [30], and the least-squares support 

vector machine [21]. 

One of the most challenging tasks for machine learning is to 

obtain good labeled data. Training of a good model can require 

thousands of examples or even more, which results in huge and 

often prohibitive costs for many machine learning methods. The 

acquisition of training samples, which must be labeled by 

domain experts, is tedious and time consuming, so the number 

of training samples has been limited in most previous machine 

learning methods. For example, Jin and Zhang [22] used only 

400 crater candidates and 400 non-crater candidates to train 

their modified AdaBoost-based model. Li et al. [31] tested the 

performance of their classifier with a training dataset of 200 to 

1000. The detection accuracy improved noticeably as the 

number of training samples increased. However, the experiment 

stopped at 1000 training samples, and a larger dataset was not 

attempted. A limited number of training samples as in previous 

studies cannot cover the variety of crater features as they appear 

in the images due to variations in illumination, albedo, and 

surface roughness.  

In addition to the number of training samples, their quality is 

also critical for successful model training. The manually 

selected training samples, which always focus on craters with 

distinct textures, are not a comprehensive representation of all 

possible cases. The lack of samples near the classification 

boundary will lead to an overfitting machine learning model. 

Martins et al. [30] noted that manual selection of samples is 

insufficient because it does not provide a representative 

collection of negative patterns. Thus, they enhanced their 

training dataset by adding false detections with a higher 

discriminant value. Their experimental analysis showed the 

effectiveness of the approach; however, this is again a manual 

process and requires great manual effort. 

The idea of active learning [32] focused on the number and 

quality of training samples. The main content of active learning 

is that the machine learning method can actively query the 

domain experts for sample labels based on what has already 

been learned. By selecting the most targeted samples, active 

learning reduces the number of needed training samples and at 

the same time achieves better performances compared with the 

traditional machine learning methods. The concept of active 

learning was well-motivated in a variety of objection detection 

tasks [33], [34] to help collect training samples. However, in 

most of the traditional active learning methods, manual 

interaction is required for labeling the selected training samples. 

More automatic ways for generating high-quality training 

samples through active learning are in demand.  

Crater detection based on the integration of images and 

DEMs may provide an opportunity to solve the problems 

mentioned above. Owing to the planetary exploration missions 

by different countries in recent years, high-resolution imagery 

and DEMs are now commonly available for planetary surfaces, 

such as the imagery and DEMs from the Chinese Chang’E-2 

[35], Japanese SELENE [36], and NASA’s Lunar 

Reconnaissance Orbiter [37] missions for the Moon, and the 

Mars Express [38] and Mars Reconnaissance Orbiter [39] 

missions for Mars. The DEMs can be generated from the stereo 

images via photogrammetric techniques or from other sources 

such as laser altimetry. This offers new opportunities for crater 

detection with better performance by allowing integration of 2D 

information from images and three-dimensional (3D) 

information from DEMs. Most previous studies of machine 

learning for crater detection have focused only on two-

dimensional (2D) images. Few studies have reported the use of 

both images and DEMs for crater detection [40], [41]; these 

studies were conducted either by merely combining the 

detection results from the images and DEMs directly or by 

using the DEM data to confirm the results at the end. No 

existing study has used those two types of data in a more 

synergistic way for crater detection. 

This paper presents a novel active machine learning approach 

in which both 2D information from imagery and 3D 

information from DEMs are used for more automatic collection 

of training samples. First, the training datasets including the 

imagery and the DEMs covering the same region are co-

registered. Then in the training process the approach actively 

asks for annotations for the 2D features derived from imagery 

with inputs from the 3D features derived from the DEMs. Thus, 

the training pool can be updated accordingly, and the model can 

be retrained. This process can be conducted several times to 

obtain training samples in sufficient number and of favorable 

quality, from which a classifier with better performance can be 

obtained and used for automatic crater detection in other 

regions. Compared with previous studies, the active machine 

learning approach proposed in this paper highlights the 

following two novel aspects: 1) the more automatical 

generation of a large number of training samples can take the 

place of costly manually labeled data, and 2) instead of focusing 

on craters with distinct features, as in most existing machine 

learning methods, this approach prioritizes training samples 

near the classification boundary, which can help the machine 

learning process to focus on the most difficult cases and thus 

learn more quickly.  

The remainder of this paper is organized as follows. Section 

II describes the active machine learning approach in detail. Its 

performance is evaluated using two sets of test data on the 

Moon and Mars, and the experimental results are presented in 

Section III. Finally, the concluding remarks are presented and 

discussed in Section IV. 

 

II. ACTIVE MACHINE LEARNING FOR CRATER DETECTION 

A. Overview of the Approach 

For the proposed active machine learning approach for crater 

detection, the training datasets include images and DEMs that 

cover the same area. If the DEMs were generated from the 

images by photogrammetric techniques, they were already 

aligned. If the images and the DEMs were acquired from 
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different sources, co-registration between the two types of data 

would be necessary. The co-registration methods in the 

literature can be used for this purpose [42]-[44]. 

The active machine learning approach begins with a 

relatively small number of manually labeled training samples 

that serve as an initial input to train the classifier. Haar-like 

features are used to describe the samples. An Adaptive 

Boosting method is used to select and combine useful features, 

and a cascade structure is used to improve the processing 

efficiency. During the training process, the approach 

incorporates profiles derived from the DEM to judge the 

correctness of the detection results, from which the detection 

results will be automatically labeled as correct or incorrect and 

added to the positive or negative samples, respectively. The 

updated samples will be used to retrain and improve the 

classifier in machine learning. This cross-validation process 

will be conducted several times until saturation was reached, 

which means no improvement can be expected with the 

accumulation of the training samples. This is a process of active 

learning because the algorithm actively selects training samples 

and asks for annotations. But different from the traditional 

active learning, instead of interacted by domain experts, the 3D 

information from the DEM helps to select and label the positive 

and negative samples. The output classifier can be then applied 

on 2D images in other areas for crater detection. Fig. 1 shows 

the framework of the proposed approach. 

B. Training Sample Determination 

The approach begins with the selection of a small number of 

crater images (positive samples) and no-crater images (negative 

samples), as shown in Fig. 2. The crater samples, manually 

labeled on the satellite images, are cropped, rotated to the same 

illumination direction, and adjusted to the same size (e.g., 

20×20 pixels). It is worthy of note that the positions of craters 

in positive samples are not strictly limited in previous related 

works. In our approach, however, positive areas are carefully 

selected to fit the craters. The strictly fixed position of the 

craters in the positive samples can bring about two types of 

benefits: 1) the features will be easier to describe, and 2) no 

further edge-detection process (which may cause additional 

errors) is needed because the largest inscribed circle of the 

detection window is the rim of the crater. 

 

C. Description of Classifier 

The classifier in the approach includes three components: 

Haar-like features, adaptive boosting, and cascade.  

The Haar-like features [45] are rectangle masks, which can 

be at any position and scale within the sample image. The 

feature value is the sum of the difference between the black and 

white image areas, which describes the change of the image’s 

gray level. The Haar-like features were extended to tilted Haar-

like features [46] by adding some tilted rectangles. Tilted Haar-

like features are used in this study because their overall 

performance is better than that of the original Haar-like 

features. Fig. 3 shows examples of the tilted Haar-like features 

selected in the training phase. To accelerate the calculation of 

the feature values, the image is represented by an integral image 

[45]. The integral image can be calculated from the image at a 

low computational cost. The value of the integral image 

𝐼𝐼(𝑥, 𝑦) at position (𝑥, 𝑦) is defined by the summation of all 

pixels above and to the left: 

 𝐼𝐼(𝑥, 𝑦) = ∑ 𝑖(𝑥′,  𝑦′)𝑥′≤𝑥, 𝑦′≤𝑦  (1) 

where 𝑖(𝑥′,  𝑦′) is the pixel value of (𝑥′,  𝑦′). In the calculation, 

 
Fig. 2. Examples of positive and negative samples used in the training 

process. 

 
Fig. 1. Framework of the proposed active machine learning 

approach for crater detection. 
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it is not necessary to traverse each pixel and sum their values. 

The integral image value at a point (𝑥, 𝑦) is calculated using 

only four references. 

 

𝐼𝐼(𝑥, 𝑦) = 𝐼𝐼(𝑥, 𝑦 − 1) + 𝐼𝐼(𝑥 − 1, 𝑦) + 𝐼(𝑥, 𝑦) − 𝐼𝐼(𝑥 − 1, 𝑦 − 1) (2) 

 

With the integral image as a reference, for any of the tilted 

Haar-like features, it can be calculated with a few basic 

operations instead of calculating each involved pixel. For 

example, as Fig. 4 shows, the sum of the pixel values in 

rectangle A can be calculated as 𝐼𝐼(𝑑) − 𝐼𝐼(𝑏) − 𝐼𝐼(𝑐) +
𝐼𝐼(𝑎). 

 
 

Adaptive Boosting (AdaBoost) [47] is a machine learning 

algorithm used to combine weak classifiers into a strong 

classifier. Each tilted Haar-like feature can be regarded as a 

weak classifier ℎ𝑖(𝑥): 

 ℎ𝑖(𝑥) = {
1   𝑖𝑓 𝑝𝑖𝑓𝑖(𝑥) < 𝑝𝑖𝜃𝑖

0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3) 

where 𝑓𝑖 describe the type, size and location of the feature; 𝜃𝑖 

is the optimal threshold and 𝑝𝑖  is a polarity indicating the 

direction of the inequality sign. 𝑥  is the sub-window of the 

training samples (e.g., 20× 20 in this research). The AdaBoost 

training process combines the most useful weak classifiers to 

form a strong classifier. The features are combined into a 

weighted sum that represents the final output of the boosted 

classifier. A more useful feature will gain a higher weight, and 

the weight will be adjusted in the iteration. At each iteration of 

the training process, a weight is also assigned to each sample. 

Samples that are not correctly classified will have a higher 

weight in the next iteration. In this way, the AdaBoost training 

process selects only features that are known to improve the 

model’s predictive power, thus reducing dimensionality and 

time. 

Cascade is a mechanism to accelerate processing. The 

cascade structure [45] is formed by a series stage of classifiers, 

and each stage either rejects the image window or passes it to 

the next stage. The first classifier eliminates many non-crater 

images with very little processing and leaves the more difficult 

ones for the following classifier. The image region that passes 

the last stage is finally classified as a crater. The image regions 

that are easy to classify (e.g., homogeneous flat areas) are 

rejected in the early stages, whereas the difficult image regions 

(e.g., large rocks and hills) are classified as non-craters in the 

later stages. 

Fig. 5 illustrates the structure of the classifier. Given the 

training example (𝑥𝑖 , 𝑦𝑖), … , (𝑥𝑚+𝑛 , 𝑦𝑚+𝑛), 𝑦𝑖 ∈ {+1, −1} for 

the crater and non-crater samples, for each feature 𝑖 , initial 

weights 𝑤1,𝑖 =
1

2𝑚
, 

1

2𝑙
 are assigned for the crater and non-crater 

samples, respectively. 𝑚  and 𝑙  are the number of crater and 

non-crater samples. For each sample 𝑥1, 𝑥2, … , 𝑥𝑖 , 𝑥𝑖 =

{ℎ1(𝑥)𝛼1,  ℎ2(𝑥)𝛼2, … , ℎ𝑙(𝑥)𝛼𝑙 … , ℎ𝐿(𝑥)𝛼𝐿}, where 𝑙 is the 𝑙th 

tilted Haar-like feature and assuming the total number of tilted 

features is L.  

For t=1,…,T (T is the number of selected weak classifier): 

1. Normalize the weights, 𝛼𝑡,𝑖 ←
𝛼𝑡,𝑖

∑ 𝛼𝑡,𝑗
𝑛
𝑗=1

 

2. For each classifier ℎ𝑗(𝑥) of feature 𝑗, the error is 

evaluated by 𝜀𝑡 = ∑ 𝛼𝑖|ℎ𝑗(𝑥𝑖)𝑖 − 𝑦𝑖| . A weak 

classifier is selected from all tilted Haar-like 

classifiers when it has the lowest error rate. 

3. The weight is updated as 𝛼𝑡+1,𝑖 = 𝛼𝑡,𝑖𝛽𝑡
1−𝑒𝑖 , where 

𝑒𝑖 ∈ {0, 1}  for correct and wrong classification, 

respectively, and 𝛽𝑡 = 𝜀𝑡 (1 − 𝜀𝑡)⁄ . 

Finally, a weighted combination of the weak classifier ℎ𝑙(𝑥) 

forms a strong classifier 𝐻(𝑥): 

𝐻(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑡ℎ𝑡(𝑥)𝑇
𝑡=1 ) (4) 

Through several rounds of the process, a strong classifier is 

generated in each round and they are combined to form the final 

cascade classifier. 

D. Active Learning Process 

The active learning process consists of three steps: 1) initial 

classifier training, 2) crater detection, and 3) training sample 

updating and retraining. First, an initial classifier can be trained 

by a small number of samples. Second, the initial classifier is 

used for crater detection, and a large number of crater 

 
Fig. 3. Examples of tilted Haar-like features selected in the training 

phase. 

 
Fig. 4. Illustration of the calculation of Haar like features by 

referencing integral image. 

 
Fig. 5. The structure of the classifier using Haar-like features, 

AdaBoost and cascade technic.  
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candidates can be detected. Third, the corresponding DEM is 

used to identify false and true craters from the detected 

candidates, and the training pool is updated simultaneously. 

The updated training pool is then used to retrain the model, and 

the process can be repeated several times until favorable results 

are achieved. 

The first round of training and detection with a small number 

of training samples will inevitably produce many wrong 

detections. The method will actively ask the DEM for 

annotations. With the co-registered DEM, verification based on 

profiles can be conducted. 

To explore the profiles derived from different terrain types, 

100 crater profiles and 100 non-crater profiles were selected, as 

shown in Fig. 6. The profiles have different scales. For the sake 

of comparison, the horizontal distances were normalized, and 

the heights were zoomed accordingly. The X-axis shows the 

distance and the Y-axis displays the elevation after the 

normalization. It can be seen that the crater profiles (Fig. 6 (a)) 

have concave shapes while the non-crater profiles (Fig. 6 (b)) 

are just random lines. Therefore, it is possible to classify the 

crater profiles and non-crater profiles automatically. 

 
A Support-Vector Machine (SVM) classifier was used for the 

profile classification. Initially conceived by Cortes and Vapnik 

[48], SVM is used to solve binary classification problems. The 

goal of SVM is to determine an optimal hyperplane, which can 

not only separate two classes but also in a way that would make 

it as far as possible from the closest members of both classes. 

To prepare the training data for the SVM classifier, the 200 

profiles (as shown in Fig. 6) were sampled by 20 points. Each 

profile was labeled as 1 for crater profiles and -1 for non-crater 

profiles. Thus the input of the training process was a 20 × n 

matrix of profile data and a 1 × n matrix of label data. n is the 

total number of profiles. After training, a mathematical 

depiction of the separating hyperplane training was obtained. 

To evaluate the performance of the well-trained SVM classifier 

for profile classification, another 200 profiles were manually 

selected and labeled, as shown in Fig. 7. They were normalized 

and resampled in the same way as previously described. The 

100 crater profiles (Fig. 7. (a)) were extracted from the craters 

with various size and shapes. The 100 non-crater profiles 

(Fig.7. (b)) were randomly selected in the non-crater areas. For 

the 200 testing data, the prediction made by the SVM classifier 

is 100% consistent with the manual label. 

The classification results of profiles can serve as a principle 

to select the candidate crater areas and non-crater areas for 

updating the training samples. Due to the complicity of the 

planetary surface, it is possible for a non-crater area to have a 

crater-like profile (as Fig.8 (a) shows) and also for a crater area, 

not all the profiles have the concave shape, especially for 

connected craters (as Fig.8 (b) shows). In this approach, four 

profiles were derived for each candidate crater area, namely a 

vertical profile, a horizontal profile, and two diagonal profiles. 

Three rules were set to select crater and non-crater areas for 

sample updating based on the four derived profiles:  

1) If three or more profiles are classified as crater profiles by 

the SVM classifier, this area is regarded as a crater area and is 

added to the positive-sample dataset; 

2) If less than two profiles are classified as crater profile, the 

area is judged as non-crater area, and is added into the negative-

sample dataset; and 

3) For other situations, it will be regarded as not sure and will 

be excluded from the training sample datasets. 

To verify the three rules for selecting the training samples, 

100 patches of crater areas and another 100 patches of non-

 
(a) 100 crater profiles with the horizontal distance normalized to 0-

1 and height zoomed accordingly. 

 
(b) 100 non-crater profiles with the horizontal distance normalized 

to 0-1 and height zoomed accordingly. 
 

Fig. 6. Crater profiles and non-crater profiles for training the SVM 

classifier. 

 

 

 
(a) 100 crater profiles with the horizontal distance normalized to 0-

1 and height zoomed accordingly. 

 
(b) 100 non-crater profiles with the horizontal distance normalized 

to 0-1 and height zoomed accordingly. 

 

Fig. 7. Crater profiles and non-crater profiles for evaluating the 

performance of the SVM classifier. 
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crater areas were manually selected. Four profiles were derived 

from each area and classification was conducted by the SVM 

classifier on the profiles. Table I shows the numbers of the 

crater or non-crater areas with a certain number of profiles 

classified as crater profiles (among the four in total) for each 

area. 97 out of the 100 crater areas have three or more crater 

profiles, and the other three crater areas have two crater profiles. 

For the non-crater areas, 97 out of 100 of them have zero crater 

profile, and only three non-crater areas have been identified 

with one crater profile (out of the four profiles), which could 

happen by coincidence. 

By adding the detection results, the training samples will 

accumulate automatically, which can free manual efforts from 

collecting training samples. In addition, this approach can make 

the negative samples more targeted because inaccurate 

detection is the difficult case in the training and classification 

process. This active learning process can be conducted several 

rounds. It should be noted that in each round, 30% of the 

samples will be reserved for the testing purpose. If the testing 

shows that the performance improvement is less than 1% 

between two rounds (a saturation status), the sample updating 

process will be stopped.  

E. Crater Detection 

With the final output classifier from the above steps, crater 

detection can be conducted on images in other regions. 

According to the sun azimuth of the imagery, each input image 

is rotated to ensure that the illumination direction is the same as 

in the training samples. To detect impact craters of various 

sizes, an image pyramid is then built for multiple-scales and 

traversed by the classifier. The detection results from each layer 

are merged into the final output. The output of the detection is 

a set of squares with information for location and size. The 

largest inscribed circle of the square describes the rim of the 

detected craters.  

It should be noted that no DEM is used in the detection step. 

For each dataset, the training process need only be conducted 

once, and the classifier can be applied to other untrained 

imagery. 

 

III. EXPERIMENTAL ANALYSIS 

A. Evaluation Criterions 

Two test datasets were selected representing the general 

characteristics of the planetary surface on the Moon and Mars 

for this study. Both the detection and evaluation areas contain 

diverse sizes and types of craters. 

The ground truth crater catalog manually digitized from the 

images was used for elevation purposes. To guarantee the 

validation performance, we focused on craters with diameters 

greater than 20 pixels on imagery. Manual labeling was 

processed with the assistance of a 20-pixel reference grid 

overlaid on the image as a reference for the crater size. To 

guarantee the reliability, the ground truth data were cataloged 

separately by two operators, and the results were combined in 

the end. Craters identified by only one operator were further 

checked. 

To evaluate the performance of the proposed approach, the 

true detection rate (TDR), the false detection rate (FDR), and 

the detection rate (DR) were computed as given by the 

following equations: 

 𝑇𝐷𝑅(%) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100  (5) 

 𝐹𝐷𝑅(%) =
𝐹𝑃

𝑇𝑃+𝐹𝑃
× 100  (6) 

 𝐷𝑅(%) =
𝑇𝑃

𝑇𝑃+𝐹𝑁+𝐹𝑃
× 100  (7) 

where true positive (TP) is the number of correct detections; 

false negative (FN) is the number of the missed detections; and 

false positive (FP) is the number of incorrect detections. The 

rules used in Salamunićcar et al. [49] were used to decide 

whether the two records belong to the same crater. The TDR, 

FDR, and DR were used to evaluate the performance of the 

classifier generated from each round of the process. In our 

experiments, the threshold parameters were carefully 

determined to reach a balance between TDR and FDR. 

Another traditional machine learning approach [30] was 

involved in the experimental analysis for comparison purposes. 

The results from our approach and those from the traditional 

approach are compared with the ground truth data, in terms of 

the TDR, FDR, and DR. 

 

B. Experiment for the Dataset on the Moon 

The experiment for the dataset on the Moon used the 

SELENE TC images [36] and the SLDEM [50]. The SLDEM 

 
(a) Example of a crater area. Left: SLDEM. Middle: SELENE 

imagery. Right: four profiles derived from SLDEM, where the red 

line shows a crater profile that has a concave shape. 

 
(b) Example of a crater area. Left: SLDEM. Middle: SELENE 

imagery. Right: four profiles derived from SLDEM, where the red 

line shows a non-crater profile. 
 

Fig. 8. Examples of the situation that a crater area has a non-crater 

profile and a non-crater area has a concave shape crater profile.  

TABLE I 

VALIDATION OF THE SVM CLASSIFIER FOR SELECTING CRATER AND NON-

CRATER SAMPLES 

 Number of crater profiles in each area Total 

  0 1 2 3 4 

Crater area 0 0 3 8 89 100 

Non-crater area 97 3 0 0 0 100 
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was produced by co-registering the DEM from SELENE TC 

images and data from the Lunar Orbiter Laser Altimeter, giving 

an effective spatial resolution of 60 m. Two sets of data in 

different locations were selected for training and evaluation 

purposes, respectively. Fig. 9 (a) shows a 10 m/pixel SELENE 

TC image, and Fig. 9 (b) shows the co-registered SLDEM. Both 

were used for training purposes. Another SELENE TC image 

(Fig. 9 (c)) was used for crater detection and evaluation. It is a 

heavily cratered terrain, in which craters adjoin or even overlap 

with each other. Detailed information of the Moon dataset are 

shown in Table II. 

 
TABLE II 

INFORMATION OF THE MOON DATASET  
Longitude  Latitude  Data Size (pixels) 

Fig. 9. (a) 55.3°W-61.9°W 41.3°N-44.8°N 22190×16839 

Fig. 9. (b) 55.3°W-61.9°W 41.3°N-44.8°N 2303×1748 

Fig. 9. (c) 53.4°W-50.0°W 41.2°N-42.2°N 11747×4780 

 

The active machine learning approach started with 130 

positive and 300 negative samples that were used as inputs to 

train the classifier; this process was regarded as round one. The 

classifier was then used to detect craters on the image for 

training purposes. For each detection result, the profiles were 

extracted from the co-registered DEM. According to the 

judgment made by the profiles, the result was automatically 

labeled as correct or incorrect and added to positive or negative 

datasets, respectively. The newly generated positive samples 

and negative samples were resized and added in the second-

round training datasets. The result of the renewed datasets was 

used to retrain the classifiers of the second round. This cross-

validation process was conducted six times until testing shows 

the performance improvement is less than 1% between two 

iterations. For comparison, the experiments were also 

conducted using a traditional boosting approach [30]. The 

training processes of the traditional boosting approach and the 

proposed approach were conducted in the same way, except for 

the way of collecting training samples. For the experiments 

using the traditional boosting approach, we followed the regular 

way of manually selecting the training samples of the same 

number for each round of training. We stopped at round 3 due 

to the time-consuming manual process. 

(c)

(a) (b)

 
Fig. 9. (a) SELENE TC image (10 m/pixel) used for training. (b) SLDEM (60 m/pixel) used for training. (c) SELENE TC image (10 

m/pixel) used for evaluation. 
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The evaluation results (TDR, FDR, and DR) of each round 

for the active machine learning method and the traditional 

method are listed in Table III. For the active machine learning 

method, the performance of the classifier gradually improved 

as the training samples accumulated until saturation was 

reached after round 5, with a TDR of 93.63% and an FDR of 

10.74%. With the same number of training samples, the 

classifier trained by the proposed active machine learning 

performed better than that trained with the traditional method. 

This finding proves that prioritizing the most confusing samples 

in the training process can greatly reduce the amount of labeled 

data required to train a model. 

The ground truth (Fig. 10 (a)) has 6701 craters, and the 

detection result (Fig. 10 (b)) contains 6864 craters. Fig. 10 (c) 

presents the comparisons between the ground truth and the 

detection results using the classifier from round 5. Yellow 

circles stand for TP, blue circles stand for FN, and orange 

circles stand for FP. 

TABLE III 
COMPARISON RESULTS FOR THE MOON DATASET 

 

  

Active machine learning 

approach 

Traditional boosting approach 

[30] 

 Number of 

Positive 

Samples 

Number of 

Negative 

Samples TDR FDR DR TDR FDR DR 

Round 2 250 1250 80.78% 52.06% 43.03% 60.90% 58.25% 32.93% 

Round 3 400 2000 82.88% 48.60% 46.47% 72.54% 64.02% 31.66% 

Round 4 1000 2500 85.26% 23.59% 67.49% / / / 

Round 5 2000 4500 93.63% 10.74% 84.15% / / / 

Round 6 2600 5500 94.01% 11.09% 84.18% / / / 
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Fig. 10. Experimental results for the Moon dataset. (a) Ground truth data, (b) Detection results from round 5, and (c) comparison between 

detection results and ground truth. 
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C. Experiment for the Dataset on Mars 

The experiments for the dataset on Mars used the High-

Resolution Stereo Camera (HRSC) [38] images and DEMs 

derived from HRSC image. Both the HRSC image and the 

DEM were downloaded from http://pds-

geosciences.wustl.edu/missions/mars_express/hrsc.htm. Like 

the experiments conducted on Lunar data, two sets of data in 

different locations were selected for training and evaluation 

purposes, respectively. Fig. 11 (a) shows a 12.5-m/pixel HRSC 

image, and Fig. 11 (b) shows the co-registered 50-m/pixel 

HRSC DEM. Both are used for training purposes. Fig. 11 (c) 

isa 12.5-m/pixel HRSC image used for crater detection and 

evaluation. Detailed information of the Mars dataset are shown 

in Table IV. 

 

 
The experiment conducted on the Mars data followed the 

similar process as that on the Moon data. The active machine 

learning started with 150 positive samples and 700 negative 

samples and ended up with about 6,000 samples in total. The 

performance of the detection classifier gradually improved as 

the training samples accumulated until saturation was reached 

after round 5, with a TDR of 92.27% and an FDR of 3.83%, as 

shown in Table V. It should be noted that saturation was 

reached with a smaller dataset than the experiment on the 

Moon, possibly because the Mars has fewer craters than the 

Moon, which makes detection easier. Compared with the 

traditional method (i.e., training by the same number of 

manually selected samples), the active machine learning 

method shows an apparently better result. 

Fig. 12 (a) shows the 1306 ground truth craters, and Fig. 12 

(b) shows the 1273 detected craters. Fig. 12 (c) compares the 

ground truth and the detection results using the classifier from 

round 5. Yellow circles stand for TP, blue circles stand for FN, 

and orange circles stand for FP. 

 
Fig. 11. (a) HRSC image (12.5 m/pixel) used for training. (b) HRSC DEM (50 m/pixel) used for training. (c) HRSC image (12.5 m/pixel) 

used for evaluation. 

TABLE IV 

INFORMATION OF THE MARS DATASET 

 Longitude Latitude Data Size (pixels) 

Fig. 11. (a) 37.9°W-39.1°W 21.3°N-25.7°N 5264×20864 

Fig. 11. (b) 37.9°W-39.1°W 21.3°N-25.7°N 1317×5216 

Fig. 11. (c) 43.8°W-45.0°W 20.6°N-22.9°N 6816×45680 
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Fig. 12. Experimental results for Mars dataset: (a) ground truth data, (b) detection results from round 5, and (c) comparison between detection 

results and ground truth. 
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IV. CONCLUSIONS AND DISCUSSION 

An active machine learning approach is proposed for crater 

detection with greater automation and better performance. The 

developed approach was evaluated with actual datasets 

collected on the Moon and on Mars. The theoretical analysis 

and experimental validation convey the following conclusions. 

1) The evaluation process is conducted with manually labeled 

ground truth data, and the proposed active machine 

learning shows a favorable performance. The final TDR 

and FDR were 93.63% and 10.74%, respectively, for the 

Moon dataset and 92.27% and 3.83%, respectively, for the 

Mars dataset. 

2) The proposed method iteratively updates and optimizes the 

training datasets with a more automatic active-learning 

mechanism, which greatly reduces the labor cost of 

labeling the training samples. The performance of the 

detection classifier also improves as the training samples 

accumulate until favorable results are obtained. 

3) The experimental results on the Moon and Mars show that 

the proposed machine learning method produces more 

accurate crater detection than the traditional machine 

learning method. This means that the samples generated 

from the active learning process provided much useful 

information during the training process by prioritizing the 

most confusing examples. 

It should be noted that the automatic training process must be 

conducted with both the image and DEM data available; 

however, once the classifier obtained it can be applied to other 

areas with only images available. It should also be noted that 

this paper selected a diameter threshold of 20 pixels on imagery 

when detecting craters, which is mainly for evaluation 

convenience. The proposed approach is able to detect craters 

with diameters less than 20 pixels on the image, however, the 

detection rate might be decreased. Fig. 13 shows examples of 

using the proposed approach for crater detection without setting 

a specific diameter threshold. The detected smallest craters 

reach to 7 pixels in size, however, the TDR and FDR are 

degraded to 85.01% and 15.61%, respectively. Our future work 

will investigate strategies to improve the crater detection rate 

for small craters by incorporating other feature information. 

 
Fig. 13. Examples of crater detection results without setting a diameter 

threshold. The bottom row shows an enlarged view of a local region 

marked by the arrow. 

 

The proposed active machine learning approach enables a 

more automated method of collecting training samples with a 

favorable number and quality, which results in better 

performance in crater detection. The proposed method provides 

new insights in the field of machine learning for various 

applications.  
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