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Abstract 

In this paper, a robust Unscented Kalman filter (UKF) based on the generalized maximum likelihood 

estimation (M-estimation) is proposed to improve the robustness of the integrated navigation system of 

Global Navigation Satellite System (GNSS) and Inertial Measurement Unit (IMU). The UKF is a variation 

of Kalman filter by which the Jacobian matrix calculation in a nonlinear system state model is not necessary. 

The proposed robust M-M Unscented Kalman filter (RMUKF) applies the M-estimation principle to both 

functional model errors and measurement errors. Hence, this robust filter attenuates the influences of 

disturbances in the dynamic model and of measurement outliers without linearizing the nonlinear state space 

model. In addition, an equivalent weight matrix, composed of the bi-factor shrink elements, is proposed in 

order to keep the original correlation coefficients of the predicted state unchanged. Furthermore, a nonlinear 

error model is used as the dynamic equation to verify the performance of the proposed RMUKF with a 

simulation and field test. Compared with the conventional UKF, the impacts of measurement outliers and 

system disturbances on the state estimation are both controlled by RMUKF. 

Keywords: Integrated Navigation; Unscented Kalman Filter; Robust Estimation; M-Estimation; Nonlinear 

Filter 

1 Introduction 

The Kalman filter has been widely applied in real time navigation using integrated Global Navigation 

Satellite System (GNSS) and Inertial Measurement Unit (IMU), since it is optimal in linear systems. The 

filter reduces the effects of errors on the state estimates in a least squares sense, by using weighting 

information from various sources. In this sense, the state and its covariance matrix are obtained by solving 

the linear parameter estimation problem. It is well documented, however, that outliers (i.e. data that is 

inconsistent with the overall pattern of distribution) degrade the estimation quality and render the estimate 

unreliable (Fitzgerald 1971; Durgaprasad and Thakur 1998). 

In static geodetic measurement adjustment, different methods have been applied in an effort to reduce the 

influence of outliers in observations on the estimated state parameters. These include conventional test 

procedures (Baarda 1968; Pope 1976) and robust estimation techniques (Huber 1981; Hampel et al. 1986; 

Rousseeuw and Leroy 1987; Koch 1999; Yang 1999; Xu 2005). The former methods detect, identify and 

remove the outliers based on statistical hypothesis testing; the latter methods design robust estimation criteria 

to reduce the influence of outliers on the parameter estimates. Different robust estimators have been proposed, 

including the so-called L-estimator, L1-norm estimator, M-estimator and M split-estimator (Bickel 1973; 
Bloomfield and Steiger 1983; Huber 1964, 1981; Andrew 1974; Wiśniewski 2009, 2010), and some of these 
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have been successfully applied in GNSS/INS navigations. Among these robust estimators, the robust M-

estimator has received wide spread attention due to its high efficiency and high accuracy (Hampel et al. 1986; 

Wiśniewski 1999, 2009; Yu et al. 2017). The M-estimator has also been extended to deal with correlated 

observations (Koch 1988; Xu, 1989; Yang et al. 2002). Specifically, Koch (1988) uses the Cholesky decomposition 

to de-correlate the correlated observations; Xu (1989) extends the robust estimator by a bivariate robust function 

which addresses the correlations between the observations; while Yang et al. (2002) keeps the correlations 

among the observations unchanged using a bi-factor robust equivalent matrix. Nevertheless, the M-estimates 

may not be robust in some circumstances, if the weights of outlying observations satisfy a certain condition (Xu 

2005).  

In Kalman filtering, different robust estimators have been studied, such as the Gaussian sum approach, 

H∞ filter and robust M-estimation based Kalman filter (Alspach and Sorenson 1972; Caputi and Moose 1993; 

Koch and Yang 1998; Yang et al. 2001; He and Han 2010). In addition, Wang et al. (2008) proposed a robust 

extended Kalman filter (EKF) using W-test statistics based on filtering residuals in order to eliminate the 

effect of outliers on GNSS navigation solutions. The Gaussian sum approach, approximate the non-Gaussian 

distribution analytically by a finite sum of Gaussian density functions (Alspach and Sorenson 1972; Caputi 

and Moose 1993; Nikusokhan and Nobahari 2017). The approximation accuracy of the Gaussian sum 

approach, however, relies on the number of Gaussian terms. If only few Gaussian terms are employed the 

poor approximation of true densities could be provided (Stano et al. 2013). The H∞-based Kalman filter 

minimizes the worst-case estimate error averaged over all samples by treating process noises, measurement 

noises and model uncertainties as unknown-but-bounded noise (He and Han 2010). The filter breaks down, 

however, in the presence of randomly occurring outliers (Gandhi and Mili 2010). The M-estimation technique 

improves the robustness of the Kalman filter by assuming that the observation errors follow Huber’s 

distribution (Durgaprasad and Thakur 1998), and then uses the M-estimation approach (Kovacevic et al. 1992; 

Durovic and Kovacevic 1999). The approaches down weight the contaminated measurements and conduct 

like least squares filters on the other measurements with the assumption that the predicted state is accurate 

and any of the outliers are uncorrelated. If a correlation exists between the measurements, the Cholesky 

decomposition can be used to de-correlate the dependent measurements into independent ones, but the 

outlying errors are also transformed, meaning that the error detection may fail (Xu, 1989; Yang 1994). 

In general, two types of outliers are assumed: the dynamic model disturbances and the measurement 

outliers. These two types of outliers arise naturally in many areas of engineering, such as disturbances in the 

dynamic environment, imprecise knowledge of prior information, and faults in hardware, etc. In the literature, 

adaptive filters and robust filters have been proposed to overcome these two types of outliers. In respect to 

disturbances in the dynamic environment, adaptive Kalman filter (AKF) is applied. A conventional adaptive 

method uses a re-weighting technique to re-evaluate the covariance matrices of the predicted state and the 

measurements with a moving window (Sage and Husa 1969). A more flexible adaptive Kalman Filter (AKF) 

has also been proposed in which an adaptive factor is introduced based on the discrepancy between the 

estimated and predicted states, or based on the predicted residuals (Yang et al. 2001; Yang and Gao 2005). 

Furthermore, an optimal AKF has been derived based on both the predicted state errors and the predicted 

residuals (Yang and Gao 2006), while Yang and Xu (2003) proposed a combined AKF based on the moving 

window variance estimate. By applying the adaptive variance estimation or adaptive factors, the performance 

of Kalman filter is improved. Furthermore, the robust adaptive estimation techniques have also been applied 

to control the effects of both the measurement outliers and dynamic model disturbances. Despite the care 

taken during individual observation solutions, a new robust adaptive Kalman filter with adaptive factors for 

different state components has been proposed (Yang and Cui 2008). These adaptive factors, however, are 

constructed under the individual robust solution based on recent measurement information, which is often 

unavailable. In addition, different robust filters, namely the robust M-LS, LS-M, and M-M filters, have been 

developed to accommodate effects of the outliers or outlying disturbances by using equivalent weights (Yang 

1991).  

The above approaches are derived based on the Kalman Filter or Extended Kalman Filter (EKF). The 



latter uses the first order Taylor expansion, i.e. it calculates the Jacobian matrix in order to analytically 

linearize the nonlinear model. The cumbersome derivation and determination of the Jacobian matrix not only 

increases the complexity of the mathematical computation, but also introduces linearization errors. The 

Unscented Kalman filter (UKF), which was introduced by Julier and Uhlmann (1997), is another probabilistic 

approach to approximate the state distribution by Gaussian random variables. The filter utilizes the unscented 

transform (UT) to estimate the system state vector and its covariance matrix, which undergoes a nonlinear 

transformation (Wan and van der Merwe 2000; Julier and Uhlmann 2004). An adaptive UKF with a 

covariance matching technique and a nonlinear Strapdown Inertial Navigation System (SINS) error model 

with large misalignment angle are used for Doppler Velocity Log (DVL) aided SINS alinement (Li et al. 

2013).  A robust adaptive UKF has been proposed to deal simultaneously with dynamic model errors and 

measurement outliers (Wang et al. 2014). The algorithm uses Huber’s robust function to adjust the 

measurement weight based on the innovation vector, while the process noise matrix is adjusted by a fading 

factor, based on the discrepancy between the predicted state and the robust estimated state at the present 

epoch. A fault tolerant estimation algorithm based on the UKF, which adaptively estimates the process noise 

covariance or measurement noise covariance, depending on the type of fault, has also been studied (Hajiyev 

and Soken 2014). Li et al. (2016) proposed a robust adaptive UKF to handle the uncertainties of process noise 

and measurement noise. This algorithm uses the moving window and matrix matching technology to estimate 

the measurement noise and process noise adaptively. It is difficult to determine the length of the moving 

window, however. 

In this paper, we focus on the robust M-M UKF (RMUKF), based on the M-M estimation proposed by 

Yang (1991), by extending the equivalent weight matrices to bi-factor weight matrices and extending this 

approach from linear models to the nonlinear models. More precisely, this study extends the robust M-M 

estimation to a nonlinear state space model, in which the influences of the dynamic model disturbances and 

measurement outliers are controlled simultaneously by inflating the variances of the outliers. The correlations 

among the state vector elements are solved by introducing the bi-factor equivalent variance elements, which 

preserve the original correlation between the states. The rest of the paper is organized as follows. We first 

review the M-M estimator. The new robust M-M UKF (RMUKF) based on the bi-factor covariance matrix 

is presented. A simulation and field test are carried out with a loosely coupled integrated Global Positioning 

System (GPS) and Inertial Measurement Unit (IMU) to verify the performance of the proposed filter. Finally, 

conclusions are drawn. 

2 Mathematical model and M-M robust Kalman Filtering 

2.1 Dynamic model and measurement model 

The classical linear error model for an IMU usually ignores the second order terms and assumes that the 

angle error is small. Environmental disturbances and sensor errors, however, may break the small error 

assumption. Thus, IMU error models for large misalignment angles have been reported in the literature (Yan 

et al. 2008), in which the nonlinear error model is derived based on the Euler angle errors. The Jacobian 

matrix of this nonlinear error model is complicated, hence, the UKF is reasonably applied to complete the 

state estimation. This nonlinear error model states: 
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𝐶𝑙
𝑝
 is the rotation matrix from the local level frame (𝑙) to the platform frame (𝑝); 𝛿𝜔𝑖𝑙

𝑙  is the angular velocity 

error of the 𝑙 frame with respect to the inertial frame (𝑖). 𝜔̃𝑖𝑒
𝑙  is the earth rotation velocity at the 𝑙 frame; and 

𝜔̃𝑒𝑙
𝑙  is the rotation velocity of the 𝑙 frame with respect to the earth-centred, earth-fixed frame (𝑒) at the 𝑙 

frame. 𝑓𝑏  is the measurement of the accelerometer at the body frame (𝑏). 𝑣̃𝑙 = [𝑉𝐸 𝑉𝑁 𝑉𝑈]𝑇  are the 

velocity components of the east, north and up directions; and 𝛿𝑝𝑙 = [𝛿𝐿 𝛿𝜆 𝛿ℎ]𝑇 are the position error 

components of the latitude, longitude and altitude. Thus, the state vector can be expressed as 𝑋 =
[𝜑1×3 𝛿𝑣1×3 𝛿𝑝1×3  ]

𝑇. The dynamic model can be rewritten more economically as: 

𝑥𝑘 = 𝑓𝑘,𝑘−1(𝑥𝑘−1) + 𝜔𝑘−1     (3) 

where 𝑥𝑘 and 𝑥𝑘−1 are the state vectors at epoch k and k-1 respectively, including the position vector and 

velocity vector; 𝑓𝑘,𝑘−1(𝑥𝑘−1) is the state transition function; 𝜔𝑘−1 is the model error vector. 

The measurement equation is written as: 

𝐿𝑘 = ℎ𝑘(𝑥𝑘) + 𝑒𝑘     (4) 

where 𝐿𝑘 is an 𝑚 × 1 measurement vector; ℎ𝑘(𝑥𝑘) is the transformation function that maps the state vector 

parameters into the measurement domain; 𝑒𝑘  is the measurement error vector. In case the velocity and 

positioning outputs from GPS receivers are taken as measurements, the measurement equation is:  

𝐿𝑘 = 𝐴𝑘𝑥𝑘 + 𝑒𝑘                   (5) 

where 𝑥𝑘  is the 𝑛 × 1 state vector with prior estimated 𝑥̅𝑘  and covariance matrix 𝛴𝑋̅; 𝑒𝑘 is the 6 × 1 error 

vector; 𝐴𝑘 is the 6 × 𝑛 linear map function between the state vector parameters and measurements, and is 

expressed as: 

𝐴 = [
03×3 𝐼3×3 03×3 … 03×𝑛

03×3 03×3 𝐼3×3 … 03×𝑛
]    (6) 

where 𝐼3×3 is an identity matrix. 

2.2 M-M Robust Estimation 

Yang (1991) introduced three robust estimators, based on the M-estimation technique, for three 

corresponding error models, in which the measurements follow a contaminated normal distribution (M-LS), 

or in which the prior estimate contains outliers (LS-M), or both measurements and prior estimates follow 

contaminated normal distributions (M-M). This section reviews the methodology of the three estimators.  The 

error equation of the measurement is: 

𝑣𝑘 = 𝐴𝑘𝑥̂𝑘 − 𝐿𝑘      (7) 

where 𝑣𝑘  is the 𝑛 × 1 residual vector of measurements and 𝑥̂𝑘  is the estimated state vector of 𝑥 . If the 

predicted correction vector, Δ𝑥̅𝑘 = 𝑥̅𝑘 − 𝑥𝑘 , and the measurements are independently and identically 

distributed with a Gaussian distribution, the risk function, based on the least squares (LS) Bayesian estimation, 

is: 



𝛺𝑘 = 𝑣𝑘
𝑇Σ𝑘

−1𝑣𝑘 + (𝑥̅𝑘 − 𝑥̂𝑘)
𝑇𝛴𝑥̅𝑘

−1(𝑥̅𝑘 − 𝑥̂𝑘)    (8) 

where 𝛴𝑘 is the covariance matrix of the measurements. 

Assuming that the measurements, 𝐿𝑘 , and the predicted state vector, 𝑥̅𝑘, are contaminated by outliers and 

the corresponding contaminated distributions for both measurement errors and predicted state elements are, 

respectively: 

𝐹𝛥(𝜀) = (1 − 𝜀)𝜙𝛥 + 𝜀𝐻                 (9) 

and,  

𝐹𝛥𝑥̅(𝜀𝑥) = (1 − 𝜀𝑥)𝜙𝑥 + 𝜀𝑥𝐻                          (10) 

where 0 < 𝜀 < 1, 𝐻 is any symmetric distribution, and 𝜙𝛥  and 𝜙𝑥  are the normal distributions. The risk 

function based on the robust M-estimation is as follows:  

𝛺 = ∑ 𝜌(𝑣𝑖)
𝑛
𝑖=1 + ∑ 𝛽(𝛿𝑥̃𝑗)

𝑚
𝑗=1                     (11) 

with, 

𝜌(𝑣𝑖) = {

𝑣𝑖
2

2
|𝑣𝑖| < 𝜏

𝜏|𝑣𝑖| −
𝜏2

2
|𝑣𝑖| ≥ 𝜏

     (12) 

where 𝑣𝑖 denotes the 𝑖th element of the vector 𝑣𝑘; 𝜏 is chosen to give the desired efficiency at the Gaussian 

model (Kovacevic et al., 1992); the 𝛽(∙) function is similar to 𝜌(∙). 

The estimator determined by the condition function (11) is known as the M-M estimator, since the M-

estimation principle is applied for both the measurement and the predicted state vectors. The robust estimator 

is expressed as: 

𝑥̂𝑘 = (𝐴𝑘
𝑇𝑃̅𝑘𝐴𝑘 + 𝑃̅𝑥̅𝑘

)
−1

(𝐴𝑘
𝑇𝑃̅𝑘𝐿𝑘 + 𝑃̅𝑥̅𝑘

𝑥̅𝑘)                  (13) 

where 𝑃̅𝑘 and 𝑃̅𝑥̅𝑘
 are equivalent weight matrices of the measurements and predicted state vector, respectively. 

The M-M Kalman filter is the combination of LS-M and M-LS estimator. It can also be written as follows 

(Koch and Yang 1999; Yang et al. 2001):  

𝑥̂𝑘 = 𝑥̅𝑘 + Σ̅𝑥̅𝐴𝑘
𝑇(𝐴𝑘Σ̅𝑥̅𝐴𝑘

𝑇 + 𝛴𝑘)
−1(𝐿𝑘 − 𝐿̅𝑘)      (14) 

where 𝛴𝑘 = 𝑃̅𝑘
−1 and 𝛴𝑥̅ = 𝑃̅𝑥̅𝑘

−1 are called equivalent covariance matrices of the measurements and predicted 

state vector, respectively (for the detailed component calculation, please refer to Koch and Yang 1999). 

If the dynamic model and measurement equations are linear, the M-M Kalman filter can provide robust 

estimates of the state vector. In practice, however, the dynamic model and measurement equations may be 

nonlinear, and the linearization process introduces not only a heavy computational burden but also additional 

uncertainty in respect to model errors. 

3 Robust M-M Unscented Kalman Filter 

The M-M estimator mentioned above reweights the measurements and predicted state elements by using 

iterated residuals of the measurements and corrections of predicted state elements based on the linear or 

linearized models. The RMUKF, however, starts from the general nonlinear models, equations (3) and (4). 



The predicted state vector and its covariance matrix are: 

(𝑥̃𝑘)𝑖 = 𝑓𝑘[(𝑥̃𝑘)𝑖]          (15) 

𝑥̅𝑘 = ∑ 𝑤𝑖(𝑥̃𝑘)𝑖
2𝑛
𝑖=0      (16) 

with the covariance matrix: 

𝛴𝑥̅𝑘
= 𝛴𝜔𝑘−1

+ ∑ 𝑤𝑖[(𝑥̃𝑘)𝑖 − 𝑥̅𝑘]
2𝑛
𝑖=0 [(𝑥̃𝑘)𝑖 − 𝑥̅𝑘]

𝑇   (17) 

where (𝑥̃𝑘)𝑖 is the 𝑖𝑡ℎ sigma point, which is chosen based on the current Gaussian distribution; 𝑤𝑖  is the 

weight of the sigma point. The details of the UKF can be found in Yang et al. (2016, 2018). The predicted 

measurement vector and innovation vector are: 

(𝐿̃𝑘)𝑖
= ℎ𝑘[(𝑥̃𝑘)𝑖]      (18) 

𝐿̅𝑘 = ∑ 𝑤𝑖(𝐿̃𝑘)𝑖
2𝑛
𝑖=0      (19) 

𝑉̅𝑘 = 𝐿𝑘 − 𝐿̅𝑘      (20) 

with the covariance matrix: 

𝛴𝑉𝑘
= 𝛴𝑘 + ∑ 𝑤𝑖 [(𝐿̃𝑘)𝑖

− 𝐿̅𝑘]
2𝑚
𝑖=0 [(𝐿̃𝑘)𝑖

− 𝐿̅𝑘]
𝑇

= Σ𝑘 + Σ𝐿̅𝑘
   (21)  

The cross-covariance matrix is: 

𝛴𝑥̅𝑘𝐿̅𝑘
= ∑ 𝑤𝑖[(𝑥̃𝑘)𝑖 − 𝑥̅𝑘]

2𝑚
𝑖=0 [(𝐿̃𝑘)𝑖

− 𝐿̅𝑘]
𝑇

    (22) 

where (𝐿̃𝑘)𝑖
 is the sigma point of the predicted measurements; 𝐿̅𝑘 is the weighted mean of the sigma points. 

If a linear equation is used to describe the measurement model, the linear propagation of the state vector and 

its covariance matrix have equivalent accuracy as those from the unscented transform but there is less 

computational consumption (Yang et al. 2016).  

The estimated state vector and its covariance matrix can be obtained as: 

𝑥̂𝑘 = 𝑥̅𝑘 + 𝐾𝑘(𝐿𝑘 − 𝐿̅𝑘)     (23) 

𝛴𝑥𝑘
= 𝛴𝑥̅𝑘

− 𝐾𝑘𝛴𝑦̅𝑘
𝐾𝑘

𝑇     (24) 

where 𝐾𝑘 is the Kalman gain matrix (Yang et al. 2018):  

𝐾𝑘 = 𝛴𝑥̅𝑘𝑦̅𝑘
𝛴𝑦̅𝑘

−1      (25) 

The residual vector of the measurements and the correction vector of the predicted state can be obtained using 

the estimated state vector. They are: 

𝐿̂𝑘 = ℎ(𝑥̂𝑘)      (26) 

𝑉𝑘 = 𝐿̂𝑘 − 𝐿𝑘      (27) 

𝑉𝑥̅𝑘
= 𝑥̂𝑘 − 𝑥̅𝑘      (28) 



where 𝐿̂𝑘 is the estimated measurement vector. Based on the M-estimation principle, the cost function is: 

𝑉𝑥̅𝑘

𝑇 𝑃̅𝑥̅𝑘
𝑉𝑥̅𝑘

+ 𝑉𝑘
𝑇𝑃̅𝑘𝑉𝑘 = 𝑚𝑖𝑛                    (29) 

where 𝑃̅𝑥̅𝑘
 and 𝑃̅𝑘 are equivalent weight matrices of the respective predicted state and measurement vectors. 

An equivalent expression may be written as: 

𝑉𝑥̅𝑘

𝑇 𝛴𝑥̅𝑘

−1𝑉𝑥̅𝑘
+ 𝑉𝑘

𝑇𝛴𝑘
−1𝑉𝑘 = 𝑚𝑖𝑛     (30) 

where 𝛴𝑥̅𝑘
 and 𝛴𝑘 are the equivalent covariance matrices of the respective 𝑥̅𝑘 and 𝐿𝑘, and, 

𝛴𝑥̅𝑘
= 𝑃𝑥̅𝑘

−1      (31) 

𝛴𝑘 = 𝑃̅𝑘
−1      (32) 

It should be noted that although the observations are independent within a loosely coupled integration, the 

predicted state elements are correlated. Thus, if both the predicted state and measurement vectors are 

contaminated by outliers, a bi-factor inflation covariance model is introduced to suppress the impact on the 

estimated state vector (Yang et al. 2002). The equivalent covariance matrices of the predicted state vector, 

𝑥̅𝑘, and the measurement vector, 𝐿𝑘, are then: 

𝜎𝑖
2 = 𝜆𝑖𝑖𝜎𝑖

2  𝜆𝑖𝑖 ≥ 1 

𝜎𝑗
2 = 𝜆𝑗𝑗𝜎𝑗

2 𝜆𝑗𝑗 ≥ 1

𝜎𝑖𝑗 = 𝜆𝑖𝑗𝜎𝑖𝑗

     (33a) 

where 𝜆𝑖𝑖 and 𝜆𝑗𝑗 are two inflation factors of the covariance elements, and 𝜆𝑖𝑗 = √𝜆𝑖𝑖𝜆𝑗𝑗  is the bi-factor; 𝜎𝑖
2, 

𝜎𝑗
2 and 𝜎𝑖𝑗 are equivalent variances and covariance elements, respectively. The newly generated covariance 

matrix has thus kept the original correlations unchanged. 

Σ̅ = [
𝜎11

2 ⋯ 𝜎1𝑛
2

⋮ ⋱ ⋮
𝜎𝑛1

2 ⋯ 𝜎𝑛𝑛
2

] = [
𝜆11𝜎11

2 ⋯ 𝜆1𝑛𝜎1𝑛
2

⋮ ⋱ ⋮
𝜆𝑛1𝜎𝑛1

2 ⋯ 𝜆𝑛𝑛𝜎𝑛𝑛
2

]    (33b) 

The bi-factor can be chosen as follows: 

𝜆𝑖𝑖 = {
1 |𝑣̃𝑖| ≤ 𝑐

|𝑣̃𝑖|

𝑐
|𝑣̃𝑖| > 𝑐

     (34) 

where 𝑐 is a constant, usually chosen as 1.0-2.0;  𝑣̃𝑖 = 𝑣𝑖/𝜎0 is the standardized residual corresponding to 

the 𝑖th measurement or standardized correction for the 𝑖th predicted state element. The variance scale factor 

is  

𝜎0 = median {|𝑣̃𝑖|}/0.6745    (35) 

The constant 1/0.6745 is a correction factor for Fisher consistency at the Gaussian distribution (Fakharian et 

al. 2011). The robust estimated state vector and its covariance matrix then can be derived via the equations 

(23) and (24), while the iterations can effectively suppress the influences of the outliers.  

It can be found from the above derivation that the robust estimation process requires iteration at the 

present epoch. The estimated state vector at the first iteration acts as the reference state and completes the 

robust M-M estimation. The RMUKF calculation flow is presented in Figure 1. 



 

 
 

Figure 1 Flow chart of RMUKF 

The following characteristics can be obtained from the above derivation. 

(1) The M-M estimation is not only limited to linear models, but also to nonlinear models if unscented 

Kalman filter is applied. 

(2) The RMUKF can effectively attenuate the effects of the dynamic disturbances and measurement outliers 

on the estimated state vector by iteration procedures. 

(3) The algorithm can be modified into an adaptive algorithm by adding an adaptive factor to the innovation 

vector and its covariance matrix. If the measurement errors were not contaminated by the outliers, the 

innovation vector could indicate the system discrepancy. The weight function decreases the contribution of 

the dynamic model to the estimated state vector based on the extent of the discrepancy. 

(4) The equivalent covariance matrices determined by equations (33a) and (33b) are symmetrical and keep 

the original predicted state correlation coefficients unchanged. 

(5) The derivation is carried out with nonlinear state space models. It should be noted that the derivation is 

also valid for a linear model.  
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4 Computation and Analysis 

To verify the proposed RMUKF, both a simulation test and a field test were carried out. A loosely coupled 

integration strategy was used to fuse the output data from a GPS receiver and IMU. A nine-state nonlinear 

error model was used as the dynamic equation. The tests were processed in the MATLAB R2010a 64-bit 

program on a PC with Intel Core i7-3770 CPU at 3.40 GHz, 16-GB RAM equipped with Win10. 

4.1 Simulation tests  

The simulation tests were based on a moving vehicle with different moving behaviours. The simulation 

duration was 549s with a 100 Hz sampling frequency, and the simulation initial conditions were listed in 

Table 1. In Table 1, the initial state variance elements approximately correspond to the initial state errors. 

The simulation was processed without initial alignment, and the misalignment angle was randomly set to a 

considerable number. The simulated trajectory and velocity are presented in Figures 2 and 3. The 

measurement outliers at four different epochs are arbitrarily given as presented in Table 2. The differences 

between the observations with outliers and the simulated true observations, positioning and velocity 

components are plotted in Figures 4 and 5. The estimation results were also compared with the simulated true 

values. A complementary simulation was also carried out with different initial conditions, in which the initial 

position errors were enlarged to [20 m, 20 m, 30 m], and the velocity errors were enlarged to 2 m/s.  

 

Table 1 Simulation initial Conditions 

Gyro drift [º/h] 100 

Accelerometer bias [ug] 500 

Angular random walk [º/√h] 200 

Velocity random walk [ug/√Hz] 5000 

Initial position [22.31º114.18 º 41 m] 

Measurement noise e = [1 1 3 0.2 0.2 0.2]𝑇 

Initial position error [m] [2 2 3] 

Initial velocity error [m/s] 0.2 

Initial misalignment angle [º] [-20 37 80] 

Initial variance of state vector [0.04 0.04 0.04 9.83e-14 9.83e-14 9] 

 

Table 2 Magnitude of input outliers 

 Velocity Position 

Epoch East [m/s] North [m/s] Up  [m/s] Latitude [m] Longitude [m] Altitude [m] 

150s + 1 - - - +10.84 - 

200s - -1 - -22.64 - - 

300s - - - -11.16 -22.32 +10 

450s - - -1  - -10 

 

 
Figure 2 The simulated trajectory. The red dot is the initial position of the trajectory. 

 



 

Figure 3 The simulated velocity at East, North and Up components. 

 

 
Figure 4 The difference between the outlying position components and the simulated true observations in 

Latitude (a), Longitude (b) and Altitude (c) 

 



 

 
Figure 5 The difference between the outlying velocity components and the simulated true observations in 

respect to East (a), North (b) and Up (c) 

 
The positioning errors of simulation results are illustrated in Figure 6, in which (a) presents the error of 

the Latitude component, (b) the error in the Longitude component, and (c) the error in the Altitude component. 

Figure 7 presents the velocity error, in which (a) gives the error of the East component, (b) gives the error of 

the North component, and (c) gives the error of Up component. The absolute maximum error of UKF and 

RMUKF is given in Figure 8. The Root Mean Square Error (RMSE) is given in Table 3.  
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Figure 6 Position Error in Latitude (a), Longitude (b) and Altitude (c) 

 

 

 
Figure 7 Velocity Error in East (a), North (b) and Up (c) 
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Figure 8 Absolute Maximum Error of Position (a) and Velocity (b) 

 

Table 3 RMSE of UKF and RMUKF in simulation 

 
Latitude 

[m] 

Longitude 

[m] 

Altitude 

[m] 

East 

[m/s] 

North 

[m/s] 

Up 

[m/s] 

UKF 1.91 2.68 1.99 1.00 0.87 0.67 

RMUKF 1.27 1.11 1.93 0.28 0.43 0.26 

 

The two cases of the simulation calculation results are labelled as RMUKF1 (with original small initial 

errors) and RMUKF2 (with enlarged initial errors).  

 

Table 4 RMSE of RMUKF1 and RMUKF2  

 
Latitude 

[m] 

Longitude 

[m] 

Altitude 

[m] 

East 

[m/s] 

North 

[m/s] 

Up 

[m/s] 

RMUKF1 1.27 1.11 1.93 0.28 0.43 0.26 

RMUKF2 6.55 5.79 15.02 1.85 2.05 1.79 

 

From the calculation results, we observe that: 

(1) The UKF failed to constrain the position error influence between epoch 300 s and 386 s due to the outlying 

observations, see Figure 6.  

(2) The maximum positioning error of RMUKF is smaller than that of UKF. It is noted that the error 

magnitude of UKF is more than 12 m in the Longitude component, while that of RMUKF is less than 5 m. 

This means that the RMUKF proposed in this paper has the ability to reduce the outlying measurement effects 

to the state parameter estimates. In particular, the peak value is confined. 

(3) The velocity component errors reveal a similar phenomenon as the positioning component errors; that is, 

the velocity estimated from RMUKF is superior to that of UKF, as shown in Figure 7.  
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(4) It is noted that a large fluctuation occurred after epoch 300 s due to the outlying observation elements, 

while the fluctuation in RMUKF is smaller and RMUKF converges faster than that of UKF. 

(5) The RMSE presented in Table 3 also proved that RMUKF was better able to minimize the influences of 

outliers on positioning and velocity results. 

(6) From Table 4 it can be seen that the RMSE of RMUKF with a large initial error is greatly increased. Thus, 

the proposed RMUKF requires a relatively accurate initial state.  

4.2 Field Test 

This subsection presents experimental results to demonstrate the performance of the proposed RMUKF when 

applied to GPS/ IMU integrated vehicle navigation. The experiment was conducted next to a lake in Wuhan, 

China. The vehicle trajectory is shown in Figure 9(a); the three positioning components, which are solved by 

single point positioning technique, are presented in Figures 9 (b), (c) and (d). In Figure 9 (d), it is noted that 

the altitude component fluctuated between 6.6 m and 49.22 m during the epochs 283310 s to 284248 s. The 

sampling frequencies of the IMU and GPS were 100 Hz and 10 Hz, respectively. The bias variances of the 

gyro and accelerometer were 1 deg/h and 500 μg, respectively. The initial position errors were set to [7 m, 7 

m, 7 m], initial velocity errors to [0.1 m/s, 0.1 m/s, 0.1 m/s] and initial attitude errors to [16ˊ 16ˊ 83ˊ].  
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Figure 9 The vehicle trajectory (a) and position components in Longitude (b), Latitude (c) and Altitude (d) 

 

The estimated results were compared with double differenced GPS positioning and velocity. The UKF 

and RMUKF positioning errors are presented in Figure 10. The velocity errors are presented in Figure 11. 

The RMSE are shown in Figure 12 and Table 5. The running time for both UKF and RMUKF is presented 

in Table 6. 

 

 
Figure 10 Position Error of UKF (a) and RMUKF in Latitude (a), Longitude (b) and Altitude (c) 
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Figure 11 Velocity Error of UKF vs. RMUKF in East (a), North (b) and Up (c) 

 

 
Figure 12 RMSE of Position (a) and Velocity (b) 
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Table 5 RMSE of UKF and RMUKF in field test 

 
Latitude 

[m] 

Longitude 

[m] 

Altitude 

[m] 

East 

[m/s] 

North 

[m/s] 

Up 

[m/s] 

UKF 0.35 1.24 5.58 0.47 0.48 0.25 

RMUKF 0.31 0.37 0.60 0.09 0.08 0.14 

 

Table 6 Running Time of UKF and RMUKF 

 Running Time [s] 

UKF 400.42 

RMUKF 414.19 

 

By analysing from the actual field test, we observe: 

(1) The peak positioning error values provided by RMUKF are smaller than those of UKF. In particular, the 

outlying effects in the Longitude component around epoch 2.84 disappear, see Figure 10 (b). The RMUKF 

controls the outlying measurement effects.  

(2) It is also noted that there are considerable fluctuations in the UKF positioning errors, especially in 

Longitude and Altitude components, shown in Figure 10 (b) and (c). The RMUKF not only has fewer peak 

values in positioning errors than those of UKF, but also converges faster than UKF after the error peaks have 

occurred. 

(3) The RMUKF velocity error in the East and North components during the initial period is bounded, while 

the UKF velocity error tends to diverge. 

(4) The RMSE presented in Figure 12 and Table 5 also demonstrate the superior performance of the RMUKF. 

(5) The proposed RMUKF took 414.19 seconds to run in the field test, compared to 400.42 seconds for UKF. 

5 Conclusions 

This study presents a robust M-Unscented Kalman Filter, based on an M-M estimation principle. The filter 

has the ability to suppress the effects of outliers from both the dynamic model and measurements on dynamic 

state estimates and hence provides a robust solution in an iterative manner, without requiring the linearization 

of nonlinear models. Furthermore, the correlations of the predicted state parameters are rigorously taken into 

account by the correlated bi-factor equivalent covariance matrix, in which the original correlations of the 

predicted parameters are kept unchanged. The performance of RMUKF is verified by simulation and field 

tests. The influences of measurement outliers and dynamic model disturbances, as well as the stochastic 

model uncertainties, are controlled well by RMUKF. In addition, RMUKF makes the filter converge quickly. 

The proposed method, however, requires a relative accurate initial state vector. 
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