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Abstract—In this paper, we propose and demonstrate a blind 

chromatic dispersion (CD) estimation method based on fractional 

Fourier transformation (FrFT). Through numerical simulations, 

the proposed CD estimation method is shown to be robust against 

amplified spontaneous emission (ASE) noise and nonlinear 

interference. Only 2048 samples are required for reliable CD 

estimation for single carrier 28 GBaud DP-QPSK or 32 GBaud 

DP-16QAM signals and the standard deviation can be as low as 

98.9 ps/nm and 103.6 ps/nm respectively. The feasibility of the 

proposed CD estimation method has been experimentally verified 

using 28 GBaud DP-QPSK and 14 GBaud DP-16QAM signals 

over various transmission distances. Compared with some other 

CD estimation methods, the method based on FrFT has 

advantages in the aspects of less computation complexity and 

robustness to transmission impairments. 

Index Terms—Fiber optics communications, coherent 

communications, fractional Fourier transformation, dispersion. 

I. INTRODUCTION

hromatic dispersion (CD) compensation in fixed fiber link

can be realized by a static equalizer in the digital coherent 

receiver if there is an accurate information of the accumulated 

CD. It has been reported that accumulated CD at the range of

104 ~105 ps/nm can be effectively compensated in the digital

coherent receiver [1-2]. However, due to the dynamic

characteristics of future optical networks, the accumulated CD

of optical signals may change from time to time. Therefore, in

order to realize exact compensation in the digital receiver, an
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estimation of CD value should be conducted before the CD 

compensation. 

Various approaches to CD estimation in digital coherent 

receivers have been presented. One of the methods is based on 

parameter extraction from equalizer taps [3]. Due to a limited 

number of filter taps in the receiver, this solution might only be 

used to monitor relatively small CD. To support longer links, 

methods based on CD scanning are used, such that the space of 

possible CD values is searched with small step and a metric 

value is computed for each step. A characteristic feature of this 

metric, the global minimum or maximum, is generally used to 

indicate successful mitigation of CD. In Ref [4], four different 

metrics, such as constant modulus algorithm (CMA) metric, 

mean signal power, eigenvalue spread and frequency spectrum 

autocorrelation, were introduced and experimentally verified in 

the transmission experiment. Recently, a more efficient 

technique was proposed in [5] by noting that the 

aforementioned search process is tantamount to apply a fast 

Fourier transform (FFT) on the autocorrelation of the discrete 

spectrum. 

The fractional Fourier transformation (FrFT) is a 

generalization form of the Fourier transformation (FT) and has 

been utilized to represent the signals on an orthonormal basis 

formed by chirps. And, the FrFT can induce rotations in various 

time-frequency transforms, including the Wigner distribution 

and the short-time Fourier transform, to further enhance its 

interpretation as a rotation operator [6]. So it can analyze the 

signal both in the time and frequency domains. Thanks to its 

unique properties, the FrFT has been used in multiple 

applications such as solving differential equations [7], quantum 

mechanics [7], optical image processing [8] and signal 

processing [9-11]. It has advantages in dealing with linear 

frequency modulated (LFM) or chirped signals and has been 

deployed for detecting and estimating LFM signal’s 

characteristics [12]. 

In this paper, we extend the FrFT capability of dealing with 

LFM signal on the CD estimation in optical fiber 

communication systems and propose a novel method to 

estimate the accumulated CD. We treat the signal with CD as a 

chirped signal in frequency domain and take advantage of the 

properties of FrFT to process this chirped signal. Then, the 

certain FrFT order, which is related to the CD value, can be 

searched by a defined metric that can be calculated by a quick 

FrFT algorithm. This quick FrFT algorithm computes the 

fractional transform in O (N log N) time, where N is the 
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time-bandwidth product of the signal, similar to the FFT 

algorithm. Thus the computation of the fractional transform 

does not sacrifice the computation efficiency compared with 

the ordinary Fourier transform [13]. The relation between the 

CD value and the certain FrFT order can be built for estimation. 

Although inherently our method is still a kind of CD scanning 

method, it can be computed very efficiently by using a novel 

FrFT metric and it shows robustness against various 

transmission impairments. The performance of our proposed 

CD estimation method is numerically investigated in the 

presence of amplified spontaneous emission (ASE) noise and 

nonlinear interference (NLI) for 28GBaud DP-QPSK and 

32GBaud DP-16QAM signal with NRZ pulses. Besides, we 

also investigated the impacts of different sample number and 

different step size of FrFT order on the estimated results. The 

proposed method works well and stably under strong ASE 

noise and NLI noise. Finally, to further confirm the feasibility 

of the proposed CD estimation method, we conducted 

experiments for 28 GBaud DP-QPSK and 14 GBaud 

DP-16QAM signal over various transmission distances. The 

worst CD estimation errors are 128 ps/nm and 320 ps/nm for 

DP-QPSK and DP-16QAM respectively. The rest of the paper 

is organized as follows: in Section II, the operation principle of 

proposed CD estimation method is introduced. In Section III, 

simulations are conducted to prove the robustness of this 

method. In Section IV, we performed experiments to confirm 

the method’s feasibility in long-distance optical fiber 

transmission systems. Finally, conclusions are drawn in Section 

V. 

II. OPERATION PRINCIPLE 

A. Brief introduction of FrFT 

t

u
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P order FrFT
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Fig. 1. The order FrFT and its rotation in the Wigner domain 

The FrFT can induce rotations in Wigner domain [14]. As 

shown in the Fig. 1, the ω and v are the frequency coordinate of 

original signal and transformed signal respectively. The 

angle  corresponds to the rotation angle caused by the p order 

FrFT with the relationship as follows.: 

 2 /p =    (1) 

FrFT becomes the conventional Fourier transform when the 

rotation angle / 2=  , that is  the FrFT order 1p = . Hence, 

if we substitute / 2=  , we obtain the properties of the 

conventional Fourier transform. 

The FrFT of the signal ( )f t with a rotation angle , denoted 

as ( )F u
, is defined as 

 ( ) ( ) ( , )F u f t K t u dt


−
=    (2) 

and 
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

−
=   (3) 

where the transform kernel ( , )K t u
of the FrFT is given by 
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Due to the rotation of the Wigner domain, some signals like 

LFM or chirped signals can be best dealt with in specific 

fractional domain instead of just in either time domain or 

frequency domain. In some specific fractional domains, LFM 

or chirped signals may present unique properties that will be 

helpful for signal processing. 

 

B. FrFT of the chirped signal 

A chirped signal in the time domain can be expressed as 

2

0 0( ) ( )exp( )E t A t i t iCt = + +                 (5) 

where A(t) is the envelope of the signal, 
0  is the carrier 

frequency, 
0  is the initial phase and C is the chirp parameter. 
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Fig. 2. The rotation of time-frequency distribution and the signal distribution 

with the best order P 

As shown in Fig. 2(a), for this chirped signal transformed by 

FrFT, there exists a best fractional domain under some rotation 

angle Ω, or certain FrFT order P after the rotation of the Wigner 

domain of the signal, where the signal distribution squeezes to 

its minimum and the energy distribution can be gathered mostly. 

The specific rotation angle Ω or the certain FrFT order P, is 

determined by the chirp parameter as follows [15]: 

http://www.baidu.com/link?url=ioSeF9BpjR5IvRzzuVwKC1bm6DQtRkiHDhyMdx9J-YgUGq51zCOu8qPNkCtMH2hNmmDSwc4Luh-7cTdjDLDGzKBXLpc0rqVb1gc3qn-xG27
http://www.baidu.com/link?url=wGNVtyMCYQQDB3wOCnwaRUjidiqNRD9PR8wja7WmgguD-9F64goRxZ5sq1gEgu9OySDqvlWtEG86J1yZ6_2J4ZWZnZiA2b0QVZU9qiIqBZO3KxJMDDgxvd8IxuWCFF-_
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 P=2 / 2arccot( 2 ) /
dt

C
d

 


 = −  (6) 

where dt and d are the sampling interval in the time and 

frequency domain after digital sampling.  

So, as long as a certain order P of FrFT is found, we can 

estimate the chirp parameter C of a chirped signal. The certain 

FrFT order P can be searched by a statistical parameter which  

can be used to describe the degree of signal’s localization: 

 
2

( ) | ( ) |L p R d  
+

−
=   (7) 

where p is different order of FrFT and ( )R  is the fractional 

convolution represented as 

 /2 2

/2( ) ( {| ( ) | })( )R F X u−

+= 

     (8) 

where 

 /2

/2 ( ) ( ( ))X u F x t+

+ =  

   (9) 

/2−F 
 denotes inverse Fourier transform and

/2+F 
 denotes a 

fractional Fourier transform of signal x(t), with the 

order 2 / 1p  = + . The higher the degree of signal’s 

localization is, the larger the L(p) is. 

 
Fig. 3. L(p) vs p orders for different chirp parameter 

For a chirped signal as Eq. (5) whose dt and d are assumed as 

10ms and 0.4π rad/s, we calculated L(p) for different values of 

chirp parameter C. As shown in Fig. 2(b), impulse 

responses-like curves appear in the L(p)-p plot and the peak 

position exactly corresponds to the best order P, at which the 

chirped signal distribution squeezes to its minimum after FrFT 

transformation. This method has been deployed for detection 

and characteristic estimation of chirp signals in radar systems 

[12]. 

 

C. FrFT of signals with CD in optical fiber communication  

The similar procedure can be extended to a chirped signal in 

frequency domain which exactly corresponds to the signal with 

CD in optical fiber transmission as follows: 

 
2

2( , ) (0, )exp( )
2

i
A z A z   =  (10) 

where z is the transmission distance, 
2 describes the 

group-velocity dispersion (GVD), and is related to the 

chromatic dispersion parameter D . 

 
2

2
2

D
c





= −  (11) 

where  is the reference wavelength, c is the speed of light. 

For an optical signal with CD, different frequency parts 

correspond to different group velocity. Specifically, if the 

dispersion parameter D is positive, the higher frequency part of 

the signal transmits slower; while if the dispersion 

parameter D is negative, the higher frequency part of the signal 

transmits faster. The transmission speeds vary linearly along 

with the frequency. 
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Fig. 4. (a) time-frequency distribution of an optical communication signal 

without CD. (b) time-frequency distribution of an optical communication signal 

with a certain CD. 

In Fig. 4,
0 is the center frequency of signal and T is the 

duration of one symbol. The ω and v are the frequency 

coordinate of original signal and transformed signal 

respectively. According to Fig. 4(b), there is a certain order Q 

similar to P as follows: 

 2( 1) 2 / 2arccot( ) /
d

Q z
dt

− =  = −


    (12) 

where dt and d are the sampling interval in the time and 

frequency domain after digital sampling. Compared with the 

Fig. 2 and Eq. (6), since the CD induces a chirp in frequency 

domain, the transmission time varies linearly along with the 

frequency. In this case, the analysis should be based on the 

signal in frequency domain instead of time domain. So, the 

position of dt and d should be exchanged in the right side of 

Eq. (12). Most of the time, we need to deal with time series 

instead of frequency spectrum. Therefore, the best order at the 

left side of Eq. (12) should subtract 1 to change the signal from 

time domain to frequency domain. TABLE I lists the 

comparison between the chirped signal in time domain and the 

signal with CD in aspects of the expression, the chirp parameter, 

the certain order / rotation angle of FrFT and the relation 

between the order and the chirp parameter according to the 

content discussed above. 
 

http://www.baidu.com/link?url=ioSeF9BpjR5IvRzzuVwKC1bm6DQtRkiHDhyMdx9J-YgUGq51zCOu8qPNkCtMH2hNmmDSwc4Luh-7cTdjDLDGzKBXLpc0rqVb1gc3qn-xG27
http://www.baidu.com/link?url=p7V87LNpR3RamLw_cHfMNV2kT5fqSZks3sFCasrTZczUBSkATkgatTAdojTf7ip_Fwh9_LbjwGymRZxWe5O9ZI5P6wTflVqNEeBGt1TO4bW
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TABLE I 

COMPARISON BETWEEN THE CHIRPED SIGNAL IN TIME DOMAIN AND THE SIGNAL WITH CD 

Signal Chirped signal in time domain 
Signal with CD (chirped signal in frequency 

domain) 

Expression 
2

0 0( ) ( )exp( )E t A t i t iCt= + +   
2

2( , ) (0, )exp( )
2

i
A z A z=     

The chirp parameter C 2 / 2z  

The certain order / rotation angle of 

FrFT 
P /   Q /   

The relation P=2 / 2arccot( 2 ) /
dt

C
d

 = − 


 
2( 1) 2 / 2arccot( ) /

d
Q z

dt
− =  = −


    

  

 

 

Fig. 5. (a) L (p) vs p orders for OOK signal with different CD amounts. (b) L (p) 

vs p orders for DP-QPSK signal with different CD amounts 

With the certain rotation angle Δ and the Q order of FrFT, the 

transformed optical signal, which has the minimum inter 

symbol interference (ISI) in the rotated time-frequency domain, 

exhibits a psudo-unchirped property similar to the signal in Fig. 

4(a). That means the CD induced frequency dependent 

differential time delay disappears in the specific FrFT 

transformed domain, as shown in Fig. 4(b). Therefore, the 

characteristics of the signal with the CD in the certain specific 

FrFT transformed domain is similar to the signal without CD in 

time domain. In order to find the certain order of FrFT for 

different CD values, L(p) of the signal can be calculated by Eq. 

(7-9). 

Though L(p) can be defined as a metric of CD estimation, it 

may have different characteristics for signals with different 

modulation formats. Taking the OOK and QPSK signals with 

CD as examples, we can find out that for OOK signal, L(p) has 

an upward impulse and a maximum value at a specific order of 

FrFT for different CD, as shown in Fig. 5(a). For DP-QPSK 

signal, the constant envelope of the temporal waveform leads to 

the minimum degree of signal’s localization in time domain 

without CD. Thus L(p) has a downward impulse and a 

minimum value at a special order FrFT, as shown in Fig. 5(b). 

The characteristics such as maximal/minimal points can be 

used to indicate the best order Q. Using Eq. (12), the CD can be 

estimated with these specific orders by scanning 

maximal/minimal points in the L(p)-p plots.  

 

III. EVALUATION OF FRFT BASED CD ESTIMATION 

PERFORMANCE 

A. Simulation environment and analysis method 

To study the feasibility of the proposed method, we 

conducted simulations for single carrier optical fiber 

transmission system based on 28 GBaud DP-QPSK and 32 

GBaud DP-16QAM signals by combining Matlab and VPI 

Transmission Maker 9.0 software. In the transmitter side, 

28Gbaud QPSK signals or 32 Gbaud 16QAM signals are 

generated by IQ modulator which is driven by uncorrelated 

pseudo-random binary sequences (PRBS) with a length of 

216-1. Then, the DP-QPSK signal or DP-16QAM signals are 

obtained by introducing 200 symbols delay between two 

polarizations. The optical signals are then pre-amplified and 

launched into the fiber link composed by 20 spans of SMF. 

After each span, the loss is compensated by ideal erbium doped 

fiber amplifier (EDFA) with 0 dB noise figure (we add ASE 

noise at the receiver by setting OSNR directly). The input 

power is 0 dBm, the nonlinear coefficient of the fiber is set to 

2.6 W-1·km-1, and the PMD coefficients is set to 0.1ps /km1/2. 

The CD parameter is set to 16 ps/km/nm. As many as M=1000 

CD values which range from 1600 ps/nm to 32000ps/nm are 

generated by randomly setting M different span lengths of fiber 

in each span. The receiver OSNR is set at 12 dB by adding 

AWGN noise. After transmission, the data received are dealt 

with MATLAB. A data block with length of 2048 samples from 

original signals is used for blind CD estimation after the signal 

sampled at twice the symbol rate. 

The fractional convolution ( )R  and index of CD 

estimation L(p) of the signal in different FrFT orders are first 

calculated by a quick FrFT algorithm [13], which has a similar 

complexity with FFT. Then we replace the p by CD value and 

get L(CD) according to Eq. (12). We scan the CD value by a 

step size of ΔCD=100 ps/nm within the pre-set range of CD. 

Therefore, the orders of FrFT we need to search are determined 

by the range of CD and the step size of ΔCD. After that, the CD 

http://www.baidu.com/link?url=z9okfy7GF2M80MyGQjvZZMfc7bNwCj8ax_MoHU0iPqNDzwStgIk5rdk2FvOqLTEITzPxFF_Zr24LMi0vd7xz65Bkp7HNG7uGlKA-pAg6lcdTYiP-cHI_4dCEd6R8KxAQ
http://www.baidu.com/link?url=7jf21NDYc0QeP0EnPcH2WaiqXzmPN4SnEzVJ6TPgzKjr8N1NBavJ7IiDAjGo3q0PsYS0m3C2BHfwxR_3K6JSHEXHIUfOC_aZus2TXQb99_S
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value can be estimated by the peak search of L(CD). 

For each CD estimation, the performance is evaluated by the 

estimation error which is defined by the deviation of the 

estimated CD value
,est jCD to the real CD value

,real jCD as 

follows: 

 
, , ,CD j est j real jCD CD= −  (13) 

Furthermore, the mean value
CDM of the absolute estimation 

error from all realizations is defined by 

 , ,

1

1 M

CD est j real j

j

M CD CD
M =

= −  (14) 

The standard deviation of the estimation error is defined as 

2

, , , ,

1 1

1 1
( ( ))

M M

CD real j est j real j est j

j j

CD CD CD CD
M M= =

= − − −    (15) 

Both two parameters provide metric analysis of the precision of 

the method. We can also get the range of the estimation error 

 , ,(min( ),max( ))
CD CD j CD jR =    (16) 

where
,min( )CD j and

,max( )CD j represent the minimum and 

maximum value of
,CD j .Throughout this paper, the distribution 

of the estimation error is represented by histograms. From the 

histograms, the worst case estimation error and the error 

distribution can be obtained. 

 

B. Performance of the CD estimation method 

We calculated the CD estimation error
,CD j for 28GBaud 

DP-QPSK and 32GBaud DP-16QAM signal. For either 

modulation format, we obtained 1000 CD estimation errors by 

Eq. (13) and the distributions of the CD estimation errors are 

shown in Fig. 6. 

 

Fig. 6. (a) Distribution of the CD estimation error for 28 GBaud DP-QPSK. (b) 

Distribution of the CD estimation error for 32 GBaud DP-16QAM 

For the QPSK and the 16QAM signal, the mean value of the 

absolute estimation error
CDM , the standard deviation

CD of 

estimation error, and the worst case estimation error are shown 

in TABLE II. 

 
TABLE II 

PERFORMANCE OF THE CD ESTIMATION METHOD  

FOR QPSK AND 16QAM SIGNALS 

Modulation formats CDM
/ (ps/nm) 

CD
/ 

(ps/nm) 

worst-case 

estimation error 

/ (ps/nm) 

28GBaud DP-QPSK 78.3 98.9 352.0 

32GBaud 

DP-16QAM 
81.7 103.6 384.0 

 

According to the TABLE II, it can be proved that the CD 

estimation method we proposed is feasible and accurate enough 

for both QPSK and 16QAM signals. The standard deviations 

for both QPSK and 16QAM modulation formats are almost 

identical with the CD scanning step. 

While the inaccurate CD estimation can cause an incomplete 

CD compensation after static CD compensation, the residual 

CD can be further compensated by the following 2 × 2 CMA 

equalizer. In the presence of CD estimation error within 350 

ps/nm, the residual CD can be effectively compensated by 2 × 2 

CMA equalizer with a tap number of 11 [17]. Therefore, we 

consider ±350 ps/nm as the estimation tolerance throughout 

this paper. 

 

C. Impacts of sample number and step size of CD scanning 

We found that the sample number used for CD estimation 

and the step size of CD scanning can influence the CD 

estimation result. In the following, we evaluated the 

performance of the CD estimation for DP-QPSK signal using 

different sample number and step size of CD scanning. 2048 

and 4096 samples (1024 and 2048 symbols) were used to 

estimate CD and the step size of CD scanning was set as 100 

ps/nm, 200 ps/nm and 400ps/nm, respectively. For each 

combination of sample number and step size, 1000 CD 

estimation errors could be obtained to evaluate the performance 

for different sample number and step size that are shown in Fig. 

7 and Fig. 8. For each combination of sample number and step 

size, the range of the estimation error
CD

R , the mean 

value
CDM of the absolute estimation error and the standard 

deviation
CD of estimation error are listed in TABLE III, 

respectively. 

TABLE III 
PERFORMANCE OF THE CD ESTIMATION METHOD FOR DIFFERENT SAMPLE NUMBER AND STEP SIZE 

 

Sample number 

100 ps/nm 200 ps/nm 400 ps/nm 

CD
R

 
CDM  

CD  
CD

R
 

CDM  
CD  

CD
R

 
CDM  

CD  

2048 (-352,308) 78.4 98.9 (-368,308) 85.1 106.7 (-400,288) 111.2 132.9 

4096 (-256,244) 60.2 75.5 (-248,240) 68 82.5 (-272,320) 110.5 130.7 

Unit : ps/nm 
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Fig. 7. Distribution of CD estimation error for 2048 samples when step size is 

(a) 400 ps/nm (b) 200 ps/nm (c) 100 ps/nm 

 
Fig. 8. Distribution of CD estimation error for 4096 samples when step size is 

(a) 400 ps/nm (b) 200 ps/nm (c) 100 ps/nm 

It can be obviously seen that more samples and smaller step 

size of CD scanning result in more accurate CD estimation, 

with the cost of higher computation requirement. It is therefore 

necessary to choose appropriate sample amount and step size of 

CD scanning to balance the estimation accuracy and the 

computation complexity. We can estimate CD reliably using 

only 2048 samples. 

D. Robustness to ASE noise and fiber nonlinearity 

To evaluate the method’s tolerance of ASE noise, we 

calculated the mean value of the absolute estimation error and 

the worst case estimation error for DP-QPSK and DP-16QAM 

signal by setting different OSNR in case of 2000km, keeping 

other parameters constant. The result is shown in Fig. 9 (a), 

confirming that our method can produce reliable and accurate 

estimations with OSNR from 12dB to 27dB.  

Furthermore, we also investigated the NLI’s impacts on the 

proposed method, by using 5 channels with 50GHz grid in 2000 

km fiber transmission link with the accumulated CD of 32000 

ps/nm. The middle channel is selected at the receiver to 

estimate the accumulated CD value. The OSNR is set to 20dB. 

The sample amount is 2048 and the step size of CD scanning is 

200 ps/nm. The result is shown in Fig. 9 (b). It is obviously 

observed that, for DP-QPSK and DP-16QAM modulation 

formats, the CD estimation result remain accurate even when 

the launched power approaches 4dBm per channel. 

In order to investigate how the NLI’s impacts on the CD 

estimation method in detail, we demonstrated the L(CD)-CD 

plots for different input power per channel. The L(CD) was 

normalized according to its minimum value. According to the 

Fig. 10, whatever it is for QPSK or 16QAM signal, the larger 

input power will make the L(CD)-CD more distorted, but the 

downward peak of L(CD) can still be searched, which 

guarantees the accuracy of estimation result and confirms our 

CD estimation method’s robustness to fiber nonlinearities. 

 

 
Fig. 9 The worst case and mean of the relative CD estimation error for (a) 

different OSNR and (b) different launch power per channel 

 

 
Fig. 10. (a) ( )  L CD vs CD plots for different input power per channel of QPSK 

signal.(b) ( )  L CD vs CD plots for different input power per channel of 16QAM 

signal 

IV. EXPERIMENTAL VERIFICATIONS AND DISCUSSION 

We further conducted transmission experiments to 

investigate the practical performance of the proposed CD 

estimation method. As shown in Fig. 11, a distributed feedback 

laser (DFB) at 1551.72 nm (1553.6 nm for 16QAM) is 

modulated by an IQ modulator driven by 2-level (4-level for 
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16QAM) electrical signals in order to generate the 28Gbaud 

QPSK (14Gbaud 16QAM) signal. The modulated signal is then 

polarization multiplexed through polarization beam splitter 

(PBS), optical delay lines, polarization beam combiner (PBC). 

Then the signal is amplified by EDFA and launched into a fiber 

re-circulating loop. The launching power for QPSK and 

16QAM signals is 0 and -0.5dBm, respectively. For QPSK 

signal, the loop consists of 3 spans of 100 km SMF with an 

average 17.16 ps/km/nm dispersion parameter. And for 

16QAM signal, 4 spans of 75 km SMF with an average 17 

ps/km/nm dispersion parameter are contained in each loop. 

After transmission, the received signal is filtered by an optical 

band-pass filter (OBPF) placed before an integrated coherent 

receiver. The detected QPSK signal is sampled by a 50G 

samples/s (80G samples/s for 16QAM) real-time oscilloscope 

and then processed offline. 

In the dispersion estimation stage, the 2048 samples of the 

received signals were used and the step size of CD scanning 

was chosen to be 200 ps/nm. The performance of proposed CD 

estimation method is evaluated for various transmission 

distances. Fig. 11(a) and Fig. 11(b) show the ( )L CD CD− plots 

for DP-QPSK signal and DP-16QAM signal using the proposed 

method for different link lengths, respectively. 
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Fig. 11. Experimental setup for 112 Gbps DP-QPSK transmission and 112 Gbps DP-16QAM transmission 

 

 
Fig. 12. (a) ( )L CD CD−  for QPSK signals with different transmission lengths. 

(b) ( )L CD CD−  for 16QAM signals with different transmission lengths. 

 

 
Fig. 13. (a) CD estimation errors of 28 Gbaud DP-QPSK for different fiber 

length (b) CD estimation errors of 14Gbaud DP-16QAM for different fiber 

length  
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It can be seen from the Fig.12 that the peaks 

of ( )L CD CD− plots are evident, indicating a good estimation 

performance of our proposed CD estimation method. The exact 

CD is calculated as well. For QPSK and 16QAM signals, we 

conducted 10 and 5 independent experiments respectively and 

the CD estimation errors were calculated for different fiber 

length. The results are shown in Fig. 13. 

According to Fig. 13, for either QPSK or 16QAM signals, 

the estimated CD accumulations fluctuate along with the real 

value at different fiber lengths. During experiments, we also get 

different estimation errors in the same fiber length. The worst 

CD estimation errors are 128 ps/nm for QPSK and 320 ps/nm 

for 16QAM. Despite the performance of CD estimation for 

16QAM is slightly worse than that for QPSK, the estimation 

errors for both cases are within the estimation tolerance and 

will not affect the bit-error ratio (BER) performance. Thus, our 

proposed CD estimation method can operate well with different 

modulation format over various transmission distances.  

V. CONCLUSION 

A blind CD estimation method based on the fractional 

Fourier Transform (FrFT) is proposed and evaluated 

numerically and experimentally. Taking advantage of the 

rotation of time-frequency domain brought by FrFT, the signals 

with CD in optical fiber communication has different degree of 

signal’s localization in different fractional domains. The CD 

value can be estimated by finding the best fractional order 

where the degree of signal’s localization is maximum or 

minimum. Through simulations, the proposed CD estimation 

method is proved to be robust against ASE noise and NLI noise. 

Reliable CD estimation is demonstrated for 28 GBaud 

DP-QPSK and 32 GBaud DP-16QAM signals with a standard 

deviation of 98.9 ps/nm and 103.6 ps/nm respectively. The 

maximum estimation errors are 352 ps/nm and 384 ps/nm, 

respectively. Furthermore, 28 GBaud DP-QPSK and 14 GBaud 

DP-16QAM signals are generated in experiments for 

transmission over various fiber distances and the worst CD 

estimation errors are 128 ps/nm and 320 ps/nm for QPSK and 

16QAM, respectively. Compared with other reported CD 

estimation methods, only 2048 samples are needed for this 

method to achieve a reliable and fast CD estimation. Therefore, 

with its reliable estimation results and strong robustness, this 

CD estimation scheme is promising for future flexible optical 

networks. 
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