
Abstract—This paper proposes a novel probabilistic transient 
stability constrained optimal power flow (P-TSCOPF) model to 
simultaneously consider uncertainties and transient stability for 
power system preventive control. While detailed wind generator 
model with rotor flux magnitude and angle control strategy is 
used to describe the dynamic behaviors of wind generators, 
uncertain factors with correlations, such as probabilistic load 
injections, stochastic fault clearing time and multiple correlated 
wind generations, are also included to form a representative 
P-TSCOPF model. A new GSO-PE approach, consisting of an
improved group search optimization (GSO) and 2m+1 point
estimated (PE) method with Cholesky decomposition, is then
designed to effectively solve this challenging P-TSCOPF problem.
The proposed P-TSCOPF model and GSO-PE solution approach
have been thoroughly tested on a modified New England 39-bus
system with correlated uncertain wind generations. Comparative
results with Monte Carlo (MC) simulations have confirmed the
validity of the P-TSCOPF model and demonstrated the
effectiveness of GSO-PE method.

Index Terms—Probabilistic transient stability, Optimal power 
flow, Uncertainties, Correlated wind power, Point estimated 
method, Improved group search optimization. 

I. INTRODUCTION
orldwide increasing concerns on the depletion of fossil 
energy resources and their environmental effects have 

driven the rapid development of green and sustainable 
renewable generations in power systems, while their inherent 
intermittences lead to high-level uncertainties and bring new 
challenges for power systems as well. The effects of these 
uncertainties on system operation and control need to be 
thoroughly analyzed and investigated by probabilistic studies 
for both static and dynamic security.  

Existing papers mainly focus on the probabilistic static 
security analysis of power systems by probabilistic power flow 
[1-3] or probabilistic optimal power flow [4-7]. Given a 
probabilistic model of uncertain load demands or renewable 
power generations, the mean and standard deviations of 
concerned outputs such as bus voltages and line flows are 
quantified and the static security risk for power system 
operation is then analyzed. Papers dealing with the effects of 
renewables’ uncertainties on the probabilistic dynamic security 
of power systems are less common, with only the traditional 
uncertainties such as uncertain loads, probabilistic fault 
occurrence, location, type and clearing time studied mainly by 
the probabilistic transient stability analysis (PTSA). The basic 
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theory of PTSA was preliminarily reported in [8, 9], and then 
further investigated in [10]. While previous PTSA was based 
on the regression of critical clearing time in terms of system 
load distribution [11-13], recent PTSA is conducted using 
Monte Carlo (MC) method and conditional probability theory 
[14-16]. Most notably, a probabilistic-based approach was 
presented in [17] to evaluate the probabilistic transient stability 
of a wind farm with two-mass shaft wind turbines using EMTP. 

Though MC method is straightforward, accurate and 
well-tested, it is very time consuming for PTSA as a large 
number of random time domain simulations are needed to 
determine the probabilistic transient stability index. As an 
alternative, the analytical method, which handles uncertainties 
based on linearization and obtains the probability of random 
output variables using convolution or comulant strategies, 
could be more computationally efficient though some 
mathematical assumptions are required to simplify the 
relationship between the concerned outputs and uncertain 
inputs. Since the linearization between the output state 
variables and inputs could be conveniently obtained from the 
Jacobian matrix in power flow calculation, this method was 
readily applied in probabilistic power flow for probabilistic 
static security analysis [18, 19]. Nevertheless, this approach 
would still be arduous for PTSA as linearizing the transient 
stability index in terms of the uncertain inputs, say by trajectory 
sensitivities, is by itself a challenge for practical power systems 
with a large number of complicated dynamic components.  

So far, the current state-of-the-art PTSA is conducted mostly 
for power systems with uncertain parameters. The effects of 
uncertain renewables and how to further effectively and 
economically improve the system probabilistic transient 
security (risk) level are still not fully addressed yet. A new 
optimal model aiming to enhance the system probabilistic 
transient security at an economic cost would be timely needed 
for a new generation of power system preventive control. As a 
consequence, a new probabilistic transient stability constrained 
optimal power flow (P-TSCOPF) model which also considers 
stochastic load injections, fault clearing time, and correlated 
wind generations with a doubly fed induction generator (DFIG) 
dynamic models is proposed in this paper. 

However, considering that PTSA alone is already complex 
and time-consuming, the new P-TSCOPF model which embeds 
PTSA in an optimization for probabilistic transient stability 
enhancement would be even more computational demanding 
and time-consuming. How this optimal model could be 
efficiently solved is crucial to the practical utilization of 
P-TSCOPF model in power industries. As a remedy, a new
efficient GSO-PE solution approach is developed to effectively
solve this P-TSCOPF problem based on an improved group
search optimization (GSO) and 2m+1 PE method with
Cholesky decomposition [20, 21]. In this paper, the proposed
P-TSCOPF model and GSO-PE approach are thoroughly tested
and evaluated using a modified New England system.
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In deregulated power systems, independent grid operators 
would employ security constrained economic dispatch (SCED) 
and security constrained unit commitment (SCUC) to clear real 
time and day-ahead markets. Generally, SCED and SCUC 
could effectively minimize the system operating cost without 
violating any static generator output limits, AC network 
transmission line limits, nodal voltage limits, etc. [22-24]. 
Though static security requirements could be ensured by SCED 
and SCUC, many power systems around the world are stressed 
and prone to transient instability [25-28]. Compared with 
SCED and SCUC, the proposed P-TSCOPF model is capable 
of reconciling economics, transient stability and uncertainties 
of renewables simultaneously and could potentially be used to 
replace the conventional SCED for real time market clearing 
and further developed as an advanced day-ahead generation 
commitment tool with consideration of uncertainties and 
dynamic stability. 

The main contributions of this paper include: 1) an original 
P-TSCOPF model simultaneously considering uncertain 
factors, transient stability and economic is presented for power 
system preventive control; 2) apart from the conventional 
uncertain factors such as load demand and fault clearing time, 
the correlated uncertain wind generations with its dynamic 
generator model are included in P-TSCOPF; 3) the newly 
proposed GSO-PE approach could efficiently solve the 
P-TSCOPF model and effectively enhance the system 
probabilistic transient stability level when benchmarked on the 
New England system with multiple wind farms; 4) the 
proposed P-TSCOPF model and GSO-PE method are general 
and flexible to support any other types of uncertain renewables 
and dynamic models. 

The rest of this paper is organized as follows. A general 
P-TSCOPF model is first proposed in Section II, and then a 
specific P-TSCOPF model with uncertain load injections, wind 
generation and fault clearing time is presented in Section III. In 
Section IV, the GSO-PE algorithm is formed to solve the 
P-TSCOPF model, and Section V validates this method on a 
modified New England system. Conclusions and future work 
are given in the last Section. 

II. GENERAL FORM OF PROPOSED P-TSCOPF MODEL 
The proposed P-TSCOPF model is mathematically 

formulated as 
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where E{} stands for the expectation calculation; ε are the 
uncertain variables; u are the control variables with lower and 
upper limits, such as the generator active power and terminal 
voltage; x(t) and y(t) are the state and algebraic variables 
during the transient period (t0, tend]  with initial values xt0 and yt0; 
at starting time t0 ; η is the transient stability margin. Since the 
objective function would depend on the uncertain variables, its 

expectation is adopted as the P-TSCOPF objective in (1). (2) 
stands for steady-state power flow equation. (3) requires the 
chance constraints for steady-state variables, such as nodal 
voltage magnitudes and transmission line thermal limits, above 
a fixed risk security level βj. (4) describes the dynamics of the 
power system during the transient period, including complex 
generator models with AVR and renewable generation 
dynamic models. (5) is the probabilistic transient stability 
constraint with an acceptable security level βr. 
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Fig. 1 Constraint violations for different control variables 
Fig. 1 simply shows the idea of P-TSCOPF model. The 

probabilistic constraint h(x,y,ε,u) or η(x,y,ε,u) has two 
violation risk levels for different control variables u1 and u2 
with diverse objective expectation E{f(x,y,ε,u)}. For example, 
the constraint violation probability for u1 is larger than u2 in 
Fig.1 while their expected objectives are different. As the 
compromise for smaller probability of constraints violation, the 
proposed P-TSCOPF would be solved for the best control u 
with minimal expected objective value above a satisfactory 
security level.  

III. P-TSCOPF PROBLEM: EXPLICIT FORMULATION 
While the general form of P-TSCOPF model is presented in 

Section II, here a representative P-TSCOPF model used in the 
case study is explicitly given with brief descriptions on how 
various uncertain variables could be considered in P-TSCOPF. 
A. Uncertainties considered in the proposed model 

For simplicity, only the following three uncertain variables: 
load injections, wind generations, and fault clearing time, are 
considered for a given deterministic contingency in this paper, 
while other common contingency related uncertain factors, 
such as probabilistic fault occurrence, fault type and location, 
could be easily tackled using the conditional probability 
approach based on the discrete probabilistic models in [15, 16]. 
1) Probabilistic model of load injections 

The continuous varying load injections are important 
sources of uncertainties in practical power systems. As 
commonly used in probabilistic power flow analysis [29-31] 
and PTSA [11, 12, 32-34], the normal distribution (6) is 
adopted here to describe the uncertainty of active load injection 
PDi 
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where σp and μp are the mean and standard deviation of 
probabilistic load active power. Often power consumptions at 
different buses have related patterns due to meteorological and 
social factors; for instance, power demands for some buses are 
higher in holiday, evening or in cold days. It has been reported 
that the dependences of load demands at different buses have a 
considerable effects on the probabilistic results and shall be 



 

considered in probabilistic assessment [29-31]. As in [29-31], 
the dependences of active load injections at different locations 
are represented by the correlation coefficients Cpd in this paper. 
The reactive load injection QDi is modeled as a variable with a 
constant ratio to its corresponding active load. 
2) Probabilistic model of wind generations 

The popular Weibull distribution with shape parameter λ 
and scale parameter k is used for modeling the probabilistic 
wind speed νw [35] as follows 
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While wind speeds at sites far apart from each other could 
be assumed independent, many wind sites are geographically 
close. For generality, correlations of wind speeds at different 
locations should be considered for power system probabilistic 
analysis [1, 36-38]. The correlation coefficient with a range [-1, 
1], denoted as Cv in this paper, is an effective parameter to 
quantify how well wind speeds at two sites follow each other. 
In specific, if the Cv is positive, wind speeds at two sites change 
in the same direction, vs in opposite direction for negative Cv. 
If Cv is zero, the wind speeds at two sites are uncorrelated, or 
they do not follow each other.  

With probabilistic wind speed, a wind generator output is 
determined from the speed-power curve of wind turbine [35]. 
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where Prated is the rated power; νci, νrd and νct are the cut-in, rated 
and cut-out wind speed, respectively. The distribution of wind 
generations can be calculated from (8) using the wind speed 
samples based on its probabilistic model (7). 
3) Probabilistic model of fault clearing time 

The fault clearing time tcl, associated with the protection 
device to detect and remove fault from power systems, is an 
important uncertain factor for PTSA. According to the 
investigations in [9, 14, 16, 17], a widely used normal 
distribution probabilistic model is adopted here for the fault 
clearing time.  
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where μt and σt are mean and standard deviations of tcl. 
B. Explicit formulation of Proposed P-TSCOPF 

With the uncertainties represented as above, the P-TSCOPF 
model can be explicitly formulated as follows. 
1) Objective function 

Usually, slack bus generator is used to keep the power 
balance in the system. However, the uncertainties of random 
input variables would cause the slack bus generation become 
probabilistic. Therefore, the system state variables and 
concerned objectives will be probabilistic too. In this paper, the 
expected total generation fuel cost is adopted as the objective 
of the P-TSCOPF model 
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where PGi is active power of the ith generator and nG is total 
number of traditional generators. It shall be noted that there is 
no limitation on the formulation of the P-TSCOPF objective, 

and many other targets, such as expected minimum power loss, 
expected participants’ bids in power market, could be similarly 
designed as the objective of P-TSCOPF or even extended to 
form a multiple-objective P-TSCOPF model. 

The static equality constraint (2) is explicitly described by 
the power flow equations as  
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where i=1,2,…,nb; nb is the total number of nodes; QGi and QDi  are the generator and load reactive power; Vi and Vj are the 
voltage magnitude of node i and j; θij is the angle difference 
between node i and j. These active and reactive power balance 
constraints are enforced in initialization and subsequent time 
domain simulations for transient stability analysis. 
2) Static probabilistic inequality constraints  

The static inequality constraint (3) explicitly includes the 
probabilistic constraints for generator reactive power, node 
voltage and transmission line thermal limits as (12)-(14) 

min max{ }   ( 1,2,......, )Gi Gi Gi Q GP Q Q Q i nβ≤ ≤ > =        (12) 

min max{ }  ( 1,2,......, )i i i V bP V V V i nβ≤ ≤ > =           (13) 

max{ }   ( 1,2,..... )
i il l S lP S S i nβ≤ > =               (14) 

where nl is the number of branches and Sli is the apparent power 
flow in the ith branch; QGimin, QGimax , VGimin and VGimax are the 
lower and upper limits of generator reactive power and bus 
voltage, respectively; Slimax is upper limit of the ith transmission 
line power. These probabilistic constraints ensure that bus 
voltages, generator reactive powers and transmission line 
power flows are all bounded in the required ranges with an 
acceptable risk security level.  
3) Dynamic equality constraint  

Equality constrains (4) are a set of differential algebraic 
equations (DAEs) describing the behaviors of power system 
dynamic components including traditional and wind generator 
systems. In this paper, a fourth-order dynamic model with 
IEEE Type 1 exciter [39] is adopted for representing the 
traditional generators, while the dynamic wind generator 
system consists of a two lumped-mass shaft wind turbine (WT) 
model as described in (15)-(16) and a doubly fed induction 
generator (DFIG) model shown in Fig. 2. 
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Fig. 2 DFIG structure 



 

where ωt, ωr and ωs are the turbine speed, rotor speed and 
system synchronous speed, respectively; θtw (rad) is the shaft 
twist angle; Ktw (p.u./rad) and Dtw are the shaft stiffness and 
mechanical damping coefficients; Ht (s) is wind turbine inertia 
constant; Pm is the mechanical power extracted from the wind. 

By ignoring the dynamics of stator currents, the widely 
used third order DFIG for stability analysis is derived as [40] 
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ds s ds qs dv r i X i e′= − + +                            (20) 
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where ed , eq , vds, vqs , vdr and vqr are, respectively,  d and q 
components of the internal voltage, stator voltage and rotor 
voltage; ids , iqs , idr and iqr are d and q components of stator and 
rotor current; Pw and Qw are the output active and reactive 
power of DFIG; rs is stator resistance; X and X' are the 
open-circuit and short-circuit reactance; T0 is the transient 
open-circuit time constant; and Hg is the generator inertia 
constant. The control system of DFIG adopts a FMAC 
structure with two control loops as shown in Fig. 3 [40], one for 
the terminal voltage and the other for the power output of DFIG 
with the advantages of (1) providing low interaction between 
the power and voltage control loop, and (2) enhancing voltage 
recovery after faults. In Fig. 3, the power output reference is 
derived from the rotor speed wr via a maximum power 
extraction characteristic lookup table. 
4) Probabilistic transient stability constraint  

The SIngle Machine Equivalent (SIME) method is an 
effective hybrid temporal-direct algorithm for multi-machine 
systems transient stability analysis. It uses time domain 
simulation results to (1) observe systems stability in a SIME 
frame by examining the equivalent critical machine (CM) and 
non-critical machine (NM), and then (2) determine the stability 
margin according to equal-area criterion [41-43]. Since it is a 
time simulation based method, SIME is capable to conduct 
transient stability analysis for power systems with any complex 
models, such as generators with AVR-Governor-PSS or DFIG 
models. Since SIME has been widely used for transient 
stability assessment in practical systems [41-43] and TSCOPF 
problem [44, 45], it is adopted in this paper for conducting the 
transient stability analysis. Following the SIME theory with 
machines separated into CMs and NMs, the original system can 
be mapped into 
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where / ( )E C N C NM M M M M= +  stands for the equivalent 
inertial coefficient in one-machine infinite bus (OMIB), and 
subscripts ‘C’ and ‘N’ stand for CM and NM; E C Nδ δ δ= −  and 

E C Nω ω ω= −  are the OMIB angle and speed. The mechanical 
power and electric power are 1 1( )mE E C mC N mNP M M P M P− −= −  and 

1 1( )eE E C eC N eNP M M P M P− −= − , respectively. 
For an unstable case, the stability margin is calculated as 

the residual dynamic energy at the time to instability tu [44, 45], 
when its electrical power curve meets the mechanical power 
curve under the instability conditions (26). 
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For a stable case, the system stops its excursion at rδ  and 
returns for the reverse swing. The stability margin is 
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where δu is the angle at the moment when the generator active 
power crosses mechanical for the less unstable case [43-45], 
and δr is the return angle at returning moment tr when the 
system satisfies 
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                                    (28) 

With stability margin η calculated by (25) and (27), the 
probabilistic stability constraint (5) is expressed as 

{ 0} rP η β> ≥                              (29) 
In other words, the proposed explicit P-TSCOPF model 

would consist of objective (10), power balance equality 
constraint (11), DAEs for the wind generator model (15)-(23) 
and four-order traditional generators with IEEE Type 1 exciters, 
probabilistic static inequality constraints (12)-(14), and 
probabilistic transient stability constraints (29). The challenge 
for solving this model is how the probabilistic constraints 
(12)-(14) and (29) could be effectively evaluated. 

IV. METHODOLOGY 
The new GSO-PE method proposed here uses a two-stage 

approach for solving the P-TSCOPF model. In the first stage, 
the PE method is used to transform the PTSA into a set of 
deterministic transient stability analysis process and afterwards 
calculate the probability of concerned outputs (corresponding 
to step (6) to (8) in Fig.4, Section IV). An improved GSO 
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Fig. 3 Block diagram of FMAC controller



 

algorithm is then used in the second stage (corresponding to 
step (5) and (9)-(11) in Fig. 4) to search for the optimal control 
variables that would minimize the expected total fuel cost as 
well as satisfy all the probabilistic security constraints. 
A. Point estimated method with Cholesky decomposition 

The PE method is a promising and efficient tool for 
handling probabilistic problems, since it is capable of 
calculating the raw moments of output random variables from 
the deterministic solutions of only a few samples compared to 
numerous samples required in MC. Among the PE variants 
such as 2m and 4m+1 schemes, 2m+1 PE has been found to 
provide the best performance with satisfactory accuracy of 
results at the cost of relatively low computational burden [20, 
21]. This paper will therefore introduce the 2m+1 PE method 
with Cholesky decomposition strategy to deal with the 
correlated uncertainties in the P-TSCOPF model. 

The core of 2m+1 PE method is to generate three typical 
samples (named as concentrations of PE) for each uncertain 
variable in the condition that these three samples should retain 
the statistical information of the original uncertain variable [20, 
21]. Based on these samples and the function relating input and 
output variables, the uncertainty properties of output variables 
can be estimated. 

In the proposed model, the uncertain input variables include 
stochastic load injections, uncertain wind generations and the 
normal distributed fault clearing time, which can be denoted in 
an uncertain vector (z1 , z2 ,…, zl ,… ,zm) with m dimensions. 
Based on probability theory [20, 21], PE method would 
generate 2m+1 concentrations for this uncertain vector as 
follows.  
1) Generate three concentrations for uncertain element zl: the 

uncertain element zl is replaced with three locations zl,k 
(k=1,2,3) while the remaining m-1 uncertain elements are 
fixed at their mean value μz1, μz2,…, μz(l-1), μz(l+1), …, μzm, 
thus three vectors would be generated in terms of (μz1 , 
μz2,…, μz(l-1), zl,k , μz(l+1),…, μzm) (k=1,2,3) as three 
concentrations.  

2) Repeat procedure (1) for each element of the uncertain 
vector (z1 , z2 ,…, zl ,… ,zm), and with m random elements, in 
total 3m concentrations  (μz1 , μz2,…, μz(l-1), zl,k , μz(l+1),…, μzm) 
(k=1,2,3, l=1,2,…,m) would be produced.  
The location zl,k is calculated as 

, ,     1, 2,3l k zl l k zlz kμ ε σ= + ⋅ =                      (30) 
where εl,k is the standard location, μzl and σzl are the mean and 
standard deviation of the variable zl. The standard location εl,k 
and weight ωl,k are obtained by Hong’s method [20]  
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where λl,3  and λl,4  are the skewness and kurtosis of variable zl . 
In (31), the setting εl,3=0 yields zl,3 =μzl in (30), thus m of the 
concentrations are the same as (μz1 , μz2 ,…, μzl ,… ,μzm), and the 
total number of concentrations would reduce from 3m to 2m+1. 

In other words, with the help of (30) to (32) the original 
uncertain vector (z1 , z2 ,…, zl ,… ,zm) is substituted by a total 
number of 2m+1 deterministic vectors as concentrations. 
Afterwards, conventional power flow and transient stability 
analysis (TSA) are conducted at each concentration to calculate 
the concerned outputs, for example the slack bus generation, 
the reactive power of each generator, node voltages, 
transmission line power flows and the transient stability margin 
η. Based on these outputs with their weighting factors, the 
statistical information of uncertain outputs, such as the raw 
moment, central moment and the cumulant (hereinafter 
indicated by (34), (36) and (37)), could be calculated for 
producing the cumulative distribution functions (CDFs) of 
uncertain outputs using the Gram-Charlier expansion theory 
[18] as follows. 

The relationship between the concerned outputs S and the 
concentration (μz1 , μz2,…, μz(l-1), zl,k , μz(l+1),…, μzm) is denoted 
by function F as 

, z1 z2 z(l 1) l,k z(l 1) zm( ,  , ,  ,  z ,  , ,  )l kS F μ μ μ μ μ− += … …     (33) 
Then, by using Sl,k with its weights ωl,k , the jth raw moment mj 
of outputs S is calculated as [18] 
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With the various order of raw moments of outputs S, the 
outputs’ CDFs F(x) can be estimated by (35) using the 
Gram-Charlier expansion [18].  
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where ( )x x μ σ= −  is the standardized variable, μ and σ are 
the mean value and the standard deviation of S; N(*) is the 
standard normal distribution function; Kj are the jth cumulant of 
S derived from the central moment Mj as 

3 3K M= , 2
4 4 23( )K M M= − , 5 5 3 210K M M M= −     (36) 

where jth order central moment Mj  is calculated from mj  in (34) 
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Once the CDFs for the random outputs, including the 
generation of slack bus generator, reactive powers of all 
generators, node voltages, transmission line power flows, 
stability margin, etc., are obtained by (35), the probabilistic 
constraints in (12)-(14), (29) and the system total fuel cost 
expectation (10) could be easily evaluated from the CDFs. 

As mentioned in Section III.A, random variables are often 
correlated with each other and these correlations should be 
taken into account in the probabilistic analysis. The Cholesky 
decomposition in [46] is adopted here to handle the correlated 
uncertainties in P-TSCOPF as follows: the correlated input 
variables are first converted to uncorrelated variables by 
Cholesky decomposition; then the concentrations A for these 
uncorrelated variables are worked out and inversed to find the 
concentrations B for the original correlated input variables. The 
details of Cholesky decomposition could be found in [46]. 



 

Afterwards, the deterministic transient stability analysis is 
conducted on concentrations B to obtain the CDFs of the 
random outputs by the 2m+1 PE method as normal.  
B. Group search optimization (GSO) with PE approach 

GSO is an effective global optimization method based on 
the producer-scrounger model, and it is initialized with random 
individuals and approaches the optimal solution by updating 
the positions of its producer, scroungers and rangers [47]. 
Recently, an improved GSO has been proposed in [48] and 
successfully applied to solve discontinuous non-convex 
TSCOPF problems with complex system model, and this 
improved GSO method is also adopted as the optimization 
engine for solving the proposed P-TSCOPF model here.  

As the power flow equality constraints (11) and DAEs for 
traditional and wind generators (15)-(23) are implicitly handled 
by the deterministic power flow and transient stability 
simulation embedded within the 2m+1 PE method, only the 
remaining constraints consisting of the probabilistic inequality 
constraints (12)-(14) and (29) need to be further handled. Here 
the penalty function method [49] is adopted to deal with these 
probabilistic constraints and results in an unconstrained 
optimization problem like (38) such that it could be readily 
optimized using the GSO method. 
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where pj and pr are the penalty factors to produce large 
discrimination if any probabilistic constraints in (12)-(14) or 
(29) are violated. 

The main procedures of the proposed GSO-PE method for 
solving the P-TSCOPF problem are outlined below and 
depicted in Fig.4.  
a) Input system data, generate concentrations for uncertainties 

in P-TSCOPF model using 2m+1 PE with Cholesky 
decomposition strategy, and specify GSO parameters and 
randomly initialize the GSO particles for control variables 
within the lower and upper limits; (Corresponding to Step 
(1) to (4) in Fig.4) 

b) The CDFs of steady-state variables in (12)-(14), the 
stability margin in (29) and fuel cost in (10) are calculated 
based on the results of 2m+1 deterministic TSA by (35), 
then these probabilistic constraints and fuel cost expectation 
can be evaluated from the corresponding CDFs; 
(Corresponding to Step (5) to (8) in Fig.4) 

c) Evaluate the fitness of each particle by (38); 
(Corresponding to Step (9)) 

d) Find the best fitness among all particles, and determine 
whether the maximum number of iterations is reached, if 
yes, output the optimal solutions of P-TSCOPF model; 
otherwise, increase iteration number and update positions 
of GSO particles for control variables, then go to phase b); 
(Corresponding to Step (10) and (11) in Fig.4) 
As shown in the flowchart in Fig.4, the proposed GSO-PE 

is a two-stage algorithm consisting of calculating the 
probabilistic outputs by 2m+1 PE strategy from step (5) to (8) 
and updating control variable by GSO in the outer loop. Since 
SIME conducted transient stability analysis based on time 
domain simulation, it has good adaptability to complex 
dynamic models for transient stability study. The core of 

GSO-PE algorithm is to transform the PTSA into a set of 
deterministic transient stability analysis conducted by SIME. 
The propose GSO-PE is therefore very flexible and expandable 
to solve a P-TSCOPF model with any types of renewables and 
dynamic models. 

Set iteration number k=1 and initialize positions of GSO 
particles in the upper and lower limits of  control variables 

 Conduct a deterministic  transient stability analysis (TSA) 
for each of the 2m+1 concentrations; calculate the concerned 

outputs including the system cost, node voltages, 
transmission line power flow, transient stability margin, etc.  

Yes

Input system  data and probabilistic 
model of uncertain variables

Generate 2m+1 concentrations for uncertain variables 
using PE method with Cholesky decomposition

Collect outputs of these  2m+1 TSA and calculate  various 
order of raw moments of outputs by (34)

Output the positions of 
GSO particles with the 

best fitness as the optimal 
solution of P-TSCOPF

 Specify GSO parameters such as the maximum 
optimal iteration number         and population sizes totalk

Estimate the CDFs of outputs by Gram-Charlier expansion 
(35) and evaluate the probabilistic constraints (12)-(14),(29)

Evaluate the fitness of each particle by (38), and find the 
best fitness among all particles

         k< totalk Nok=k+1

 Update positions of 
GSO producer, 

scroungers and rangers 
for  control variables

In  kth iteration, fixed the control variables at 
the  positions of GSO particles   

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10) (11)

 
Fig. 4 Flowchart of GSO-PE for solving P-TSCOPF model 

V. CASE STUDY  
For evaluating the proposed P-TSCOPF model and 

GSO-PE approach, a modified New England 39-bus system 
with four correlated wind farms (WFs) as shown in Fig. 5 is 
prepared. The fuel cost coefficients of generators at bus 30 to 
39 are cited from [28], and their dynamic models for transient 
stability analysis are 4th order model equipped with IEEE Type 
1 exciter as listed in Table 1. For WFs, an aggregated model is 
sufficient for investigating its impact on the system transient 
stability [50]. Specifically, a total number of 100 DFIGs with 
rated power 2 MW each cited from [40] are aggregated to form 
a WF with wind turbine parameters: Ktw=0.6p.u./rad, Dtw=0.45 
and Ht=3.8s.  

The contingency considered in transient stability analysis is 
a three-phase earth fault occurred at one end of line 15-16 near 
bus 15 at t=0ms, and subsequently cleared by tripping line 
15-16 after a time period tcl. The transient stability analysis is 
conducted for 10s with integration step of 0.01s by running an 
in-house program under MATLAB R2010b. Generator 
reactive power limits and transmission line thermal limits are 
cited from Matpower [51]; the node voltages of PQ bus are 



 

required to be in the range [0.97, 1.06]. The threshold of all 
probabilistic constraints (i.e. βQ, βV, βS, and βr) are assumed as 
0.95, which means when all the left parts of the probabilistic 
constraints (12)-(14) and (29) are not smaller than 0.95, the 
corresponding operation point is considered as acceptable in 
the view of security risk. 

 
Fig. 5 Modified New England System with four WFs 

Table 1 IEEE Type 1 Exciter Parameters for New England system 
KA TA (s) KE TE (s) KF TF (s) Aex Bex Vrmin Vrmax 
20 0.055 0.36 0.05 0.125 1.8 0.0056 1.075 -10 10 

The following are the uncertain parameter settings for the 
random input variables. 
1) The base load given in [51] is assumed as the mean value of 

the normal distributed load injection with the standard 
deviation fixed as 10% of the mean value. There are totally 
21 correlated loads with correlations assumed as 0.15. 

2) The shape and scale parameters of wind speed are set as λ=2 
and k=12 with correlations of 0.3, while the cut-in, cut-out 
and rated wind speed for WTs are νci=3m/s, νct=25m/s and 
νrd=12 m/s [52], respectively. 

3) The parameters for the normal distribution fault clearing 
time are set as μt =350ms, σt =0.1μt. 

A. Benchmarking and comparison of results 
For evaluating the accuracy and efficiency of the proposed 

GSO-PE method, the widely used MC method is deployed for 
benchmarking. Both the MC and GSO-PE methods run on a PC 
with a 3.0GHz Intel Core2Quad CPU and 4GB RAM. The 
required number of samples of MC is estimated as 5,000 based 
on the convergence theory [53]. The performance of GSO-PE 
is compared with MC using the mean and standard deviation 
(SD) error x

με  and x
σε  as  

100(| |) / [%]x
MC PE MCμε μ μ μ= −                (39) 

100(| |) / [%]x
MC PE MCσε σ σ σ= −                (40) 

where μMC, σMC, μPE and σPE are the mean value and standard 
deviation of output random variables calculated by MC and 
GSO-PE method, respectively. The Average Root Mean 
Square (ARMS) [18] error of output random variables resulting 
from the GSO-PE method is measured by an accuracy index as 
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N
MC PEi

F F
N

=
−

=                   (41) 

where FMCi and FPEi are the values on the CDF curve solved by 
MC and GSO-PE method, respectively. N is the number of 
selected points chosen from its CDF curve. Here, N is set as 10 
for the range of CDF curve with confident level [2%, 98%]. 

B.  Investigations on the base case 
The proposed P-TSCOPF model is first checked on the base 

case with original generations and slack bus voltage cited from 
[54] and shown in Table 2. 

Table 2 Base case and P-TSCOPF solutions (on 100MW base) 
Control Variables Base case P-TSCOPF solution 

G30(p.u.) 2.5 2.81 
G32(p.u.) 6.5 4.76 
G33(p.u.) 6.32 6.52 
G34(p.u.) 5.08 5.36 
G35(p.u.) 6.5 4.11 
G36(p.u.) 5.6 2.41 
G37(p.u.) 5.4 4.85 
G38(p.u.) 8.3 8.69 
G39(p.u.) 10 11.99 
V31(p.u.) 0.982 1.095 

All Constraints Satisfied No Yes 
Cost Expectation ($/h) 57,486.97 59,008.96 

CPU Time (s) 24 2,647 

For illustrating how the system dynamics in the base case is 
analyzed using SIME, one typical concentration (μz1 , μz2 ,…, 
μzl ,… ,μzm) is generated for the uncertain factors by PE using 
(30) with εl,3=0. This concentration is a vector consisting of the 
mean values of all uncertain factors. With this concentration 
and the base case, conventional power flow and time domain 
simulations are conducted to calculate the transient stability 
margin. A set of curves including 10 generator angles, OMIB 
mechanical and electric power, and OMIB kinetic energy, is 
provided in Fig.6 where Fig.6a shows the England system is 
unstable for the sampled point, in which Generator 1 to 
Generator 9 are CMs and Generator 10 is NMs, Fig.6b 
indicates the unstable condition (26) satisfied at 0.752s as the 
instability time, and Fig.6c demonstrates the kinetic energy at 
0.752s is with a minimal value as 5.514 pu-rad. According to 
(25), the transient stability margin is -5.514 pu-rad as the 
negative of the minimal kinetic energy. 
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(a)  Angle curves of 10 generators 
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(b) OMIB mechanical power and electric power 
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(c)  OMIB kinetic energy curve of whole power system 

Fig.6 Stability analysis for a concentration generated by PE 
For other concentrations generated by PE or MC method, 

the deterministic power flow and time domain simulation are 
repeated similarly to determine the outputs concerned, and then 
all these results with their weighting factors are collected to 
estimate the CDFs and evaluate the probabilistic constraints.  

For the base case, the CDF of generator output at slack bus 
analyzed by the PE method is shown in Fig.7, and the 
expectation of England system total fuel cost is relatively low 
as 57,486.97 $/h. However, at this operating point, not all the 
probabilistic constraints are satisfied with the acceptable risk 
security level. For example, based on the CDF profile in Fig. 8, 
the probability of voltage for bus 4 in range [0.97, 1.06] is only 
0.19, which is calculated by subtracting the probability at point 
A from 1. This indicates the probabilistic voltage constraint 
(13) cannot be fulfilled with the required 0.95 security level. 
Similarly, the probabilistic constraint for transmission line 6-11 
is also violated as shown in Fig. 9. With its thermal limit being 
6 p.u., the probability at point B is 0.498 which indicates the 
probability of power flow lower than 6 p.u. is 0.498 for line 
6-11. In other words, the probability of over-loading line 6-11 
is 0.502, which considerably violates the limit that probability 
of line over-loading shall not be larger than 1-0.95=0.05. 
Moreover, the probabilistic transient stability margin for stable 
case (stability margin η>0, on the right of Point C) is 0.522 as 
shown in Fig. 10, which indicates that the system would lose 
transient stability with a probability of 0.478; therefore, the 
system cannot maintain the transient stability with a 
satisfactory security level.  

The MC method with 5,000 samples is also conducted for 
benchmarking the performance of the 2m+1 PE method. The 
total computation time taken by the MC method is 2,236s, 
which is almost 2 orders of magnitude slower than the 
proposed 2m+1 PE method whose computation time is only 24s. 
Compared with the large number of time domain simulations 
required by the MC method, the 2m+1 PE method only needs to 
perform a small fraction of time domain simulations and is 
therefore significantly more efficient. For instance, only 53 
time domain simulations would be needed with m=26 as in this 
case study. Furthermore, the accuracy of the PE method is 
diligently validated by qualitatively comparing the probability 
curves of slack bus generation (Pslack), voltage in bus 4 (V4), 
power flow in line 6-11 (P6-11), and transient stability margin 
(SM) obtained by the PE and MC methods as plotted in Fig. 
7-10. The results of this comparison study are concisely 
summarized in Table 3. As is evidenced by the small mean and 

SD errors (<10.3% and <6.8%, respectively) as well as small 
ARMS errors (<0.2%) found in all the four variables in concern, 
the accuracy of the PE method is acceptable for its application 
in P-TSCOPF. 
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Fig. 7 Probabilistic generation at slack bus 
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Fig. 8 Probabilistic voltage in bus 4 
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Fig. 9 Probabilistic power flow in line 6-11 
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Fig. 10 Probabilistic stability margin 



 

Table 3 Error comparisons for the base case 

Variable MC 
(Mean, SD ) 

PE 
(Mean, SD ) 

Error (%) 
x
με  x

σε  
ARMS 

V4 (0.9686,0.0012) (0.9684,0.0013) 0.02 3.63 0.19 

P6-11 (5.9911,1.0510) (6.1421,1.0799) 2.52 2.76 0.10 

SM (-0.1594,4.8406) (-0.1758,4.5155) 10.28 6.72 0.09 

Pslack (1.7826,2.1355) (1.6453,2.2283) 7.70 4.35 0.15 
CPU 

time (s) 2236 24 Speed Ratio 
2236/24=93.2 

C. Investigations on the optimal solution of P-TSCOPF model 
As shown in previous section, the base case does pose a 

high risk of system instability. A new operating point, which 
shall be secure and economic, is therefore desirable and can be 
found using the proposed GSO-PE method as demonstrated in 
the following case study, which contains 10 control variables 
consisting of 9 generator active powers and the slack bus 
voltage in the range of [0.95, 1.1]. The population size of 
GSO-PE  is 15 and the number of total iterations is fixed at 30. 
Parameters for initializing GSO-PE individuals are cited from 
[48]. The penalty factors pj and pr in (38) are set to 107 so as to 
introduce sufficient discriminations for any constraint 
violations in the P-TSCOPF model.  

Fig. 11 plots the convergence of the proposed GSO-PE 
optimization applied to solve this P-TSCOPF problem. The 
convergence is good and the total CPU time taken for the whole 
optimization process is 2,647s which is comparable to a single 
run of MC for assessing the base case in section V.B. 
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Fig. 11 Convergence of GSO-PE approach for New England system 

After this P-TSCOPF optimization, the system has a 
slightly higher total fuel cost expectation of 59,008.96 $/h, 
which is increased by 2.6% compared to the base case as a 
small price to pay to mitigate the risk of instability. The 
optimized solution given in Table 2 is probabilistically 
transient stable and all the probabilistic static constraints are 
satisfied. For example, as shown in Fig.12, the probability  at 
Point A on the  CDF curve of bus 4 voltage is 0.006, thus the 
probability of voltage in the range of [0.97, 1.06] is 0.994 
which is higher than the required security level 0.95. In Fig.13, 
the probability of line flow 6-11 below the thermal limit 6 p.u. 
at Point B is 0.96 which is also higher than the required risk 
security level 0.95. In other words, this line is statistically 
unlikely to be overloaded. Moreover, the probability plot of 
stability margin in Fig.14 indicates that the system is stable 
(stability margin η>0, on the right of Point C) with a high 
probability near 1 even with the given uncertainties. 
Meanwhile, the probability curves of bus 4 voltage, power flow 

of line 6-11 and transient stability margin obtained using the 
MC method are also given in Fig. 12-14 to show the good 
match of results between the PE and MC methods.  
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Fig. 12 Voltage probability of bus 4 
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Fig. 13 Power probability of line 6-11 
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Fig. 14 Probability of stability margin 

Table 4 checks the accuracy and effectiveness of the 
solution found by the proposed GSO-PE method with the MC 
method. Again, as the mean, SD, and ARMS errors are small 
(<2.8%, <4.8%, and <0.6%, respectively), the GSO-PE method 
can be used as the fast alterative of the MC method with 
acceptable accuracy, and GSO-PE indeed approached an 
optimal solution for effectively enhancing the probabilistic 
security level.  

Table 4 Error comparisons for optimal solution  

Variable MC 
(Mean, SD ) 

GSO-PE 
(Mean, SD ) 

Error (%) 
x
με

 x
σε  

ARMS 
V4 (0.9876,0.0042) (0.9880,0.0040) 0.04 4.76 0.45 

P6-11 (3.4174,1.3011) (3.5041,1.3485) 2.53 3.64 0.15 
SM (4.4237,0.2289) (4.3737,0.2271) 1.13 0.78 0.60 
Pslack (6.5295,3.4782) (6.3513,3.5012) 2.73 0.66 0.16 
The fuel cost expectations at different security levels for βQ, 

βV, βS, and βr are also investigated. As shown in Table 5, the fuel 
cost expectation is relative small when the security level is low. 



 

With a higher security level, the fuel cost expectation increased 
as expected since the system has to pay a higher expected fuel 
cost to establish a more secure operation state. Results 
presented in Table 5 also provide qualitative information to 
power system operators for making decisions in selecting the 
best compromised operation point with low expected fuel cost 
and acceptable system security level. 

Table 5 Fuel cost expectations at different security levels 
Confident Level 0.80 0.85 0.90 0.95 0.98 
Fuel Cost($/h) 57189 57420 57876 59009 59885 

REMARKS: 
1. The solution speed of the proposed GSO-PE method could 

be substantially further improved by exploring its inherent 
parallelism to run on a high-performance computer cluster. 
Since samples are independent of each other, its parallel 
computation efficiency will be expected to be very high and 
the proposed P-TSCOPF model could be applied to 
practical power systems for on-line dynamic security 
constrained preventive control. 

2. In terms of modeling, the proposed P-TSCOPF model is 
highly adaptable and flexible, and could be easily extended 
to include dynamic models of any intermittent generations 
or uncertain renewables such as photovoltaic power 
generations, electric vehicle aggregators, etc. 

VI. CONCLUSIONS 
In this paper, a probabilistic transient stability constrained 

optimal power flow (P-TSCOPF) problem is investigated for 
power system preventive control so as to enhance the 
probabilistic transient stability security. While a very general 
P-TSCOPF model has first been put forward, a specific one 
simultaneously considering the transient stability and 
uncertainties stemming from the correlated uncertain loads, 
uncertain fault clearing time and multiple correlated wind 
generations, etc. was then established. A hybrid GSO-PE 
solution approach based on the point-estimated method and 
group search optimization algorithm was thus proposed to 
efficiently solve this challenging P-TSCOPF model. Tests and 
analysis on the modified New England 39-bus system with four 
correlated uncertain WFs have demonstrated the validity of the 
P-TSCOPF model for improving the probabilistic security 
level and the effectiveness of GSO-PE method. Compared with 
the widely used MC method, the proposed GSO-PE method is 
orders of magnitude faster while the solution quality is 
generally comparable. Further acceleration on the solution 
speed and support for other dynamic models of intermittent 
generations or uncertain renewables have also been discussed. 
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