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Abstract--This paper presents a discrete sliding mode control 

(DSMC) scheme for a series-series compensated wireless power 

transfer (WPT) system to achieve fast maximum energy efficiency 

(MEE) tracking and output voltage regulation. The power 

transmitter of the adopted WPT system comprises a DC/AC 

converter, which incorporates the hill-climbing-search-based 

phase angle control in achieving minimum input current injection 

from its DC source, thereby attaining minimum input power 

operation. The power receiver comprises a buck-boost converter 

that emulates an optimal load value, following the MEE point 

determined by the DSMC scheme. With this WPT system, no 

direct communication means is required between the transmitter 

and the receiver.  Therefore, the implementation cost of this 

system is potentially lower and annoying communication delays 

which deteriorate control performance are absent. Both the 

simulation and experiment results show that this WPT system 

displays better dynamic regulation of the output voltage during 

MEE tracking when it is controlled by DSMC, as compared to 

that controlled by the conventional discrete proportional-integral 

(PI) control. Such an improvement prevents the load from 

sustaining undesirable overshoot/undershoot during transient 

states. 

Index Terms--Discrete sliding mode control (DSMC), 

series-series compensated wireless power transfer (WPT) system, 

maximum energy efficiency (MEE), hill-climbing-search-based 

phase angle control, dynamic performance. 

I. INTRODUCTION

VER since the patent of wireless power transfer (WPT)

based on magnetic resonance and near-field coupling of

two-loop resonators was reported by Nikola Tesla in 1914 [1], 

the WPT technique has been widely applied in medical 

implants [2]−[4], induction heaters [5], electric vehicles [6]−[8] 

and wireless charging platforms for portable equipment such as 

cellphones [9]−[14]. Particularly over the last decade, with the 
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emergence of diverse mobile terminals, the “Qi” standard is 

established by the Wireless Power Consortium (covering over 

210 companies worldwide in over 16 countries) [15] for more 

than 600 products [16]. Meanwhile, research activities of WPT 

systems have intensified in aspects relating to magnetic 

coupling [17]−[21], circuit compensation [7], [8], [21], [22], 

modeling and control [23]−[28], and basic operating principles, 

such as maximum power transfer (MPT) principle and 

maximum energy efficiency (MEE) principle [21], [28], [29]. 

In the review given in [29], it has been clarified that the MPT 

principle and the MEE principle should be respectively used for 

specific applications. WPT systems operating under the MPT 

principle will never achieve a system’s energy efficiency of 

higher than 50%. However, its achievable transmission 

distance is longer than that of the same WPT systems operating 

under the MEE principle. Nevertheless, WPT systems 

operating under the MEE principle can easily achieve an energy 

efficiency of higher than 50%.  

In this paper, the MEE principle is adopted for the 

investigated WPT system with series-series compensation. The 

decision on using this compensation instead of series-parallel 

compensation, parallel-parallel compensation, or parallel-series 

compensation is because the series-series compensation is 

independent of load or mutual inductance [25]. However, 

series-series compensated WPT systems that operate under the 

MEE principle suffers from power-efficiency variation when 

the coupling coefficient, quality factor, and load conditions 

change [26]−[28]. A mismatch of these parameters between the 

designed system and the actual system will result in a reduction 

of system’s energy efficiency. To resolve this issue, dynamic 

MEE tracking schemes are adopted in WPT systems operating 

in MEE, as reported in [26]−[28]. In [28], the automatic MEE 

tracking scheme involves a switched-mode converter at the 

receiver side to emulate the optimal load of minimizing the 

input power at the transmitter. This scheme is free of 

communication between the transmitter and the receiver. While 

it performs accurate tracking of MEE and output voltage 

regulation at steady state, it does not give good dynamic 

regulation of the output voltage during the MEE tracking 

process. Here, the series-series compensated WPT system is 

controlled by a discrete PI control scheme. It performs poorly in 

responding to fast dynamic changes of coupling coefficient, 

quality factor, and load conditions, of which the process of 

MEE tracking may induce large overshoot/undershoot and 

longer settling time of the output voltage. This may shorten the 

lifetime and even damage the load in which it is connected to. 
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To achieve a consistent and optimized dynamic performance 

of the series-series compensated WPT system in the event of 

unknown and wide-range changes, it is proposed in this paper, 

to replace the discrete PI control scheme with a discrete sliding 

mode control (DSMC) scheme. Sliding mode control (SMC) is 

naturally well suited for the control of power converters [30]. It 

consists of a time-varying state-feedback discontinuous control 

law that switches at a high frequency from one continuous 

structure to another according to the present position of the 

state variables in the state space. SMC offers superior dynamic 

performance for power converters in a wide operating range 

[31]. However, most of the SMC are implemented in analog 

controller forms [32]−[34]. Studies on DSMC for digital 

controllers are relatively limited [35]−[37], much less the 

applications [38], [39]. The applied DSMC for the WPT system 

is inherited from the equivalent SMC described in [32]. The 

implementation of the DSMC can be briefly described as a 

derived equivalent control signal based on the discrete SMC 

law to be modulated by the time-based counter of digital 

controllers. Compared to conventional discrete PI control, only 

one more current sensor for the output capacitor current is 

required. 

In the proposed work, a hill-climbing-search-based phase 

angle control is used with the DC/AC converter to achieve 

minimum input current, thereby attaining minimum input 

power control. The algorithm of the phase angle control is 

designed by considering the working principle of digital 

controllers. The phase angle control renders the series-series 

compensated WPT system with MEE, but does not contribute 

to the dynamic improvement. Still, the dynamic improvement 

of the output voltage is still significant when the series-series 

compensated WPT system is controlled by the proposed DMSC 

scheme. This paper is an extension of the conference paper 

[40]. 

II. DIFFERENCE BETWEEN MEE AND MPT OF THE WPT 

SYSTEM 
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Fig. 1. Schematic diagram of the series-series compensated WPT system with 
non-communication controllers. 

A schematic diagram of the series-series compensated WPT 

system is depicted as shown in Fig. 1, where Vdc is the DC 

power supply; L1 and L2 are the self-inductance of the primary 

and the secondary windings; Rp1 and Rp2 are the equivalent 

resistances of the primary and the secondary windings, 

respectively; M12 is the mutual inductance of the two windings; 

C1 and C2 denotes the compensating capacitors required for 

compensating the large leakage inductance and also for 

blocking the DC voltage offset caused by the inverting bridge; 

Cb is the filtering capacitance; L and C are the energy storage 

components of the buck-boost converter; and R is the resistance 

of load.  

In Fig. 1, the buck-boost converter (on the right-side of the 

figure) can operate in continuous conduction mode (CCM) or 

discontinuous conduction mode (DCM), depending upon the 

inductance value of L. If 𝐿 ≥
𝐷(1−𝐷)𝑉dc

2𝑖𝐿𝑓𝑠1
, where D is the duty 

ratio of switch S, iL is the inductor current, and fs1 is the 

switching frequency, the buck-boost converter is operating in 

CCM with a load R, which has a corresponding equivalent 

impedance of 

 
2

eq1CCM 2

1 D
R R

D


 .                       (1) 

Conversely, if 𝐿 <
𝐷(1−𝐷)𝑉dc

2𝑖𝐿𝑓𝑠1
, the buck-boost converter 

operates in DCM with the load R with an equivalent impedance 

of 

1
eq1DCM 2

2 sLf
R

D
 .                           (2) 

By taking both (1) and (2) into consideration, the equivalent 

impedance can be generally expressed as 

  
 

2

1 1

eq1 2

1 2 2s sD R Lf Lf
R

D

   
  ,         (3) 

where κϵ{0,1}. κ=1 indicates that the buck-boost converter is 

operating in CCM and κ=0 indicates that it is operating in 

DCM. 

An equivalent impedance Req2 can be further derived from 

equation (3) by incorporating the diode rectifier and the 

filtering capacitor Cb. Based on the extended describing 

function [24], all the higher harmonics can be neglected as the 

resonant tank is tuned to fundamental harmonic as 𝑣2 =
4

𝜋
𝑣b(𝜔𝑡), where ω=2πfs, fs is the switching frequency of the 

DC/AC converter. Then, the root-mean-square (RMS) value of 

v2 is 
2√2

𝜋
𝑣b. Similarly, the RMS value of i2 can be derived as 

√2𝜋

4
𝑖rec. Hence, the equivalent impedance Req2 is 

 
2

1 1
2rms

eq2 eq12 2 2

2rms

8 1 16 168 s sD R Lf Lfv
R R

i D



 

   
    ,(4) 

where v2rms is the RMS value of v2 and i2rms is the RMS value of 

i2. 

A simplified schematic diagram of the series-series 

compensated WPT system expressed in terms of the equivalent 

impedance can be drawn as shown in Fig. 2. 
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Fig. 2. Simplified schematic diagram of the series-series compensated WPT 

system. 
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Then, the energy efficiency of the system can be derived by 

neglecting the core loss of the magnetic ferrite plates as 

 

2

2rms eq2

2 2

1rms p1 2rms eq2 p2

i R

i R i R R
 

 
 

   

2 2

12 eq2

2
2

2 2

eq2 p2 2 p1 12 eq2 p2

2

=
1

+

M R

R R L R M R R
C



 


  
     

   

.  (5) 

The MEE of the WPT system can be achieved by controlling 

the duty ratio to satisfy 

2

2

0
eq

eq

R

D R D

   
 

  
                      (6)                 

and 

 

MEE
2 2

p2 12

1 1 p1 p2

1

2
1

4 2 2s s

D
R M

Lf R Lf R R








 
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.  (7) 

The output power of the system is 

2
2out

out 2rms eq2

V
P i R

R
   

   

2 2 2

12 in eq2

2
2 2

2 2

12 p1 p2 p1 eq2 p2 eq2 1

1

=
1

M v R

M R R R R R R L
C



 


 
     

 

. 

                    (8) 

The MPP of the WPT system can be achieved by controlling the 

duty ratio to satisfy 

2out out

2

0
eq

eq

RP P

D R D

 
 

  
                    (9) 

and 

 

MPT
2 2

p2 12

1 1 p1 p2

1

2
1

4 2 2s s

D
R M

Lf R Lf R R







 

      

. (10)                      

Apparently, DMPT≠DMEE. The control objectives of the WPT 

system to track the MEE and MPT are different, which 

confirms the conclusions drawn in [29]. In this paper, the 

energy efficiency is the primary concern. Therefore, the WPT 

system is designed to operate under the MEE principle. 

III. MINIMUM INPUT POWER BY PHASE ANGLE CONTROL 

With any constant output load R, the output voltage Vout of 

the converter is generally regulated at the reference value such 

that the output power consumed by the load is fixed at the 

steady state. Therefore, MEE of the WPT system can be 

achieved by simply minimizing the input current is. For this 

purpose, a hill-climbing-search-based phase angle control is 

adopted to seek the minimum is. Specifically, the phase angle 

between the arm bridges of the DC/AC converter α is optimized 

via the phase angle control to regulate vin based on the extended 

describing function 

 dc
inrms

2V
v g 


 ,                        (11) 

where vinrms is the RMS value of vin and 𝑔(𝛼) =

√cos2𝛼 + sin2𝛼cos2𝛼 + 2cos𝛼 + 1. Meanwhile, i1rms (RMS 

value of i1) can be derived as 

p2 eq2

1rms inrms2 2

p1 p2 12

R R
i v

R R M





.              (12) 

According to the energy conservation law and by neglecting the 

power loss of the DC/AC converter, we have 

 
 

 
2

dc P2 eq2 2inrms 1rms

2 2 2
dc P1 P2 12

2
s

V R Rv i
i g

V R R M


 


 


.  (13)                               

Apparently, is can be regulated by the phase angle α. Fig. 3 

depicts the waveforms of the switching signals and the 

corresponding waveform of vin (without the resonant tank). 

S1

S2

S3

S4

vin

α 
Vdc

–Vdc  
Fig. 3. Waveforms of the switching signals for the DC/AC converter and vin 

(without the resonant tank). 

Fig. 4 depicts the flowchart of the hill-climbing-search-based 

phase angle control. 

The process can be described as follow.  

1) An initial phase angle α(0) is applied to the DC/AC converter 

and the input current is(0) is measured. 

2) The phase angle α is increased by an incremental angle Δα at 

the next sampling time and the input current is(1) is measured. 

3) The directions of the hill-climbing search (increase or 

decrease Δα) can be determined by the comparison between is(0) 

and is(1). If is(1)<is(0), which means the increase of α 

approaches the objective of finding the optimal phase angle αopt, 

α is continuously increased by applying α(k+1)= α(k)+Δα. Here, 

k indicates the sampling time kTs, where Ts is the sampling 

period of the phase angle control for the DC/AC converter. If 

is(1)≥is(0), which means the increase of α deviates from αopt, α 

is to be decreased by applying α(k+1)= α(k)–Δα.  

4) For both directions of the hill-climbing search, the measured 

input current at the sampling time k+1 are compared to the 

input current at the previous sampling time k. If is(k+1)<is(k), 

which means the tendency of increase or decrease α is correct, 

α(k+1)= α(k)+Δα or α(k+1)= α(k)–Δα should continuously be 

conducted to let α approach αopt. If is(k+1)≥is(k), which means 

the change of α cannot further decrease the input current, α(k) 
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can be considered as αopt and the corresponding is(k) is the 

minimum input current.  

5) α(k) is used as α(0) for the next iteration to ensure that the 

minimum input current ismin can always be achieved even if the 

operating condition of the system is changed. When αopt and 

ismin are found, the minimum input power of the WPT system 

can be reached. Meanwhile, if the output voltage of the load is 

regulated to meet the reference simultaneously, the MEE of the 

WPT system can be implemented. 

Start
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YesNo

k=k+1 

Apply α(1)=α(0)+Δα 

Measure is(0)

Measure is(1)

Apply α(k+1)=α(k)+Δα Apply α(k+1)=α(k)–Δα 

Measure is(k+1)

is(k+1)<is(k)?
Yes

Measure is(k+1)

is(k+1)<is(k)?

k=k+1 

No

Yes

No

αopt=α(k) and ismin=is(k)    

α(0)=α(k)

Fig. 4. Flowchart of the hill-climbing-search-based phase angle control. 

IV. OUTPUT VOLTAGE REGULATION BY DISCRETE SLIDING 

MODE CONTROL 

Conventionally, the PI control is the common approach for 

regulating the buck-boost converter of the receiver. Such a 

controller implemented in the discrete PI control form adopts a 

control equation 

     p iu k K e k K e k    ,                (14) 

where Δu(k)=u(k)–u(k–1) is the increment of the control signal 

at the sampling time kTs1. Ts1 is the sampling period of the 

digital PI control; e(k)=Vref–Vout is the error between the 

reference and the control variable, where Vref is the reference of 

the output voltage and Vout is the measured output voltage; 

Δe(k)= e(k)–e(k–1) is the increment of the error; Kp is the 

proportional tuning coefficients and Ki is the integral tuning 

coefficients of the discrete PI controller. Then, the increment of 

control signal Δu(k) is added to the control signal u(k–1) at the 

previous sampling time to render the present control signal u(k). 

The control block diagram of the discrete PI control for the 

WPT system is shown in Fig. 5. Here, β is the coefficient of the 

output voltage to enable analog-to-digital conversion (ADC) of 

the digital controller. Specifically, the measured voltage 

(around 10 V for this case) is out of the range of the ADC 

requirements (0~3.6V for this case); V’ref=βVref is the scaled 

down reference; and PWM is short for pulse-width modulation. 

WPT 

system
Vout(k)

u(k)Δu(k)

u(k 1)
z  1

Equation (14)

e(k)

Δe(k)

z  1

e(k 1)

V ref

Digital controller

β

βVout(k)

PWM

Fig. 5. Control block diagram of the discrete PI control for the WPT system. 
 

However, the use of PI control (since it is a form linear 

control) limits its effectiveness in giving good voltage 

regulation to small regions within a predesigned operating 

point of the WPT system. In the cases of the hill-climbing 

search process and load-point change, the phase angle will be 

periodically changed. The output voltage will suffer from high 

overshoot/undershoot and long settling time during the 

transient states if the WPT system is regulated by the discrete PI 

control. To overcome such a dynamic issue, a discrete sliding 

mode control (DSMC) is therefore adopted to mitigate these 

undesired phenomena. The control variables x(k) are expressed 

in the following form 

 

 

 

 

 

   

 

ref out
1

2 out out

1

3 1

1 ref out0

1
s

k

s j

V V k
x k

k x k V k V k
T

x k
T V V j










 
   

  
       

  
   

     

x
,          (15) 

where β is also defined as the coefficient to enable ADC of the 

digital controller. Then, the discrete state-space model required 

for the controller design can be derived as 

 

 

 

 

 

 

 

1
1 1

1
2 2

3 3
1

1 0
1

1 1 0 1 0

1
0 1

s

s

s

T
x k x k

T
k x k x k

RC
x k x k

T

 
    

            
        

 

x         

   
 1 out 1 out

0

0

s sT V k T V k
u k

LC LC

 

 
 
  
 
 
 

.          (16) 

The sliding surface of the DSMC is given as 

       1 1 2 2 3 3s k x k x k x k     ,             (17) 

where α1, α2, and α3 are sliding coefficients. To ensure the 

stability of the sliding surface, α1>0, α2>0 and α3>0 are 

preliminary design conditions based on the Routh-Hurwitz 

criterion. Besides, the local reachability condition of the sliding 

mode operation must be satisfied [35] 

      1 sgn 0s k s k s k     ,              (18) 

where sgn(.) is the sign function.  

If s(k)→0+, s(k+1)<s(k). Substitute u(k)=1, (16) and (17) into 

(18) gives 

   31
ref out

2 2

0 C

LCL L
i k V V k

RC

  


 

 
       

 

, (19) 

where iC is the output capacitor current.  

If s(k)→0−, s(k+1)>s(k). Substitute u(k)=0, (16) and (17) into 

(18) gives 

     31
ref out out

2 2

C

LCL L
i k V V k V k

RC

  
 

 

 
       

 

. (20) 
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Finally, the combination of (19) and (20) gives the simplified 

existence condition 

     31
ref out out

2 2

0 C

LCL L
i k V V k V k

RC

  
 

 

 
        

 

.(21) 

Then, the equivalent control signal ueq(k) can be obtained by 

letting s(k+1)=s(k) to give 

 
 

 

 
21 1

eq

ref out out

1
CK i kK K

u k
V V k V k 

   


,          (22) 

where 𝐾1 =
𝛼3𝐿𝐶𝑉ref

′

𝛼2
 and 𝐾2 =

𝛽𝐿

𝑅𝐶
−

𝛼1𝛽𝐿

𝛼2
 are the tuning 

coefficients of the DSMC; 0≤ueq(k)<1. ueq(k) can be translated 

to the instantaneous duty ratio d(k) of the pulse-width 

modulator [30], which is more suitable for digital controllers. 

Computational delays (accounting for the time duration of 

sampling, ADC conversion, PWM reference calculation and 

updating) and PWM delays (zero-order-hold effect) are 

approximately 1.5 times sampling periods (Ts and Ts1). They are 

negligible because the sampling frequency of the digital 

controllers used in this paper is much faster than the switching 

frequency for the power converters. The control block diagram 

of the DSMC for the WPT system is shown in Fig. 6. 

WPT 

system

Vout(k)

β

iC(k)

ueq(k)
Equation (22)

V ref

Digital controller

βVout(k)
PWM

Fig. 6. Control block diagram of the DSMC for the WPT system. 

V. SIMULATION RESULTS 

TABLE I. SPECIFICATIONS OF MAIN COMPONENTS IN THE WPT SYSTEM 

Parameter Value Parameter Value 

Vdc 10 V C1 27.76 nF 

C2 27.6 nF Rp1 0.441 Ω 

Rp2 0.415 Ω L1 91.24 μH 

L2 91.77 μH M12 6.3 μH 

Cb 2 μF L 50 μH 

C 100 μF R 18 Ω 
 

TABLE II. PARAMETERS OF THE CONTROLLERS 

Parameter Value Parameter Value 

Vref 10 V β 0.25 

Kp 0.4 Ki 200 

K1 20 K2 −0.8 

fs 100 kHz fs1 20 kHz 

Simulation studies are conducted using the software 

platforms PSIM10 and MATLAB/SIMULINK to compare the 

performance of the discrete PI control and the DSMC for the 

WPT system under the MEE principle. The circuit part is 

implemented in PSIM10 and the control part including the 

phase angle control, the discrete PI control and the DSMC 

scheme, are implemented in MATLAB/SIMULINK. A 

SimCoupler module is used to link up the two software 

platforms. The sampling frequency for both PSIM10 and 

MATLAB are set at 14 MHz. The specifications of the main 

circuit components are listed in Table I. The parameters of the 

phase angle control, the discrete PI control and the DSMC are 

provided in Table II. In simulation, β can be implemented as a 

control block. The switching frequency fs1 is the same for both 

the discrete PI control and the DSMC. 

Fig. 7 shows the results of the relationship between the phase 

angle α, duty ratio of the buck-boost converter d, and the energy 

efficiency η, when the WPT system is controlled by the phase 

angle control and the DSMC. As mentioned in [28], the MEE 

point will only appear at the side of the boundary where the 

output power decreases with the increase of d. Therefore, only 

the side with MEE point is investigated. The boundary of the 

phase angle is 125 and the MEE point is at 110 with a duty 

ratio of 0.62 and energy efficiency of 69%. The MEE of 69% 

highly depends on the mutual inductance and the resistance of 

the load in the WPT system. When the mutual inductance 

increases (distance between coils reduces), the MEE will 

increase and vice versa. When the resistance of the load 

increases, the MEE will decrease and vice versa. Besides, the 

voltage drops of the diodes in the diode rectifier and the 

buck-boost converter will distinctly affect the MEE of the WPT 

system. The steady-state performance of the WPT system 

controlled by the phase angle control and the DSMC is well 

verified by matching the results with that of the conventional 

control scheme. 
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Fig. 7. Relationship between η, d and α when the WPT system is controlled by 

the phase angle control and the DSMC. 

Then, the comparisons of the output voltage Vout, the input 

current is, and the instantaneous energy efficiency η between 

the DSMC and the discrete PI control during transient states are 

given in Fig. 8−10, respectively. The discrete PI controller is 

designed for the operating condition of 0 phase angle, such 

that the parameters of the discrete PI controller are optimally 

designed for that operating point. Apparently, the dynamic 

performance of the output voltage Vout, the input current is, and 

the instantaneous energy efficiency η are distinctly improved 

by the DSMC with less overshoot and shorter settling time 

when the phase angle α is regulated from 40 to 100 with 

∆α=20 and the period of 5 ms. 

1008060

40

DSMC

DPI

V
o

u
t 
(V

)

Time (s)

Fig. 8. Comparisons of Vout between the discrete PI control and the DSMC for 
the WPT system. 
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100806040

Time (s)

is
 (

A
)

DSMC

DPI

Fig. 9. Comparisons of is between the discrete PI control and the DSMC for the 

WPT system. 
 

1008060

40

DSMC

DPI

Time (s)

η
 (

%
)

Fig. 10. Comparisons of η between the discrete PI control and the DSMC for 
the WPT system. 

VI. EXPERIMENTAL VERIFICATION 

The experiment is conducted on a two-coil series-series 

compensated WPT system with the parameters given in Table I. 

The parameters of the practical resonators are provided in Table 

III, where the length of the winding indicates the length from 

the first turn to the eleventh turn. The controllers used for both 

the DC/AC converter of the transmitter and the buck-boost 

converter of the receiver are low-cost MCU 

STM32VLDISCOVERY with a sampling frequency of 14 

MHz. Full schematic diagram of the WPT system in the 

experiment is depicted in Fig. 11. The codes of the phase angle 

control based on the algorithm given in Fig. 4 are programmed 

in the MCU of control stage 1. The codes of the DSMC based 

on (22) and the discrete PI control based on (14) are 

programmed in the MCU of control stage 2. A photograph of 

the experiment setup is shown in Fig. 12. 

The experiment is initially carried out with the WPT system 

controlled by the phase angle control and the DSMC to 

examine the steady-state performance. Fig. 13 shows the 

searching process of the input current is in reaching the MEE 

TABLE III. PARAMETERS OF THE PRACTICAL RESONATORS 

Parameter Value Parameter Value 

Coil diameter 31 cm Wire diameter 1.2 mm 

Number of turns 11 Length of the winding 15 mm 
 

1

2

3

4

5 6

7

8 9
10

11
12

 
Fig. 12. Photograph of the experiment setup. [1: Power supply for Vdc and 

control stages; 2: STM32DISCOVERY for control stage 1; 3: DC/AC 
converter; 4: compensated capacitor C1; 5: Primary winding L1; 6: Secondary 

winding L2; 7: compensated capacitor C2; 8: diode rectifier; 9: filtering 

capacitor Cb; 10: Buck-boost converter; 11: STM32DISCOVERY for control 
stage 2; 12: load R]. 
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Fig. 11. Full schematic diagram of the WPT system in the experiment. 
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point of the WPT system. is finally reaches the minimum input 

current at about 0.95A through the regulation of the phase angle 

control. Besides, the energy efficiency η of the WPT system is 

calculated and compared. Fig. 14 shows a comparison of the 

energy efficiency η around the MEE point (the phase angle α, 

which ranges from 80 to 125 in steps of 5) between the 

simulation and the experiment results. As shown, the MEE of 

the WPT system in practice is about 60%. This is attributed to 

the diverse energy loss in the hardware (additional voltage 

drops of diodes, resistance of cables and PCB routes, parasitic 

resistance of energy storage components, and energy loss in 

ICs), which are not modelled in the simulation. By applying the 

conventional control scheme described in [28], the MEE of the 

WPT system is almost equivalent to 60% as well. 

Searching

is

 
Fig. 13. Search process of the input current is to reach the MEE point. 
 

Fig. 14. Comparisons of the energy efficiency η between the simulation and the 

experiment results. 
 

Then, the comparison of the dynamic performance between 

the DSMC and the discrete PI control on the MEE tracking 

process is conducted. The discrete PI controller is designed to 

operate at 0 phase angle. Fig. 15−18 show the waveforms of 

the output voltage Vout and the corresponding switching signals 

during both transient and steady states when the buck-boost 

converter is regulated by the discrete PI control and the DSMC, 

respectively. In Fig. 15, the overshoot of the output voltage Vout 

during the transient state is about 2.5 V and the settling time is 

about 151.8 ms when the buck-boost converter is controlled by 

the discrete PI control when the phase angle α of the DC/AC 

converter is changed from 120 to 100. However, as shown in 

Fig. 16, the overshoot of the output voltage Vout during the 

transient state is about 2 V (80% of that with the discrete PI 

control) and the settling time is about 48 ms (31.6% of that with 

the discrete PI control) when the buck-boost converter is 

controlled by the DSMC with the phase angle α being changed 

from 120 to 100. 

In Fig. 17, the undershoot of the output voltage Vout during 

the transient state is about 2.0 V and the settling time is about 

164.3 ms when the buck-boost converter is controlled by the 

discrete PI control when the phase angle α is changed from 

100 to 110. However, in Fig. 18, the undershoot of the output 

voltage Vout during the transient state is about 1.9 V and the 

settling time is about 39.3 ms (23.9% of that with the discrete PI 

control) when the buck-boost converter is controlled by the 

DSMC with the phase angle α being changed from 100 to 

110. 

2.5 V

151.8 ms

Fig. 15. Waveforms of Vout and the corresponding switching signals when the 

phase angle α is changed from 120 to 100 with the discrete PI control. 

 

2 V

48 ms

Fig. 16. Waveforms of Vout and the corresponding switching signals when the 

phase angle α is changed from 120 to 100 with the DSMC. 

 

2.0 V

164.3 ms

Fig. 17. Waveforms of Vout and the corresponding switching signals when the 

phase angle α is changed from 100 to 110 with the discrete PI control. 
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1.9 V

39.3 ms

Fig. 18. Waveforms of Vout and the corresponding switching signals when the 

phase angle α is changed from 100 to 110 with the DSMC. 

Similar comparisons between the discrete PI control and the 

DSMC are carried out when the phase angle α varies around the 

MEE point (80 to 120) by ∆α=10. Comparisons of the 

overshoot/undershoot of the output voltage Vout during transient 

states are illustrated in Fig. 19 using histogram. As shown, the 

mitigation of the voltage undershoot (with an increasing α) is 

small with the DSMC scheme. However, the voltage overshoot 

reduction (with a decreasing α) achievable with the DSMC 

scheme is significant. The improvement is on average about 

16.6%. Comparisons of the settling time of the output voltage 

Vout during transient states are shown in Fig. 20. The settling 

time is shortened significantly by using the DSMC. The 

improvement is on average about 72.9%. 
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Fig. 19. Comparisons of the overshoot/undershoot of Vout between the discrete 
PI control and the DSMC when α varies around the MEE point. 
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Fig. 20. Comparisons of the setting time of Vout between the discrete PI control 

and the DSMC when α varies around the MEE point. 

VII. CONCLUSIONS 
 

In this paper, a discrete sliding mode control (DSMC) along 

with a phase angle control is applied to a two-coil series-series 

compensated wireless power transfer (WPT) system under the 

maximum energy efficiency (MEE) principle. Both simulation 

and experiment results validate that the dynamic performance 

of the output voltage of the WPT system during the MEE 

tracking are improved with use of the proposed control scheme, 

as compared that of the conventional discrete PI control scheme. 

Experiment results show that the overshoot reduction is about 

16.6% and the settling time is shortened by about 72.9% when 

the phase angle varies around the MEE point in steps of 10. 

Such an improvement in the dynamic behavior of the WPT 

system is important for protecting the load in which it is 

connected to, from a possible high voltage overshoot during a 

long transient. 
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