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Abstract— Magnetoresistive (MR) sensors have been identified ag

promising candidates for the development of high-performancgq
magnetometers due to their high sensitivity, low cost, low powepp
consumption, and small size. The rapid advance of MR sensop3
technology has opened up a variety of MR sensor application4
These applications are in different areas that require MR sensorsg
with different properties. Future MR sensor development in eachg
of these areas requires an overview and a strategic guide. A MB7
sensor roadmap (non-recording applications) was thereforgg
developed and made public by the Technical Committee of Theg
IEEE Magnetics Society with the aim to provide an R&D guide fogg
MR sensors intended to be used by industry, government, aneq
academia. The roadmap was developed over a three-year periods
and coordinated by an international effort of 22 taskforcgs
members from 10 countries and 17 organizations, including

universities, research institutes, and sensor companies. In this
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paper, the current status of MR sensors for non-recording
applications was identified by analyzing the patent and
publication statistics. As a result, timescales for MR sensor
development were established and critical milestones for sensor
parameters were extracted in order to gain insight into potential
MR sensor applications (non-recording). Five application areas
were identified, and five MR sensor roadmaps were established.
These include biomedical applications, flexible electronics,
position sensing (PS) and human-computer interactions (HCI),
non-destructive evaluation and monitoring (NDEM), and
navigation and transportation. Each roadmap was fit with a
logistic growth model, and new opportunities were predicted
based on the extrapolated curve, forecasted milestones, and
professional judgement of the taskforce members. This paper
provides a framework for MR sensor technology (non-recording
applications) to be used for public and private R&D planning, in
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order to provide guidance into likely MR sensor applicationsl.8
products, and services expected in the next 15 years and beyond.19

Keywords—magnetoresistive sensor, R&D guide, roadmapgg
smart living, Internet of Things.
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I. INTRODUCTION 58

In the field of magnetic field sensing, magnetoresistiv?9
(MR) [1-4] sensors have attracted much interest owing to thei
high sensitivity, low cost, low power consumption, and sma
size [5-13]. The technological progress of MR sensors hag2
resulted in a wide range of sensor applications, products, angs
services. These application areas require MR sensors wit,
diverse properties, from high sensitivity and detectivity fogg
biomedical applications[14-63], high mechanical flexibility angg
compactness for wearable/portable electronics [64-87], loy;
power consumption and small physical dimension for positiogg

sensing (PS) [88-91] and human-computer interaction (HCI)
[92-101], low cost and mass manufacturability for large-scale
non-destructive evaluation and monitoring (NDEM) systems
[102-122], to high accuracy and stability for navigation and
transportation systems [123-141]. However, there is a lack of
both an overview of the development of MR sensor applications
and a strategic guide for future implementation of MR sensor
technologies. These issues are resolved in this roadmap with the
main scientific and technological objectives as follows:

1. To forecast MR sensor technology for the next 15 years
and beyond so as to provide an R&D guide for industry,
government, and academia.

2. To provide a framework for public and private MR
sensor research and development (R&D) planning.

3. To use our expertise to predict opportunities for using
MR sensors to serve society in innovative ways in the next
15 years and beyond.

The paper is structured as follows. In Section 11, the roadmap
development methodology was described. In Section IlI, the
current status of MR sensors was identified, and the MR sensors
development trend was summarized. In Section IV, critical
sensor parameters were identified and their timelines were
established, in order to gain insight into different possible
sensor applications. In Section V, possible future MR sensor
applications were identified, and five roadmaps were developed
according to the corresponding application areas. These areas
include biomedical applications, flexible electronics, PS and
HCI, NDEM, and navigation and transportation. Finally,
Section VI predicts the most likely future MR sensor
applications.

Il. ROADMAP DEVELOPMENT METHODOLOGY

In order to have a strategic guideline to follow, a 5-stage
methodology for the roadmap development was established, as
illustrated in Figure 1.

In Stage 1, the roadmap taskforce was commissioned by the
Technical Committee of The IEEE Magnetic Society at the
IEEE International Magnetics Conference (Intermag) 2014, in

Dresden, Germany. Recruitment of taskforce members
commenced.
In Stage 2, the roadmap taskforce discussed the objective and

purpose of the roadmap during the 1% taskforce meeting at the
Intermag 2015, in Beijing, China. The scope and objective of
the roadmap were defined, and more taskforce members were
recruited.

In Stage 3, statistics of patents and publications related to MR
sensors (non-recording) were analyzed. The publication data
were collected from the Web of Science by keyword search.
The searching fields were applied only in the Title and Abstract
of publications in order to exclude unrelated topics. The related
patent data were obtained from four patent databases compiled
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by the European Patent Office, United States Patent an83

new MR sensor (non-recording) applications, products and

Trademark Office, State Intellectual Property Office of Chin&4 services was launched out through the next 15 years and

and Taiwan Intellectual Property Office. Based on the patent5

and publication data, a professional assessment of relevant MR

sensor parameters was made during the 2" taskforce meeting atd

the Joint Magnetism and Magnetic Materials (MMM)/Intermag
2016, in San Diego, USA. The current status of MR sensor
applications was then discussed, and critical sensor parameters
for non-recording applications were identified.

In Stage 4, published articles and filed patents related to
fundamental MR sensor research were reviewed. A
professional assessment of critical milestones for selected
sensor parameters was made during the 3" taskforce meeting at
MMM 2016, in New Orleans, USA. Timelines for MR sensor
development and for critical milestones of the sensor
parameters were established and forecasted.

In Stage 5, publications related to MR sensor applications
were analyzed. A professional assessment of future MR sensor
applications was made according to the forecasted critical
milestones for sensor parameters during the 4™ taskforce
meeting at Intermag 2017, in Dublin, Ireland. Finally, a review
and prediction of likely MR sensor applications, products, and
services was then performed, and five roadmaps for MR sensor
applications were developed.

The maturity levels of MR sensor applications, products and
services were gauged by the technology readiness levels (TRL)
[142]. In this paper, the classification of TRL defined by
National Aeronautics and Space Administration (NASA) were
adopted [143]. The TRL values of the historical MR sensor
applications were fitted with the logistic model [144, 145]. As
a commonly-used growth trend curve, the logistic model has
been widely utilized to describe the S-shaped feature of the
technological life cycle (TLC) [142, 146, 147], which is
typically comprised of four phases: emergence, growth,
maturity, and saturation, as exhibited in Figure 2. The formula
of the logistic growth curve is

L

Y= —
1+ae™

@)

where Y represents the indicator related to the TRL, t represents
the development time, the constants a, b, and L are the fitting
parameters. In the technology emergence phase (TRL 1-2),
fundamental investigation and basic research are conducted. In
the technology growth phase (TRL 3-4), researches are carried
out to prove the feasibility of the technology. In the technology
maturity phase (TRL 5-6), model/sub-model and full-scale tests
are demonstrated. In the final saturation phase (TRL 7-9),
systems are validated and related products are deployed into
market. In this review, we first fitted the logistic model with the
TRL levels of the historical MR sensor applications so that the

future trends could be predicted by extending the fitting curve57
of the model. New opportunities were predicted by utilizing th‘e)8

extrapolated curve, forecasted milestones, and professional
judgements on critical sensor parameters. The global vision of

beyond.

1. MR sensor (non-recording) roadmap taskforce commissioning
by the Technical Committee of IEEE Magnetics Society at

Intermag 2014 in Dresden.
2. Recruiting taskforce members.

Stage 1

Formation of
roadmap taskforce

1. 15t Roadmap taskforce meeting at Intermag 2015 in Beijing.
2. Defining roadmap missions and objectives.

Stage 2

Roadmap scope
and objectives

1. Identifying current status of MR sensor applications by statistical
analysis on patents and publications.

2. Professional judgements on critical sensor parameters during the
21 taskforce meeting at Joint MMM-Intermag 2016 in San Diego.

Stage 3

Critical sensor
parameters
for MR sensor
applications

1. Literature analysis: publications and patents on fundamental research
for MR sensors.

2. Professional judgements on critical milestones for sensor parameters
during the 3" taskforce meeting at MMM 2016 in New Orleans.

3. Forecasting development timelines for critical sensor parameters
based on literature analysis and professional judgements.

Stage 4

Critical
milestones for
sensor
parameters

1. Literature analysis: publications on MR sensor applications.
2. Professional judgements on future applications, products and
services of MR sensor technologies during the 4 roadmap taskforce

meeting at Intermag 2017 in Dublin.
3. Envisioning roadmaps for MR sensors based on literature
analysis, forecasted milestones, and professional judgements

Stage 5
Five roadmaps

for MR sensor
applications

Fig. 1. Methodology of roadmap development.
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Fig. 2. Technological life cycle fitted with the logistic growth model for forecasting future technological development.
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Fig. 3. Statistics of common magnetic sensors from 1975 to 2017 in the selected patent databases compiled by EPO, USPTO, SIPO, and TIPO. Inset
is the percentage of MR sensor patents among all types of magnetic field sensors. The list of keyword search queries for patent statistics is shown in

Table I.

7

I1l.  CURRENT STATUS OF MR SENSOR APPLICATIONS 8

Magnetic field detection has tremendous impact on a Iarge9
variety of applications and industries [8, 9, 11-13, 148-152 ,0
which exploits a wide range of physical phenomena an 1
principles [7, 153-167]. To obtain an overview of ma\gneti&2
field sensing techniques, an analysis of statistics of commoﬁ

magnetic sensors from 1975 to 2017 in the selected patent
databases is shown in Figure 3. To rule out any unrelated
applications, the search queries were applied only in the Title
and Abstract. The list of search keywords for patents statistics
of magnetic field sensors is shown in Table I. Typical magnetic
sensors [13, 148, 149, 168] were taken into account, including
MR sensors [7, 11, 157, 169], Hall effect sensors [26, 155, 170-
172], fluxgates [173-177], superconducting quantum
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interference devices (SQUID) [156, 178-181], magneto-optical
sensors [161, 182-186], search coils [187-191], magneto-
inductive sensors [160, 192-195], magneto-impedance sensors
[160, 196-199], magneto-diodes [153, 200-203], magneto-
transistors  [154, 204-207], and optically pumpeds
magnetometers [158, 208-211]. As one of the most commonly-
used magnetic sensors, MR sensors cover a relatively large
portion of industrial applications [5, 7, 10-13, 149, 169],
especially during the period from 1988 to 2008, as illustrated in
Figure 3. In general, MR sensors cover over 50% of the
industrial applications. The patent statistics trend of MR sensors
(Figure 3) is well matched with the publication statistics curve
(Figure 4). The list of search keywords for publication statistics
of parallel and perpendicular anisotropic magnetoresistive
(AMR), giant magnetoresistive (GMR), and tunnelling
magnetoresistive (TMR) sensors is shown in Table II. Here, the
perpendicular  AMR  refers to the planar Hall
magnetoresistance/resistance effect [212-218]. The number of
publications of GMR sensors exhibits an explosive growth after
the discovery of GMR effect in 1988 [1, 2]. After 1995, the
number of publications related to TMR sensors dramaticall§9
increases and starts to exceed that of GMR sensors in 2000. Tha0
total number of publications of MR sensors reaches a peak ig1
2004-2006 and then shows a slight decrease (Figure 4), whichs
is consistent with the patent trend (Figure 3).

Magneto-transistor “magneto-transistor” AND "magnetic" AND "sensor"

Optically pumped sensor “optically pumped" AND "magnetic" AND "sensor"

500
B AVR
B GMR
400 - TMR

] w
o o
o o
T T

Number of publications
o
o

0
1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
Year

Fig. 4. Publication statistics of AMR, GMR, and TMR sensors from 1975
to 2017 in the Web of Science. The list of search keyword queries for
publication statistics of AMR, GMR, and TMR sensors is shown in Table
Il
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TABLE | KEYWORD SEARCH QUERIES FOR PATENTS STATISTICS OF MAGNETIC
FIELD SENSORS 35 TABLE Il KEYWORD SEARCH QUERIES FOR PUBLICATION STATISTICS OF MR
36 SENSORS
Magnetic field sensor Keyword
(1) "magnetoresistive" AND "magnetic" AND “sensor” Magnetic field Keyword
MR sensor (2) "magnetoresistance” AND "magnetic" AND “sensor” sensor
(1) "Hall” AND "magnetic” AND "sensor”; (1) "anisotropic” AND "magnetoresistive” AND "sensor"
Hall sensor 2) "Hall effect" AND "magnetic" AND "sensor"; . B B
@ 9 (2) "anisotropic" AND "magnetoresistance" AND "sensor"
Fluxgate "fluxgate" AND "magnetic" AND "sensor" AMR sensor (3) "planar Hall" AND "magnetoresistive" AND "sensor"
(4) "planar Hall" AND "magnetoresistance™ AND "sensor"
(1) "magneto-optical" AND "magnetic" AND “sensor”
"planar Hall resistance" AND "sensor"
Magneto-optical sensor (2) "magnetic-optic" AND “magnetic" AND “sensor" (5) "planar Hall resistance senso
(1) "superconducting quantum interference device" AND “"magnetic* (1) "tunnel™ AND "magnetoresistive” AND "sensor
Superconducting quantum AND "sensor" i
(2) "tunnel™ AND "magnetoresistance” AND "sensor"
interference devices (2) "SQUID" AND "magnetic* AND "sensor"
(3) "tunneling" AND "magnetoresistive™ AND "sensor"
TMR sensor
Search coil “search coil" AND "magnetic" AND "sensor" (4) "tunneling” AND "magnetoresistance” AND "sensor"
Magneto- (1) "magneto-inductive” AND "magnetic” AND "sensor” (5) "tunnelling” AND "magnetoresistive” AND "sensor
inductive sensor (2) "magnetic-inductantance” AND "magnetic" AND "sensor" (5) "tunnelling” AND "magnetoresistance” AND "sensor"
Magneto- (1) "magneto-impeditive" AND "magnetic" AND “sensor" (1) "giant” AND "magnetoresistive” AND "sensor”
GMR sensor
impedance sensor (2) "magnetic-impedance" AND "magnetic” AND "sensor" (2) "giant" AND "magnetoresistance” AND "sensor"
Magneto-diode "magneto-diode” AND "magnetic” AND "sensor" 3 7
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Fig. 5. Distribution of publications on MR sensor applications including biomedical applications, flexible devices, position sensing (PS) and human-
computer interactions (HCI), non-destructive evaluation and monitoring (NDEM), and navigation and transportation in the periods of (a) 2001-2005,

(b) 2006-2010, and (c) 2011-2015.

Continuous endeavors from scientists and engineers have3 31, 33, 34, 37-46, 48, 50, 51, 53-55, 78, 97, 109, 120, 219-223]

2 opened up various applications of MR sensor techniques [29-4 as shown in Figure 5. According to the strength of the measured
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field, MR sensor applications can be divided into three majo25
categories: 1) measuring the Earth’s magnetic field (~uT) [12326
125, 129-139, 224-233], 2) measuring small perturbations o7
magnetic field (from ~uT to ~nT) [107, 108, 110, 111, 113, 11428
116-121, 234], and 3) measuring ultralow magnetic field (lowe29
than ~nT) [16, 18-21, 23-31, 33-35, 37-40, 42-44, 46, 48, 580
51, 53-56, 222, 235]. 31

In the earlier applications in the period of 2001-2005 (Figurgg
5(a)), MR sensors were frequently used as magnetic compasseg,
for detecting Earth’s magnetic field in navigation and
transportation (30%) [129, 130, 236, 237], among which 10985
were incorporated into autonomous vehicles, [126, 238] angb
wearable/portable devices (10%) [239, 240] as well. On thé”
other hand, MR sensors were applied for non-destructivéd
power-grid monitoring (20%) [157, 241] and were utilized a39
sensitive magnetic probes for detecting ultra-low magnetic fiel40
in biomedical applications (30%) [18, 20, 21, 24,27,29]. 41

42
In the period of 2006-2010 (Figure 5(b)), more MR sensorgs

(58%) were used to detect ultralow magnetic field owing to thg,
improvement of their sensing performance (e.g., sensitivity,s
detectivity). Especially, more biomedical applications with M
sensors were explored (increased from 30% in 2001-2005 tg-
54% in 2006-2011) [34-40, 42, 222]. With the development of
flexible sensor substrates, a growing number of MR sensors

B Accomplished milestones

with high tolerable tensile strain [70, 73, 75] were integrated
into wearable/portable devices [96] (increased from 10% in
2001-2005 to 13% in 2006-2010) for detecting Earth’s
magnetic field and small perturbations of magnetic field. A
series of satellites were equipped with MR sensors for space
exploration (4%) [134, 231, 232] by virtue of their reduced size
and power consumption [242-245]. MR sensors also exhibited
their great compatibility with emerging technologies, such as
PS and HCI (8%) in virtual reality/augmented reality (VR/AR)
[96, 246] and robotics [247].

In the period of 2011-2015 (Figure 5(c)), MR sensors
continued to be widely used in the field of biomedical
applications (45%) [48, 50, 51, 53-57]. Motivated by the
concept of a smart grid, more MR sensors were implemented in
power grid monitoring [110, 113, 116, 119] (increased from 4%
in 2006-2010 to 18% in 2011-2015) in order to detect small
perturbations of the magnetic field and emanating from the
power cables. In order to push forward and realize MR sensor
applications with existing and emerging technologies, further
enhancement of MR sensor performance reflected by the
critical parameters including (1) sensitivity, (2) detectivity, (3)
power consumption, (4) mechanical flexibility, and (5)
robustness, is required.
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Fig. 6. Development trend for the sensitivity of MR sensors at room temperature from 1995 to 2032.
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IV. DEVELOPMENT TIMELINES FOR CRITICAL MR SENSOR 24
PARAMETERS 25

In order to gain deep insights into the technologicai;3
evolution, MR sensor development timescales wer
established. Timelines of key sensor performance parameter
including sensitivity, detectivity, power consumptio
mechanical flexibility, and robustness were investigated an 1
illustrated. Past achievements of these performance parameter
were identified and their driving forces for sensor application
were discussed. Forthcoming milestones were predicted baseg 4

on both the historical trends and fitted curves. 35

A. Sensitivity 36

As one of the most fundamental and critical performancgg
parameters of MR sensors, sensitivity has exhibited 539
considerable growth in the last two decades [223, 243, 24 0
248-266], as shown in Figure 6. The sensitivity [250, 254] o
MR sensors is defined in the linear operation range of thc;12
magnetic transfer curve as 43

44
45
46
47
48

MR
2poHsat

)

49
where MR and Hsx represent the MR ratio and saturation fields
respectively. Both increased MR ratio and reduced saturation

field give rise to an improved sensitivity. Large MR ratio can
be obtained by selecting the thin-film materials [262, 267-271],
optimizing the fabrication process [256, 272-274], and device
geometry including layer thicknesses and dimensions [257,
275-277]. Suppression of saturation field can be achieved by
incorporating the sensors with magnetic flux concentrators
(MFCs) [249, 251, 254, 263], utilizing soft ferromagnetic
materials with low saturation field [262], and modifying sensor
area and aspect ratio [257] as well. Due to relatively high MR
ratio of TMR sensors (Figure 7), researchers and engineers
favor TMR elements to fabrication of highly sensitive MR
sensors. For the TMR sensors with an AlOy barrier during the
period of 1995-2002, TMR sensors with sensitivity from
several %/mT to almost two hundred %/mT were fabricated
[242, 269, 278-284]. After replacing the AlOy barrier with the
crystalline MgO barrier, a rapid increase of MR ratio was
accomplished (Figure 6) [269, 270, 285-287], resulting in a
notable enhancement of sensitivity to 300-1000 %/mT (Figure
6) [245, 250, 251, 253, 255]. By integrating MFCs into the
TMR sensors, the saturation field was greatly diminished and
thus the sensitivity was significantly increased [249-251, 254,
263]. Another major improvement of sensitivity was achieved
by designing a sensor array with 1000 TMR elements and
incorporating the sensor array with a MFC [245]. Sensitivity as
high as 3944 %/mT was obtained by utilizing this strategy
[245]. To further improve MR sensitivity to >10* %/mT, two
technological challenges (TC) will need to be achieved:
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Fig. 7. Development trend of TMR ratio at room temperature for MTJs from 1995 to 2032.



TC 1.1: accomplishment of >1000% MR ratio at roord7
temperature. 28
29

30

TC 1.2: accomplishment of <0.1 mT saturation fielgé

244,H,, atroom temperature.

33

For TC 1.1, the half-metallic Heusler alloy is an attractiv
choice of material due to high spin polarization [288-296]. A
shown in Figure 7, MgO-based magnetic tunnel junction (MT.
with Heusler alloy electrodes achieved comparable TMR rati
[267, 292, 297-302] as those MTJs with convention
ferromagnetic electrodes [264, 270, 303]. However, furthe
enhancement of TMR was limited by the relatively large lattic
mismatch between the MgO barrier [286] and Heusler allo
electrodes [304, 305]. This issue was resolved by replacing the
MgO barrier with a spinel MgAl;O, barrier [271, 305-30843
Compared to the MgO barrier, smaller lattice spacing of tha4
MgAl,O; barrier resulted in a much better lattice match of thd5
barrier/ferromagnetic layer interface [306, 307, 309K6
Furthermore, a perfectly dislocation-free interface was obtained7
by utilizing the cation-disorder spinel (Mg-Al-O) barrier [27148
305], whose lattice spacing was tunable through modifying thgg
Mg-Al compositions [305]. Therefore, a significantly enhanceg0
TMR ratio can be expected through utilizing the lattice-tuneg1
Mg-Al-O barrier and optimizing the Heusler alloy electrodes2
To estimate the forthcoming milestone, the historical data was3
fitted with a linear line and the future trend was forecasted bg4
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extrapolating the fitted line. Based on the fitting curve using the
data points of spinel-based MTJs in Figure 7, 800% TMR can
be reached by ~2027, and finally 1000% TMR can be
accomplished by ~2032. For TC 1.2, the saturation field 2uoHsat
around 0.08 mT was demonstrated by incorporating the sensor
with a Conetic MFC (gain: ~77 times) in 2011 [243]. In 2015,
a factor of 400 times MFC was reported for an MTJ bridge [R3].
In 2017, Valadeiro et al. reported a high gain (~400 times) MFC
with a double layer architecture [310]. By using this type of
MFC, the authors believe that the saturation field will be further
reduced from ~0.08 mT to ~0.01 mT in the near future. With
the accomplishment of both TC 1.1 and TC 1.2, one can expect
high-performance TMR sensor with sensitivity approaching
~10* %/mT (1% milestone of sensitivity: Msens1) by ~2027 and
~10% %/mT (2" milestone of sensitivity: Msens2) by ~2032 (see
the forecasted milestones in Figure 6).

It is worth mentioning that although the linear extrapolation
of MR ratio over time in Figure 7 might be optimistic, the
milestone of sensitivity mentioned above can still be possibly
achieved by advancing the progress of TC 1.2. At present, many
experimental demonstrations already show the gain of hundreds
for MFCs. In fact, larger magnetic field amplification (~1000
or even higher) can be possibly achieved by implementing the
sensors inside tailor-made MFCs with their shape, dimensions
and geometry (e.g., aspect ratio, the ratio of outer to inner
width), material (e.g., high-permeability material) and the gap
length optimized [311, 312]. As such, the final goal of Msensl
and Msens2 are still expected.
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Fig. 8. Development trend of the detectivity of MR sensors at room temperature from 1995 to 2032.
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Fig. 9. Development trend of the superconducting critical temperature (T.) of superconductors from 1967 to 2032.

It is also worth mentioning that the noise level of a TMR
sensor (Sg) is correlated with its MR ratios. The total field noisé?
power of a TMR sensor is given by [313]

30

SB = (d_B)Z[SVAmp + Svshot +Svelec.1/f] + SBtherm.mag. + SEmag.l/f (381
av

v _ o Ny ( ‘G

dB ~ R 2Bsa %3

34
where A?R is the MR ratio, N is the number of MTJs per leg, V3¢

is the voltage drop across each MTJ, B, is the saturation fieldg
of free layer37
SvAmp’ SVShOt, Svelec.l/f’SBtherm.mag. and SBmag.l/f args
amplifier noise voltage power, shot-noise voltage powei3g
electronic 1/f noise, thermal magnetic noise, and magnetic 1/fg
noise magnetization power respectively. The overall noise levej1
of MR sensor can be reduced by increasing MR ratio becausgo
the amplifier noise voltage power, shot-noise voltage power;5
and electronic 1/f noise can be suppressed by a larger MR ratig 4

(A?R in Eq. (4)); however, the thermal magnetic noise angs
magnetic 1/f noise magnetization power do not change with thd6
MR ratio (A?R in Eq. (4)). Further discussion on noise and’

detectivity can be found in the next section. jg
50
B. Detectivity 51

To fabricate high-performance MR sensors for measuriné2
ultra-low magnetic field, researchers endeavor not only to boost3
their sensitivity but also to improve their detectivity whicR4
determines the smallest magnetic signal a sensor can detect [5(55,5
222,223, 243, 249-255, 257-260, 314-326], as shown in Figure®
8. The detectivity [250] of an MR sensor is associated with it3/
sensitivity and noise level, as expressed by 58

1 |Sy
p=1 % ©)
where D is the detectivity, S is the sensitivity, V is the applied
bias voltage and Sv/V? is the normalized noise level. From Eq.
5, both improvement of the sensitivity and suppression of the
sensor noise can enhance the detectivity. As discussed in
Section A, incorporation of the MR sensor array with MFCs can
dramatically improve its sensitivity [245, 252], leading to a
considerable increase of the sensor detectivity. On the other
hand, the sensor detectivity can be greatly enhanced by
reducing the sensor noise through optimization of sensor
fabrication, such as enlarging the sensor area [250, 315],
modifying the annealing process [243, 258, 323], and soft-
pinning the sensing layer [249, 257]. Defect-free MR sensors
with relatively large sensing area can greatly reduce the 1/f
noise and the sensor detectivity of ~60 pT/Hz%> has been
successfully demonstrated at 10 Hz [257]. Applying hard-axis
bias field [263, 283] or orthogonally soft-pinning the sensing
layer [249, 257] are effective techniques to stabilize the
magnetization of the sensing layer and suppress the sensor
noise. MultiDimension Technology released its highly-
sensitive TMR sensors (TMR9001/9002) with detectivity of
~50 pT/Hz®® at 10 Hz in a commercial product, and ~20
pT/Hz%5 at 10 Hz in a larger prototype device [327]. Owing to
unremitting research efforts, detectivity of pT range [243, 249,
252, 254, 257] has been achieved at room temperature and
detectivity of fT range has been demonstrated at low
temperature (77 K) by using superconductor MFCs [28, 222].
There are other methods for reducing the noise in MR sensors.
In the modulation technique, MFCs are deposited on micro-
electro-mechanical systems (MEMS) flaps which are driven to
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Fig. 10. Noise reduction trend at room temperature in both the magnetization-transition region and parallel magnetization configuration from 1990 to

2032.

oscillate at very high frequencies [328]. The advantage o33
modulation can only be achieved when the sensor element i34
responsible for most of 1/f noise, not the other parts of th85
sensor system. Moreover, it is challenging to design 86
successful fabrication route to combine the MEMS technolog@7
and magnetic sensor. Though the modulation based on MEMS8
was presented, and several prototypes were fabricated witB9
electro-static combs, torsionators, and cantilevers, thd0
modulation efficiency is low [329]. In the chopping techniquejl
chopper switches are designed for the output of MR sensord2
[330]. The noise characteristics of the chopper switches ard3
dependent on charge leakage, parasitic capacitance, 1@4
substrate coupling noise, voltage stability of the drive signak5
and the external electric field sensitive electrodes [331]. AH6
these factors need to be considered and optimized in order td7
suppress the noise. The methods of modulation and chopping8
still require research efforts to overcome these technicad9
challenges. 50

51
To accomplish fT/Hz®S detectivity at/near roo

temperature, two technological challenges (TC) have beegs
identified: 54

TC 2.1: development of high-gain (>1000) MFC at/neagg

room temperature.
57

TC 2.2: accomplishment of ~101* 1/Hz normalized nois&8
level in low frequency range (typically <100 Hz) at/near roorgg
temperature. 50

Regarding TC 2.1, high-temperature superconductor MFC61
are required to be developed. Comparing superconducting2
MFCs and SQUIDs, the SQUIDs have two disadvantage$3
Firstly, the Josephson junction of SQUIDs is short-lived ané4
complicated to fabricate because of poor reproducibility ané5
low yield, and thus they are expensive [332]. Secondly, thougb6

SQUIDs comprised of ceramic HTS materials could alleviate
the size, weight and power requirements, they have been found
to be difficult to work with because of anisotropic electrical
properties and intrinsic noise [333]. Compared to the
conventional MFCs using soft ferromagnetic materials [249,
250, 254, 317, 326], superconductor MFCs exhibit a much
higher gain (100-1000), as reported in [28, 222]. However, the
application of superconductor MFC is restricted by its relatively
low superconducting critical temperature (T¢) [28, 222, 223,
334-366], which is far below the room temperature, as shown
in Figure 9. The highest known T, values in the Cu-based and
non-Cu-based superconductors are 133 K [367] and 107 K
[358] at ambient pressure, respectively. Under high pressures,
T. values of certain superconducting materials can be notably
increased [368-370] and even  room-temperature
superconductor MFCs can be realized. When high pressure is
applied, the T. values around 200 K for non-Cu-based
superconductors have been achieved [368, 369], which is much
higher than their Cu-based superconductor contenders (T, ~164
K). To predict higher T. values, a linear curve was fitted with
the past data for the non-Cu-based superconductors in Figure 9.
From the extrapolated curve, one expects the observation of
non-Cu-based superconductors with higher T than their Cu-
based superconductor contenders by ~2022. The T. value can
possibly reach ~210 K by ~2027 and exceed ~245 K by ~2032,
which is approaching room temperature.

Regarding TC 2.2, suppression of the noise in the
magnetization-transition region is the primary task because the
sensor noise mainly originates from the magnetization
fluctuations during operation and its magnitude is considerably
larger than that of the electrically originated noise (as exhibited
in the parallel magnetization configuration) [255, 273, 371-
383], as shown in Figure 10. Since operation region of MR
sensors is where the magnetization of the sensing layer
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undergoes a transition, we predict the noise reduction trend b$6
fitting and extrapolating the noise data for the magnetizations7
transition region with a linear line. Normalized noise leve38
around ~3x10* 1/Hz can be expected by ~2027 and one caf9
estimate noise level to go down to the order of ~1x10%° 1/Hz i60
approximately 15 vyears (i.e., ~2032). Considering thél
forecasted accomplishments for both sensitivity and noise leve$2
in the following 15 years, one expects that detectivity of ~63
pT/Hz%S (1% Milestone of detectivity: Mge 1) can be achieve4
by ~2027. Incorporating MR sensors with near-roomé5
temperature superconductor MFC (gain: ~1000 times), thé6
minimal detectable field of ~10 fT/Hz%® (2" Milestone of7
detectivity: Mgec 2) are expected by ~2032 (see the forecaste68
milestones in Figure 8). 69

It should be noted that the expected detectivity may not b70
achievable without the deployment of magnetic shieldin
because the external background magnetic field noise ma
render the low-field detectivity useless. Magnetic shielding cal
effectively eliminate background field noise and facilitate low-
field detection [384-395]. Magnetic shielding with higi5
shielding effectiveness can be fabricated with soft magneti
materials such as Conetic alloy [395, 396] and multi—layereg7
structures [397-399]. The field reduction exceeds 25dB for
combined active and passive shields in 2003 [400]. In 2007, @8
shielding factor of 6 x 10° was measured in a nested set of threg9
shields, and a shielding factor of up to 10*2 was predicted whes0
all five shields were used [401]. In the work of Komack’s grougl
[402], a magnetometer with single-channel sensitivity of 0.732
ft/Hz®> was demonstrated by using a ferrite shield, limited onl
by the magnetization noise of ferrite and photon shot noise. |
the high-temperature superconducting area, shielding factors a
high as 95% were observed for 3-layer hybrid shieldin
structures in 2016 [403]. A group reported their work in whic
98% attenuation of the magnetic field was also achieved b
more than five layers of the coated conductor tape wound wit
the same orientation and angle to cover the gaps of an inne
layer achieves in 2018 [385]. Some researchers are now makin
use of computational intelligence to optimize a series 0
shielding parameters such as its material, shape, thickness, an
the number of layers for a higher shielding effectiveness [404=

94
406]. o

Also, it is worth mentioning that the influence of MR rati@6
and noise are discussed separately in Section IV(A) and (BR7
respectively. The discussion in Section IV(A) on sensitivity an@8
MR ratio is purely based on %/mT as derived from Eq. 2 whicB9
does not take into account the noise. The detailed discussion g 0
noise is provided in Section IV(B) which elaborates
detectivity from the point of view of noise level (T/Hz®5).
fact, a good MR sensor needs both good MR ratio and low noi
level. Now the researchers are working on the realization of t
ultra-sensitive and high-resolution MR sensors by reducif
their intrinsic noise without sacrificing MR ratios. The authgr
in Ref. [407] worked on a TMR device with CoFeB-MgQ-=
CoFeB structures whose MR ratios up to 600% at rooiiﬁ
temperature, and presented that the voltage-induced magne
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anisotropy modulation could be used to control and reduce
magnetic noise in TMR sensors with perpendicular anisotropy.
The magnetic noise was reduced by around one order of
magnitude. In Ref. [320], the yoke-shaped TMR sensors based
on MgO-barrier MTJs have been designed. Their field
sensitivity was up to 27%/mT, while the field detectivity
reached 3.6 nT/Hz%%at 10 Hz and 460 pT/Hz%®at 1k Hz through
designing a nearly-perpendicular configuration of two
ferromagnetic electrodes. The TMR sensors fabricated with
electron-beam evaporated MgO barriers can provide about an
order of magnitude improvement in their signal-to-noise ratio
compared to the conventional sputtered MgO tunnel barriers
[380]. Frequency noise was investigated in MgO double-barrier
MTJs with TMR ratios up to 250% at room temperature, and
the research disclosed that the double-barrier MTJs were useful
for improving the signal-to-noise ratio compared to single-
barrier MTJs under low bias. These methods are critical for the
overall improvement in the field detectivity of MR-sensor
devices and their applications.

C. Operational performance (power consumption, mechanical
flexibility, robustness)

In addition to high-performance sensing, MR sensors have
other desirable capabilities, including low power consumption
[242-245], high mechanical flexibility [83, 85], and high
robustness [127, 128, 134, 135], as shown in Figure 11.

Power consumption is critical in certain applications
where power supply is limited, such as MR elements used in
spacecraft [226, 229], MR sensors integrated into portable
devices [96, 98, 99], and also MR sensors for the Internet-of-
Things (10T) [408, 409]. As exhibited in Figure 11(a), an MR
sensor with power consumption of 0.1 mW was demonstrated
in 1998 [242]. After more than 10 years of development, a
sensitive 64-element MTJ sensor was fabricated by Liou et al.
in 2011 and each MTJ element only dissipated ~16 uW of
power [243]. The power consumption of MR sensors was then
further reduced to ~3 pW by Yin et al. in 2014 [245]. In the
same year (2014), Honeywell released two nano-powered MR
sensors (SM353LT, SM351LT) in which power consumptions
were as low as ~510 nW and ~590 nW, respectively [244]. By
fitting the historical development over the last two decades with
a linear line, one can expect MR sensors with ultralow power
consumption of ~1 pW (Milestone of power consumption:
Mpow) in ~2022.

Another operational parameter is the mechanical flexibility
of MR sensors [64-87], which is crucial for MR sensors
installed in flexible devices or for MR sensors sustaining
mechanical strains. The development trend of the mechanical
flexibility of MR sensor can be divided into three levels,
namely, moderately flexible (fabricated on a planar substrate),
highly flexible (bendable or able to be elongated), and
extremely flexible (twistable) in Figure 11(b). In “Moderately
flexible” level, MR sensors deposited on/in different flexible
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Fig. 11. Development trend of (a) power consumption, (b) flexibility, and (c) robustness of MR sensors from 1990 to 2032. PDMS represents
poly(dimethylsiloxane) membranes.

materials in a planar substrate were fabricated [64-66, 68, 70].4 nanowires in etched polycarbonate membranes were reported.
Parkin et al. fabricated the first flexible GMR multilayer sensor5  Since then, MR sensors grown on a variety of planar substrates
on a kapton substrate in 1992 [64]. In 1994, growth of GMR6 were realized, such as mylar, kapton, ultem, polypropylene
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sulfide, polystyrene, and poly (2-vinyl pyridine) [65, 66, 6&6
70]. After these achievements, mechanical flexibility of M7
sensor was tested and characterized through bending an88
elongation in the period of 2008 to 2017 (highly flexible) [7%9
78, 80, 85-87]. MR sensors with tolerable tensile strains of
2.7%, 4.5%, 29% were recorded in 2008 [73], 2011 [78], anf9
2012 [80], respectively. Bending experiments were performe
on both multilayer (1000 bending/unbending cycles) and spiﬁ2
valve (500 bending/unbending cycles) GMR sensors [73, 80 )3
The GMR sensors exhibited no changes in both resistance an
MR ratio after bending/unbending tests. In 2014, Bedoya—Pint@5
et al. fabricated flexible TMR sensors on kapton substrates an
obtained TMR ratio of 12% in bent state [85]. In 2015, Freitas ™8/
group incorporated MR sensors into micromachined silicoff8
probes, which exhibited constant MR ratio and no significan
changes in their noise level under a continuous tensile stres
[86]. In 2017, the same group fabricated high-performance MTHL
sensing devices (TMR above 150%) on flexible polyimidg2
substrates [87]. Under controlled mechanical stress condition
TMR value showed subtle variation (~1%) and sensitivit%4
changed by 7.5% when the curvature radius of the device wa;
reduced down to 5 mm upon bending. These work®
unambiguously demonstrated the mechanical flexibility of MR/
sensors, elevating the mechanical flexibility level fro
“Moderately flexible” to “Highly flexible”. From Figure 11(b

it requires around 10 years to develop MR sensors fro
“Moderately flexible” to “Highly flexible” and each stage last80
for around 10 years. We therefore expect that the futur8l
milestone of mechanical flexibility (Mpex: “Extremel$2
flexible”) will be reached in ~2028 with further improvement83
on stability of flexible MR sensors and their tolerable tensil84
strain. In this stage, the MR sensors are expected to maintaiB5
the MR ratio even after twisting, and thus can be made int86
almost any shape [66, 410]. This extremely flexibl87
performance of MR sensors will allow many future use o8
organic electronics for bio-application by forming the MR9
sensors on organic substrate [53]. 90

In addition to the mentioned operational parameters, thg;
robustness of MR sensors is one of the paramount issue
especially for sensors operating in hostile environment
Similarly, the development trend of the robustness of M%
sensors is summarized into three levels, namely, moderatelg6
robust (only thermal endurance), highly robust (multi-degre
environment endurance such as temperature, irradiation, an
vibration), and extremely robust (high endurance in muItiQ9
degree environment) in Figure 11(c). In “moderately robusltOO
level during the period of 2000 to 2001, basic tests E}
robustness of MR sensors were conducted on their therma
stability. In 2000, Lenssen et al. testified the thermal angd>
magnetic stability of GMR sensors at high temperatur 53
(>200°C) and large magnetic field (>200 kA/m) [127]. In 20
GMR sensors operating with high stability at 170°C for ~40§@
h were reported [128]. In “highly robust” level, the robustn:
of MR sensors was systematically validated in multi-degr
environements. For example, the application of MR sensaf§g
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was validated in aerospace by performing the up-screening tests
and irradiation tests in 2010 [134]. The up-screening tests
included a series of tests, such as vibration, outgassing, and
temperature-aging.

In another published work in 2012, a systematic gamma
irradiation test of MR sensors was carried out [135]. AMR
sensors were tested to be robust against radiation doses of 200
krad with a dose rate of 5 krad/h. In 2015, X-Ray irradiation test
of TMR sensors was performed by Freitas’s group under total
dose level of 43 krad with a much higher dose rate of 36 krad/h
[141]. The device’s sensitivity exhibited a slight reduction
during the irradiation and recovered after the irradiation. From
Figure 10(c), since there is steady progress in robustness level
in the past two decades (from “Moderately robust” in 2000 to
“Highly robust” in 2010), we can expect MR sensors will be
demonstrated to be extremely robust (Milestone of robustness:
Mrob) by ~2020. The achievement of Mo, will enable advanced
applications that critically rely on sensor robustness (e.g., MR
sensor with high stability and long lifetime operating in hostile
environments). These achievements indicate that MR sensors
are promising candidates for a wide range of applications where
power saving, mechanical flexibility, and robustness are of
significant importance.

V. MR SENSOR APPLICATIONS AND FUTURE DIRECTIONS

Continuous research and engineering efforts on MR sensors
have remarkably improved their sensitivity, detectivity,
mechanical flexibility, power consumption, and robustness as
discussed in Section 1V, opening up a wide range of
applications [29-31, 33, 34, 37-46, 48, 50, 51, 53-55, 78, 97,
109, 120, 219-223] as shown in Figure 5. Main MR sensor
applications can be categorized into five areas, including
biomedical applications, flexible electronics, PS and HCI,
NDEM, navigation and transportation. To shed light on the
future directions of MR sensor applications, five roadmaps for
these five application areas were developed. The historical data
from literature analysis was fitted with the logistic growth
model to obtain the fitted trend curve. The fitted curve was then
further adjusted and fine-tuned based on the critical milestones
for sensor parameters developed in Section IV and the
consensus of the professional judgements reached during the
taskforce meetings and subsequent communications. Roadmaps
that predict new opportunities for MR sensor technology in
different application areas were created based on this
extrapolated trend curve. Speculations about new MR
applications, products, and services were presented for the next
15 years and beyond.

A. Biomedical applications

Regarding MR sensor applications in the biomedical field,
the detectivity of MR sensors is a paramount issue because the
generated biomagnetic signals are usually rather small, ranging
from nT to fT [14-46, 48-58, 222]. The roadmap is shown in
Figure 12. Biomedical applications for MR sensor technology
can be categorized into two scenarios (Sbiomed):
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Shiomedl. MR sensors to detect magnetic signals generate@7
from bio-functionalized nanoparticles/nanostructures 28

Shiomed2. MR sensors to directly detect magnetic signalzg
generated from human organs (e.g., brain, heart, muscles, etc.)?1

In Skiomedl, @5 MR sensor technology improves and mature82
after the basic technology research stage (TRL 1-2) from 19733
to 1990, the feasibility of applying MR sensors in biomedic 4
research was investigated during the period from 1990 to 200
[16, 18-21, 23, 24, 26, 27]. In 1998, the measurements o
intermolecular forces between DNA-DNA, antibody-antige
or ligand-receptor pairs were demonstrated by using GM
sensors [16]. In 2001, the detection of DNA hybridization was
achieved by using GMR sensor arrays [18]. The feasibility a9
adopting MR sensors in biomedical applications wa40
preliminarily proved and TRL reached 3. 41

This technology was then further developed by severaj2
groups. In 2002, a group of Instituto de Engenharia de Sistema:
e Computadores and Instituto Superior Tecnico introduced
method to control the movement of nano/micro-sized magneti
labels and demonstrated the detection of single microsphere
bonded with biomolecules [19]. Also, AMR sensors were usea
to detect micro-sized nanoparticles and a AMR-based bio-
sensor prototype was proposed in 2002 [21]. In 2003, thd9
biological binding of single streptavidin functionalize80
magnetic microspheres on the surface of GMR sensors waS1
detected by Graham et al. from INESC-MN (former INESC)2
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and IST [23]. In the same year, Wang’s group in Stanford
successfully detected the presence of a single magnetic bead
(Dynabead, 2.8 um in diameter) with micro-scaled spin valve
GMR sensors [60]. All these works laid the groundwork and
revealed the feasibility of adopting MR sensors in biomedical
research and indicated that MR sensors can be utilized to
develop biomedical technology (TRL 3-4).

After 2004, further development of biomedical technology
with MR sensors then proceeded and focused on detecting
magnetic signals generated from biofunctionalized magnetic
nanoparticles/nanostructures [29-31, 33, 34, 37-39, 41-46, 48,
51, 53-55, 191, 222].

In the period of 2005 to 2008, the detection of bio-
functionalized nanoparticles/nanostructures with MR sensors
was demonstrated in both in-vitro and in-vivo conditions [29-
31, 33, 34]. In 2005, cystic fibrosis related DNAs were
successfully detected with spin-valve GMR sensors by using an
AC magnetic field focusing technique [29, 30]. Grancharov et
al. successfully detected protein-functionalized and DNA-
functionalized monodisperse nanoparticles with a TMR bio-
sensor [31]. These results suggested that MR bio-sensors were
validated in laboratory environment and TRL 5 was achieved.

Since then, bio-sensing applications with MR sensors were
developed in relevant environment [35-37, 39, 42, 43, 48, 51,
55]. At the 29" IEEE Engineering in Medicine and Biology
Society conference in 2007, an AMR-based biomagnetic

2: ~105 %/mT; My, 2: ~10 fT/HZS
1: ~10* %/mT; My, 1: ~1 pT/Hz"S
2010

MR-based MEG (~2032)-----
Molecular diagnosis (~2030)~~~~~~~~"~

sens

]
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Magneti particle d i
with GMR [37]2008, Cardosm
temone DNA detection and HPV gendtyping
with GMR biochip[61]2008, x',u

Cystic fibrosis related DNAs detechon with GMR
[29]2005, Ferreira |

Magnetic beads detection with GMR platform ;
[26]2004, Ejsing ,
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1
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Fig. 12. Roadmap for MR sensors in biomedical applications from 1970 to 2032.
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prototype was demonstrated to evaluate the gastric activits
contractions and in-vivo tests were performed [35, 36]. In 20086
a portable bio-sensing prototype was developed and th&7
detection of magnetic nanoparticle was demonstrated [37]. |
the same year, Wang’s group developed a GMR-based biochi
for DNA detection and Human Papillomavirus (HP

genotyping [61]. Their work also showed real-time sign
responses of multiple DNA fragments, which demonstrated th
multiplex detection capability of the GMR-based biochi
These works revealed that MR-based bio-sensing prototypea 4
were tested and implemented in practical environment and TRI65
6 was reached. 66

After 2008, bio-sensing chips/systems with MR sensors weré7
developed and thus MR sensor-based biomedical technolog$8
was elevated to a higher level. In 2009, a portable GMR9
platform was demonstrated for detecting magnetically—labelle%
DNA by Germano et al. [39]. Furthermore, Wang’s grou
developed a multiplex GMR-based bio-sensing platform f
protein detection in blood and cell lysates [62]. The developec)
platform exhibited an extensive linear dynamic range over si
orders of magnitude and a protein detecting resolution down tz

6

9

attomolar level. In 2014, the detection and characterization o
circulating tumor cells (CTCs) were conducted with a GMR5
based biochip and CTCs were detected in the blood sample
from lung cancer patients [54]. In 2018, the detection
Bacillus Calmette-Guérin bacteria was also carried out with a
MR-based bio-sensing platform for tuberculosis diagnosis [(SBE1
These works elevated the laboratory achievements of MR biog2
sensor technology to the clinical/near-clinical level (TRL ~7).83
Compared to MR sensor applications in Spiomedl, th84
requirements of MR detectivity is much higher in Spiomed
which is attributed to the fact that the generated magneti
signals from human organs are merely in the range of pT (e.g
magnetic field produced by heart) to fT (e.g., magnetic fiel
produced by brain) [14]. For the biomagnetic signals produce
from human organs, two most-investigated signals ar
generated from the heart and brain. These signals contai
valuable information and lead to two application area
magnetocardiography  (MCG) [17, 22, 50] an
magnetoencephalography (MEG) [14], respectively. Seven
years after the detectivity of pT range was reached in 2004 [284
MCG biomagnetic signals from healthy volunteers wergs
recorded and a magnetocardiography MCG signal distributiong
was mapped with a highly sensitive (pT) GMR sensor in 20187
[50]. These technology demonstrations indicated that biogg
sensing subsystems/systems with MR sensors were validated ing
operational environments, and TRL 7 was achieved. 100

To predict and outline the future biomedical applications, thel
above historical biomedical developments summarized fr
the published literature were fitted with the logistic gro
model and the extrapolated trend curve was established (Fig
12). Adjustment of the curve was then performed based on t
critical milestones for sensitivity and detectivity derived 16
Sections IV(A) and IV(B) and the professional assessm

2

16

consensed by the roadmap taskforce. Likely biomedical
applications with MR sensors were then predicted and their
TRL levels were estimated.

Synthesis of DNA-functionalized or even DNA-bases-
functionalized  nanoparticles  will ~ possibly  enable
commercialized genotyping applications [49] with MR sensor
technologies. With the achievement of Mgens1 (~10*%/mT) and
Maetel (=1 pT/Hz®%) in ~2027, MR sensor can be used to
accurately detect the real-time magnetic signals from
magnetically-labeled DNA fragments or entities. After
improving the multiplexing features [41, 45, 61] and localized
detection ability of MR sensors [34], we expect that
commercialized genotyping products with MR sensors will be
released and the corresponding TRL of level 8-9 will be
achieved.

The development of genotyping applications with MR
sensors will promisingly facilitate the diagnosis and treatment
of genetic diseases. Continuous efforts on synthesis of various
bio-functionalized magnetic nanoparticles or nanostructures
[23, 31, 40] will stimulate the application of highly-sensitive
MR sensors in molecular diagnosis [15, 25]. However, the MR-
based molecular diagnosis systems are required to be validated
and their commercialization requires Food and Drug
Administration (FDA) clearance from the government of the
targeting market. We therefore expect that MR-based molecular
diagnosis products or services will be commercialized available
a few years later than genotyping and its maturity will reach a
slightly lower TRL of level ~8 in 2030. This accomplishment
can promisingly offer personalized diagnosis and possibly lead
to optimized therapies for individual patients.

On the other hand, a more challenging category of
application, MR-sensor-based MEG requires fT range
detectivity and therefore will be developed after the
achievement of Msens1 (~10%%/mT) and Mgeted (~1 pT/Hz%%) in
~2027. Through further improvement of sensitivity and
detectivity towards Meens2 (~10° %/mT) and Meec2 (=10
fT/Hz%%) respectively, one can expect the implementation of
MR-sensor-based MEG applications (TRL~8) with elaboration
on clinical level around or after 2032.

Apart from MR sensing elements, the other key factors such
as magnetic labels, surface chemistry, microfluidic systems and
electronics setup are critical for achieving a high-performance,
automated, portable point-of-care bioanalytical assays [411].
The size of the MR sensing element and the bio-molecule
binding capacity of the magnetic bead need to be carefully
designed [9]. A reliable biochip platform needs a fine control of
the surface chemistry in order to achieve immobilization
efficiency and specificity and avoid corrosive effect. A
microfluidic system is required to establish mechanism for
sample delivery protocol and controlled washing [411]. Last but
not least, the system miniaturization of signal processing and
system automation will be implemented with electronics
microsystems for building point-of-care devices [412, 413].
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Flexible electronic devices have gained increasing interestd
due to the promising potential applications offered by theig?
pliable surface geometries [78, 81, 83, 85]. MR-based device3?
have been implemented on various types of flexible substrates3®
such as stretchable and deformable polymeric materials [64, 70?’2
75, 78, 81, 85], and even papers [79, 83]. This roadmap ig3
shown in Figure 13. 34

The flexible MR sensors are required to be robust agains?5
mechanical bending or stretching and withstand many cycles
deformations without the degradation of sensing performanceg.
The emergence and growth of the flexible MR sensopd
technology took place in the period of 1992-2007 [64-72]. 189
1992, Parkin et al. investigated the GMR effect in co/cgo
multilayers deposited on a Kapton polyimide substrate b91
magnetron sputtering [64]. In 1994, growth of GMR nanowired2
in etched polycarbonate membranes were reported by Piraux é3
al. [65]. Two years later (1996), Parkin successfully fabricated4
spin-valve GMR sensors on other flexible organic films (mylays
a transparent film, and ultem polyimide) [66]. These works builig
the foundation and proved the feasibility of manufacturingy
flexible MR sensors, pushing the TRL of the flexible MR sensogg
technology towards level 3. 49

This technology was then further developed by several
groups. In 2002, Yan et al. deposited GMR multilayers on
flexible polypyrrole films [68]. The mechanical flexibility of

B. Mechanically flexible electronics

(~2023) My,: Extremely flexible
(~2020) M, ,:

1980
- @ Achieved applications

9 | O Predicted applications
| — Fitted curve
|- — Extrapolated curve

1990

2000

~N

Hybrid magnetoelectronic systems (~2030) - - - - -

Printable GMR on papers, polymers, ceramics[79]2012, Karnaushenko
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the prepared GMR film was tested by cutting it into various
shapes. In 2006, Uhrmann et al. reported the mechanical
flexibility of GMR spin valves grown on polyimide substrates
and the sensors were elastic up to an elongation of 3% [70].
These studies further proved the feasibility of flexible MR
sensor technology and TRL 4 was reached.

After 2006, the mechanical flexibility of MR sensors was
tested through the bending and strain experiments [73, 78, 80,
85]. In 2008, tensile strain measurement was carried out on the
GMR sensors on polyester substrates and the stress was applied
to the GMR sensors by performing in-plane elongation [73].
The sensors exhibited great stability and withstood 1000
bending/unbending cycles with no degradation of GMR ratio.
In 2011, multilayer GMR sensors on free-standing
polydimethylsiloxane membranes revealed a high GMR of 50%
and the GMR effect was preserved with tensile strain up to 4.5%
[78]. These works demonstrated the mechanical flexibility of
MR sensors and pushed the TRL towards level ~5.

The mechanical flexibility of MR sensor was then further
enhanced. In 2012, the tolerable tensile strain as high as 29%
was achieved by depositing spin valves on pre-stretched and
pre-wrinkled polydimethylsiloxane substrates [80]. In 2014,
Bedoya-Pinto et al. successfully deposited TMR sensors on
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Fig. 13. Roadmap for MR sensor applications in flexible electronics from 1970 to 2032.



O~NO O WN B

(~

(~2027) M

1970

1980 1990
@® Achieved applications

9 —©- Predicted applications
- —— Fitted curve
8 - - - Extrapolated curve

~
|

[100,101]2013&2014, Simmons

(-2}
T T

movement using GMR platform
[97]2009, Santos

o

|_sensor containing GMR elements
[95]2004, Bonnet

w

N

Technology readiness level
E-N

Room temperature (RT)
GMR observed

@

]

]

1

]

[4]1991, Dieny -
O

-

sens

2000

Finger tracking system with MR sensors =~ -2

L Acquisition and analysis of 3D mandibular

@ E ~ [96]2006, Bae | i

-=-=-RT TMR observed[287]1995, Miyazaki

18

2032) M, 2: ~105 %/mT; My, 2: ~10 fT/HZS
1: ~10* %/mT; My, 1: ~1 pT/HZ"S

2010

(~2023) M

dete

mh

pow*

HOH
___________,_9_.___

& .

Artlﬁcn#l I|mbs wnh
MR serjsors (*2030) |

1

! Man-contfolled
i Robots with
i

1

1

MR-based AR/VR

devices (~2027) MR sensdrs

(42032) H
. |

I
Gesture capture and coqtrol glbves wuth MR

* - - Head-motion-controlled whdelchan;
with MR-based tilt sensor[9412003,:Chen

“ - - Steering controller for autono[nous l’obots
with MR sensor[92]2002, Kim !

0 | TMR discovered GMR discovered
[3]19715’ Ju“ie? 1 [1]1988 Ba|b|0l‘| | 1 | 1 | 1 o | 3 )
1970 1980 1990 2000 2010 2020 2030
Year

Fig. 14. Roadmap for MR sensor applications in PS and HCI from 1970 to 2032.

kapton substrates and demonstrated the preservation of TMR7
effect in bent states [85]. Also, flexible MR sensors prepare@8
with printable magneto-sensitive inks were reported b9
Karnaushenko et al. [79]. The printable MR inks were prepare80
by a process including magnetron sputtering, rinsing, bal
milling, and mixing. The prepared inks were then painted 082
various substrates (e.g., papers, polymers, and ceramics) an83
the fabricated sensors with GMR response up to 8% werd4
demonstrated. This fabricated GMR sensor was integrated int85
a paper-based electronic circuit and acted as a magnetic switcB6
of the whole circuit, which confirmed the functionality o37
flexible sensing systems/subsystems with MR sensors. Thes88
works revealed that the mechanical flexibility of MR sensor,

was validated in practical environments and TRL reached IevejO
6 and approached early stage of level 7. a1

The enhancement of mechanical flexibility will enable thd2
applications of MR sensors in wearable and portabld3
electronics. Most of the reported flexible MR sensors werd4
composed of a flexible polymeric substrate and a conventionad5
MR multilayer structure [53, 64, 66, 68, 70-73, 75, 78, 80, 846
85]. Although the polymeric substrate was robust against’
mechanical deformations, the MR response of the multilaye48
tended to degrade after many bending cycles [73], whicA9
essentially limited its sensing performance. To resolve thi 0
issue, all-polymeric-based (APB) or all-organic-based (AOB, 1
MR devices are required to be developed, which is a promising2

pathway toward highly deformable and bendable MR sensors.
An important step forward for the APB or AOB MR devices
was the demonstration of MR effect in an organic spin valve
where the organic V[TCNE]x (x ~ 2, TCNE:
tetracyanoethylene) served as ferromagnetic layers and the
rubrene (Ca2H2s) was used as the insulating barrier [77]. After
the achievement of Mo, (extremely robust) in ~2020 and the
development of sensor mechanical flexibility towards Myex
(extremely flexible) in ~2028, one can expect the realization of
APB or AOB MR system (TRL 7-8) in ~2023 with higher
mechanical flexibility as well as better robustness through
performing necessary deformation and bending evaluations.

The implementation of APB or AOB MR sensors will lead to
the achievement of fabricating MR sensors with higher
mechanical flexibility as well as better robustness, promoting
the application of MR sensors in wearable, portable, and
printable electronics. Particularly, the printable MR sensors will
revolutionize the field of magnetoelectronics offering low-cost
and large-scale production in manufacturing processes.
Through research efforts on the synthesis and optimization of
MR inks, paints, and pastes, we expect that the printable MR
sensors with high processability (TRL~8) can be accomplished
in a short period (in ~2025).

After then, hybrid magnetoelectronic devices can be
developed by integrating printed MR sensors in a purpose-
designed electronic circuit (e.g., authorization, monitoring, data
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recording, etc.). The integrated MR sensor can serve as 29
magnetic-information acquisition element or a magnetically30
manipulable option in the hybrid magnetoelectronic devices31
However, the implementation of actual hybri82
magnetoelectronic systems (TRL-9) will be expected withiB3
five years (in ~2030) after the demonstration of the higB4
processability of printable MR sensors. The development 035
printable MR sensors can promisingly reduce the fabricatioB6
cost, weight, and physical dimension of MR sensors bg7
replacing conventional substrates (Si) with standard printing8
materials (paper, polymer, ceramics), promoting the highé9
volume production of printable magnetoelectronics. 40

C. Position sensing (PS) and human-computer interaction 41
(HCI) 42

43
Owing to the high sensitivity, low power consumption angd,4

small physical dimension, MR sensors have been considered agg
promising magnetic sensors embedded in PS applications [88;¢
91] and HCI systems [94-101, 414]. This roadmap is shown ip-
Figure 14. 48

In PS applications, MR-based linear and angular sensors aré9
used to acquire incremental or absolute scale data fromgg
magnetic linear rulers, code wheels, and human body [88-91;¢
94, 96, 97, 100, 101]. Through software development ang-
integration of computer interface, the obtained information cags
be processed and further utilized in HCI implementations. g4

In the period of 2002 to 2003, the feasibility of integrating®
MR sensors into PS and HCI was investigated [92-94]. In 20056
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robot was designed [92]. A computer simulation was performed
to verify the performance of the controller. In 2003, Chen et al.
proposed a head-motion-controlled wheelchair with an MR-
based tilt sensor integrated into the headgear [94]. The
comfortability and safety of the developed wheelchair were
tested and verified. Basic biomechanical motions were captured
and processed in these works, which proved the feasibility of
integrating MR sensors into PS and HCI and raised the
corresponding TRL to 3-4.

This technology was further investigated and the acquisition
and analysis of more complicated biomechanical motions and
postures were carried out [95-101, 414]. In 2004, Bonnet et al.
introduced a novel method to evaluate the postural stability with
an orientation sensor containing GMR magnetometers and
accelerometers [95]. By virtue of the high sensitivity of the
orientation sensor, subtle postural variations were captured and
could be utilized in clinical balance assessments. In 2006, Bae
et al. were able to track the wrist gestures and control the
movements of the robot with GMR-based wearable gloves [96].
These works demonstrated the operation of HCI prototypes
with MR sensors and boosted the TRL to 5-6.

The HCI systems/subsystems were then developed and the
TRL was elevated to a higher level. In 2009, the acquisition of
three-dimensional mandibular movements was realized by
using a GMR-based device by Santos et al. [97]. A computer
application was developed to analyze the movements and
generate diagnosis reports. In the period of 2013 to 2014, a 3
degree-of-freedom (DOF) finger tracking system was
demonstrated by using a commercially available 3-axis MR
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Fig. 15. Roadmap for MR sensor applications in NDEM from 1970 to 2032.
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sensor [100, 101]. Both finger joint position and finge29
movement configurations (stationary joint, flexing joint, etc.30
were captured and evaluated. These works validated th81
operational performance of the MR-sensor-based HC32
systems/subsystems and suggested that the TRL entered leve33
7. 34

. 5
Based on past developments and professional consensus O§
the roadmap taskforce members, the future potential MR-base
HCI applications were predicted. As demonstrated in thgz
reported HCI systems with MR sensor descriptio
biomechanical movements of various body parts can b
effectively captured and recorded by processing and analyzin
the acquired magnetic data. This type of biomechanical dat
will likely be used in the field of AR and VR. With th
achievement of enhanced sensitivity (Msensl, ~10% %/mT) an
detectivity (Maetcl, ~1 pT/Hz%%) in ~2027, one can expect that
AR/VR devices integrated with high-performance MR sensor44
(TRL ~8) will be available. 45

Commonly-used joysticks will then be replaced b4$
wearable MR-based controllers to realize uncumbersome HC
interfaces. MR sensors can also be integrated into artificia
limbs of disabilities and the obtained biomechanical signals cag
be processed to assist their desired movements. 51

Further improvement of sensitivity and detectivity wif2
enable accurate detection of biomechanical signals an83
reduction of power consumption (Mpow, ~1 pW) will extend the4
lifetime of the artificial limbs with MR sensors, which will push5
forward its maturity level to 8-9 in around 2028. Furthermoreh6

(~2032) M,,,.2:

(~2027) M

1980 1990

sens

2000

20

the implementation of MR-based man-controlled robots will be
possibly realized by collecting and processing all the
biomechanical movements. However, such technology will
require a tremendous amount of tests and assessments and
further improvement of MR sensor performance (Msens2, ~10°
%/MT; Meetco, ~10 fT/Hz%5). We therefore estimate that the full
maturity (i.e., TRL 8-9) of the MR-based man-controlled robots
will be accomplished around 2032.

D. Non-destructive evaluation and monitoring (NDEM)

Compared to destructive sensing devices, NDEM with MR
sensors can be easily installed and accessed by end users,
enabling effective acquisition of magnetic or magnetic-related
information from the subsystems/systems under monitoring
[102-104, 107, 108, 110, 111, 113, 114, 116-122]. This
roadmap is shown in Figure 15.

The feasibility of utilizing MR sensors in NDEM was first
tested by several groups in 2002. The MR-sensor-based NDEM
of subsurface mechanical and chemical damages in metallic or
magnetic components was introduced, especially the
components used in high-standard products (e.g., aircrafts)
[102-104]. A GMR-based inspection probe was developed to
detect the subsurface fatigue cracks and holes under airframe
fasteners [104]. The functionality of the developed probe was
studied by both finite-element-method simulation and
experiment. In the same year, a GMR-based gradiometer was
introduced to measure the tensile stress of the SS400 steels
[102]. Ray Rempt from the Boeing company also proposed an
8-element MR scanner for inspecting the subsurface corrosion
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of the airframe [103]. The stress damages in the steels werb5
evaluated and visualized by interpreting the sensor data with &6
signal processing algorithm. These results suggested that th&7
feasibility of NDEM technique with M

components/breadboards was validated in practical conditionq59
The maturity of NDEM with MR sensors reached TRL 3-4. 60

Another promising application of the non-destructive MRB1
sensors is the evaluation and monitoring of the power grid62
Abundant studies demonstrated the feasibility of using MR3
sensors for monitoring both the high-voltage overheaé4
transmission lines and underground power cables [106, 11085
111,113,114, 116-121]. In 2011, a proof-of-concept laboratorg6
setup was constructed to determine the phase current and liné7
position of transmission lines by Sun et al. [110]. In 2012, P&8
et al. introduced an MR-based power meter to measure near69
field voltage and current waveforms of a power cord [114].0
Accuracy of power measurement better than 5% wagl
accomplished. These works demonstrated the operatioif2
performance of NDEM prototype with MR sensors and3
indicated the achievement of TRL 5-6. 74

Further studies were performed to establish MR-sensoryg
based NDEM systems/subsystems. Pong’s group proposed and
developed several novel MR-based platforms to monitor thg6
loading voltages and currents of power lines [111, 116-118;;
120, 121]. The MR-based monitoring platforms were able teg
characterize the fault location [111] and operation state of theq
power lines by extracting the loading current data [116].
Utilizing the capacitive-coupling between the power lines an§0
induction bars, the voltages of the power lines were accuratel$1
evaluated and the ability of high-frequency transier82
measurement was demonstrated [120]. The phase current of th83
power line was reconstructed by analyzing the magnetic fiel§4
from the power lines. The feasibility and accuracy of th8%
proposed method were verified by a scaled laboratory platforrf§6
and then validated by performing an on-site experiment in &7
substation [121]. This MR-assisted voltage monitoring syster88
was validated with a scaled testbed. These achievement§9
demonstrated that the validation of MR-sensor-based NDENO
systems in practical environment and marked the maturity 091

NDEM technology with MR sensors (TRL 7-8). 92
93
Continuous efforts on improving sensing performance 0§y

MR sensors will promote the development of MR-basegg
NDEM systems. The maturity of this application will enablgg
large-scale evaluation of key parameters of power grids, sucg;
as current [106, 113, 114, 116], voltage [114, 119, 120], phasgg
[110, 116, 117], power flow [114, 119], power quality [119hq
load [117, 119], transmission and distribution line conditiopgq
[111, 116, 117, 120]. By analyzing and processing the powgg
grid parameters, the real-time state of power grids can bgy
evaluated, enabling the prompt determination and response §f3
power faults or abnormal conditions in a wide area. After thg,
achievement of Msens1 (~10%%/mT) and Maetc1 (~1 pT/Hz%®) g5
~2027, the implementation of the large-scale power grjgg
monitoring systems with MR sensors (TRL 7-8) will be

21

expected. The full establishment of these systems (TRL 8-9)
will require a large quantity of supporting facilities and
therefore will be realized in a long-term period (after ~2027).

With the further improvement of MR sensor sensitivity and
detectivity t0 Msens2 (~10%%/mT) and Mgewc2 (~10 fT/HZ%%) in
~2032, another promising field of application is a large-scale
geomagnetic monitoring system, which will be utilized to
monitor subtle geomagnetic disturbances related to some
geomagnetic hazards, such as seismic activities [109]. MR
sensors can be installed on a large seismically-active zone to
monitor abnormal geomagnetic changes that are associated with
seismic activities. With the assistance of a reference permanent
magnet, MR sensors can also be used as displacement sensors
to detect the abnormal disturbances related to foreshock
patterns or plate dynamics [109]. However, the implementation
of a reliable geomagnetic monitoring system with MR sensors
(TRL 8-9) requires a long-term investigation of geomagnetism
and cooperation between geological and magnetic societies,
which will take more time to progress and will be realized
around 2032.

E. Navigation and transportation

MR-based magnetometers have been widely used in
navigation and transportation systems as well [123-126, 129-
133, 136-139]. This roadmap is shown in Figure 16.

In the period of 1997 to 2005, the feasibility of applying MR
sensors in navigation and transportation was investigated. In
1997, MR sensors provided a solid-state solution for building
compass navigation systems for their high sensitivity, good
repeatability and small size [123]. In 1998, an electronic
compass with MR sensor was introduced [140]. The compass
reading was tilt compensated and the disturbance from nearby
ferrous materials was corrected. In 2005, an AMR-based
navigation system was proposed [130]. With calibration of
sensor’s triplet deviation, the introduced navigation system
provided information about actual azimuth, roll and pitch with
improved accuracy. In 2005, a dead-reckoning navigation
system was developed for pedestrian with an array of
accelerometers and MR sensors. MR sensors became capable
of collecting more informative data by virtue of the
development and commercialization of 3-axis/3D MR-based
magnetometers [131, 133, 136]. The commercial dead-
reckoning and inertial navigation systems using MR sensors
have also been developed. For example, the Lord Sensing has
been producing attitude and head reference systems (e.g. Lord
MicroStrain 3DM-GX5-35) with MR sensors to provide
attitude and navigation solutions [415]. The Honeywell has
been producing inertial navigation system (e.g. TALIN 2000)
with MR sensors to provide navigation, pointing and weapon
stabilization [416]. All these research works proved the
feasibility of applying MR sensors in the fields of navigation
and transportation (TRL 3-4).



The technology was further developed and demonstrate@6
from 2007 to 2010. In 2007, by integrating the 3-axis MR7
sensor with accelerometers and gyroscopes, a real-time attitud28
and heading reference system (AHRS) was reported bg9
Cordoba et al. [131]. The constructed system was equipped i80
unmanned aerial vehicles (UAVs) and accurate attitude angl81
measurements were performed for the UAVs operating in bot32
accelerated and non-accelerated conditions. To validate th83
AHRS in various dynamic conditions, Lai et al. designed an84
constructed a 3-axis rotating platform in 2010 [133], which w.
able to simulate dynamic conditions in the operation of differeié6
unmanned vehicles (unmanned underwater vehicles (UUVs
UAVs, self-driving vehicles). Another promising application o
MR-based magnetometers is the vehicle detection an
monitoring [129, 132, 138, 139], which makes use of the loca
magnetic field disturbance caused by moving vehicles. In 2002
a GMR-based vehicle detection and monitoring module wa
introduced [129]. The local magnetic field disturbance wa
successfully detected and the speed of the car was measured o
site. These works demonstrated the implementation of M
sensors in navigation and transportation systems in relevan
conditions and the accomplishment of TRL 5-6.
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With the enhancement of the sensing ability of MR sensor#8
the functionalization and performance of the MR-based vehiclé9
detection systems were remarkably improved [137-139]. 1RO
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2013, Zhou et al. reported the real-time location estimation of
vehicles by utilizing an AMR array [138]. In 2015, the
classification of various types of vehicles were achieved by
analyzing the characteristics of the detected field disturbance
signals [139]. These works demonstrated the possibility of
achieving high-level autonomous vehicles with MR sensors,
such as UUVs, UAVs, crash-proof vehicles, and self-driving
vehicles, which marked the later stage of TRL 6 for navigation
and transportation systems with MR sensor technology.

Considering that the AHRS with MR sensors has already
been validated in several operating conditions [131], one can
expect the integration of AHRS with MR sensors (TRL 7-8)
into UUVs and UAVs by ~2027 with the achievement of Mgens1
(~<10* %mT), Ml (=1 pT/Hz®S). However, the
implementation of crash-proof and self-driving vehicles with
MR sensors would be much more difficult. MR sensors
equipped in these vehicles are required to possess ultra-high
sensing performance. The detected magnetic disturbance from
all the surrounding vehicles and objects are required to be
considered and analysed to avoid possible risks. Therefore, one
can expect that the realization of crash-proof and self-driving
vehicles with MR sensors (TRL 7-9) around or after 2032 with
the achievement of Mgens2 (~10° %/MT), Mgerc2 (=10 fT/Hz%5).
Since the complexity of autonomous crash-proof vehicles is
lower and thus technologically less complicated than that of

o
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Fig. 17. Contribution and impact of MR sensor technology in the concept of smart living, including smart home, smart healthcare, smart grid, and smart

transportation.



self-driving vehicles, the authors believe that the crash-prod$4
vehicles with MR sensors will be implemented a few yearS5
earlier than self-drving vehicles in ~2030. 56
57

VI. 58

The field of MR sensors is now rapidly evolving from°
science to technology. The proliferation of MR devices wit
high operational and sensing performance is opening up
variety of applications based on MR technologies, such a
biomedical applications, flexible electronics, PS and Hcgi

5

OUTLOOK AND PERSPECTIVES

NDEM, and navigation and transportation. The widesprea
utilization of MR sensors will also offer more data an
information (magnetic or magnetic-related) to the Internet ofg
Things (1oT) [417-420], enriching and upgrading the context of7
smart living [421-424], such as smart home [423, 425-427%8
smart healthcare [421, 428-430], smart grid [105-108, 118], andg
smart transportation [431-434], as shown in Figure 17. One ofQ
the key supporting features of smart living is the acquisition angt1
utilization of sufficient data and information from the “Things’z2
which requires a large amount of networked sensors foy3
information collection and processing [426]. Therefore, thg4
robust MR sensors with low cost, low power consumptiornys
small physical dimension, and superb sensing performance cang
be excellent candidates as networked sensors in each aspect of7
smart living. 78

A smart home is a residence equipped with sensor and®
communication technologies that monitor the househol&9
appliances/resident behavior and provide proactive service 1
[421, 429]. Pervasive MR sensors can be embedded iR2
household products, monitoring the states (e.g., on, ofﬁ
standby) of household products [119]. The evaluated data cagq
also be stored in the cloud and accessible to the residents og5
their smartphones, personal computers, and wearable devicegg
The wasteful usage of each household appliance can then bg7
identified and avoided via adaptive control or remote control bgg
residents. With the integration of IoT platform, a pervasivgg
home energy management system will be developed andQ
implemented. Furthermore, the acquired usage data of1
household products and residents’ behavior can be analyzed?
and used to generate the life pattern of the resident. Customized3a
household services (e.g., personalized household appliancg4
automation) can therefore be delivered to the residents. 95

MR devices can also be used as smart-healthcare sensors tg°
support independent living of the disabled and elderly, as we
as to relieve the workload from family caregivers. Real-tim
physiological state or movement will be monitored wit
wearable/portable MR sensors [94-97, 100, 101]. Abnor
situations will be immediately alerted so that necessa
assistance can be provided in time. With the development
MR-based MCG or MEG sensors [50], they can be attached o3
the body of patients with cardiac or encephalic diseases. Timely*
warning can be sent to the corresponding server when a cardi
or encephalic event is detected. Medical assistances and actions
can then be taken by doctors and therapists. Also, low-cost,
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small-size, and highly wearable/portable MR biomedical
sensors can be integrated into point-of-care (POC) devices [51],
which can be widely distributed in hospitals, homes, and in
outdoor areas. Immediate clinical services can be delivered to
patients when diagnosis is completed using these POC devices.
With the help of the POC technology and loT platform,
patients’ past and present healthcare data will be monitored and
recorded. These healthcare data will be accessible to clinicians
or authorized entities. Based on the analysis and evaluation of
the data, healthcare products and services can be provided in
time whenever/wherever they are needed, facilitating the
implementation of pervasive healthcare.

Regarding the smart grid, MR sensors can be deployed in
large-scale for monitoring transmission and distribution
network. Each MR sensor or sensor array is used to monitor the
real-time power grid parameters, such as current [106, 113, 114,
116], voltage [114, 119, 120], phase [110, 116, 117], power
flow [114, 119], power quality [119], load [117, 119],
transmission and distribution line conditions [111, 116, 117,
120]. Power grid abnormal conditions (e.g., fault, sagging,
overload, and imbalance) can be evaluated and pinpointed
based on analysis of measured power grid parameters [111, 116,
117]. Necessary actions can then be performed by operation
staff and predictive decisions can be made for ensuring efficient
transmission and distribution of power in smart cities. The
establishment of the large-scale MR-based NDE power-grid
monitoring system will provide more dynamic and pervasive
monitoring information. This is critical for systematically
evaluation of the existing power grid system and makes the
integration of renewable energy possible.

For the smart transportation aspect, smart sensor networks
with a large amount of MR sensors can be deployed on roads
and vehicles and integrated into a wireless sensor network. The
spatial and temporal distribution of vehicles correlates with
magnetic field and can be collected by MR sensors, because a
vehicle induces perturbation in the local Earth’s magnetic field
as is passed by a sensor [129, 138, 139]. As such, dynamic
traffic information including vehicle speed [129], vehicle
location [138], occupancy rate [129, 139], and traffic flow
volume [129, 139] can be obtained and processed by the server.
The traffic data can then be analyzed by a traffic management
center and utilized to establish a large-scale traffic monitoring
and management system. With the improvement of stability and
efficiency of this type of system, crash-proof and self-driving
vehicles can be further developed promoting the development
of autonomous vehicle transportation systems. Through
establishment of international standards as well as cooperation
across institutions, more revolutionary MR-related products
and technologies may be developed and sustainable MR
industries can be established, which will in turn enrich and
upgrade the content of smart living in the coming 15 years and
beyond.
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VII. CONCLUSION AND FUTURE WORK gg

The roadmap of MR sensors (non-recording) was develope62
in this paper. The past and current status of MR sensors wa 3
identified by analyzing the patent and publication statistics, angg
the timescales of MR sensors were established and predicteds6
MR devices are expected to proliferate with high sensing an§’
operational performance such in the area of biomedic
applications, flexible electronics, PS and HCI, NDEM, ang(Q
navigation and transportation. More investment on MR sensor§l
is needed to reduce their costs in order to compete with HaII72
effect sensors. Tens of millions of Hall effect devices are made4
each year, making the price of Hall-effect sensors cheaper thai5
the MR sensors due to economy of scale [435]. The cost of M
sensor will continue to decrease as the sales volume increaseszg
At high market volume of MR sensors, the cost differenc&9
between Hall sensor and MR sensors is very small. MR sens
can provide unique performance that Hall elements cannot dg»

which makes the widespread use of MR sensor possible. 23
4
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