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Abstract— Magnetoresistive (MR) sensors have been identified as 2 
promising candidates for the development of high-performance 3 
magnetometers due to their high sensitivity, low cost, low power 4 
consumption, and small size. The rapid advance of MR sensor 5 
technology has opened up a variety of MR sensor applications. 6 
These applications are in different areas that require MR sensors 7 
with different properties. Future MR sensor development in each 8 
of these areas requires an overview and a strategic guide. A MR 9 
sensor roadmap (non-recording applications) was therefore 10 
developed and made public by the Technical Committee of The 11 
IEEE Magnetics Society with the aim to provide an R&D guide for 12 
MR sensors intended to be used by industry, government, and 13 
academia. The roadmap was developed over a three-year period 14 
and coordinated by an international effort of 22 taskforce 15 
members from 10 countries and 17 organizations, including 16 
universities, research institutes, and sensor companies. In this 17 
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paper, the current status of MR sensors for non-recording 18 
applications was identified by analyzing the patent and 19 
publication statistics. As a result, timescales for MR sensor 20 
development were established and critical milestones for sensor 21 
parameters were extracted in order to gain insight into potential 22 
MR sensor applications (non-recording). Five application areas 23 
were identified, and five MR sensor roadmaps were established. 24 
These include biomedical applications, flexible electronics, 25 
position sensing (PS) and human-computer interactions (HCI), 26 
non-destructive evaluation and monitoring (NDEM), and 27 
navigation and transportation. Each roadmap was fit with a 28 
logistic growth model, and new opportunities were predicted 29 
based on the extrapolated curve, forecasted milestones, and 30 
professional judgement of the taskforce members. This paper 31 
provides a framework for MR sensor technology (non-recording 32 
applications) to be used for public and private R&D planning, in 33 
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order to provide guidance into likely MR sensor applications, 1 
products, and services expected in the next 15 years and beyond. 2 

Keywords—magnetoresistive sensor, R&D guide, roadmap, 3 
smart living, Internet of Things. 4 

ACRONYMS 5 

AHRS Attitude and heading reference system 

AMR Anisotropic magnetoresistive 

AOB All-organic-based 

APB All-polymeric-based 

AR Augmented reality 

CTC Circulating tumor cells 

DOF Degree-of-freedom 

FDA Food and drug administration 

GMR Giant magnetoresistive 

HCI Human-computer interaction 

HPV Human Papillomavirus 

IoT Internet-of-Things 

MTJ Magnetic tunnel junction 

MFC Magnetic flux concentrator 

MEMS Micro-electro-mechanical system 

MR Magnetoresistive 

MCG Magnetocardiography 

MEG Magnetoencephalography  

NASA National Aeronautics and Space Administration 

NDEM Non-destructive evaluation and monitoring 

PS Position sensing 

POC Point-of-care 

SQUID Superconducting quantum interference device 

TMR Tunnelling magnetoresistive 

TRL Technology readiness levels 

TLC Technological life cycle 

R&D Research and development 

UAV Unmanned aerial vehicle 

UUV Unmanned underwater vehicle 

VR Virtual reality 
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I. INTRODUCTION7 

In the field of magnetic field sensing, magnetoresistive 8 

(MR) [1-4] sensors have attracted much interest owing to their 9 

high sensitivity, low cost, low power consumption, and small 10 

size [5-13]. The technological progress of MR sensors has 11 

resulted in a wide range of sensor applications, products, and 12 

services. These application areas require MR sensors with 13 

diverse properties, from high sensitivity and detectivity for 14 

biomedical applications[14-63], high mechanical flexibility and 15 

compactness for wearable/portable electronics [64-87], low 16 

power consumption and small physical dimension for position 17 

sensing (PS) [88-91] and human-computer interaction (HCI) 18 

[92-101], low cost and mass manufacturability for large-scale 19 

non-destructive evaluation and monitoring (NDEM) systems 20 

[102-122], to high accuracy and stability for navigation and 21 

transportation systems [123-141]. However, there is a lack of 22 

both an overview of the development of MR sensor applications 23 

and a strategic guide for future implementation of MR sensor 24 

technologies. These issues are resolved in this roadmap with the 25 

main scientific and technological objectives as follows: 26 

27 

1. To forecast MR sensor technology for the next 15 years28 

and beyond so as to provide an R&D guide for industry, 29 

government, and academia. 30 

2. To provide a framework for public and private MR31 

sensor research and development (R&D) planning.32 

3. To use our expertise to predict opportunities for using33 

MR sensors to serve society in innovative ways in the next34 

15 years and beyond.35 

The paper is structured as follows. In Section II, the roadmap 36 

development methodology was described. In Section III, the 37 

current status of MR sensors was identified, and the MR sensors 38 

development trend was summarized. In Section IV, critical 39 

sensor parameters were identified and their timelines were 40 

established, in order to gain insight into different possible 41 

sensor applications. In Section V, possible future MR sensor 42 

applications were identified, and five roadmaps were developed 43 

according to the corresponding application areas. These areas 44 

include biomedical applications, flexible electronics, PS and 45 

HCI, NDEM, and navigation and transportation. Finally, 46 

Section VI predicts the most likely future MR sensor 47 

applications. 48 

II. ROADMAP DEVELOPMENT METHODOLOGY49 

In order to have a strategic guideline to follow, a 5-stage 50 

methodology for the roadmap development was established, as 51 

illustrated in Figure 1.  52 

In Stage 1, the roadmap taskforce was commissioned by the 53 

Technical Committee of The IEEE Magnetic Society at the 54 

IEEE International Magnetics Conference (Intermag) 2014, in 55 

Dresden, Germany. Recruitment of taskforce members 56 

commenced.  57 

In Stage 2, the roadmap taskforce discussed the objective and 58 

purpose of the roadmap during the 1st taskforce meeting at the59 

Intermag 2015, in Beijing, China. The scope and objective of 60 

the roadmap were defined, and more taskforce members were 61 

recruited. 62 

In Stage 3, statistics of patents and publications related to MR 63 

sensors (non-recording) were analyzed. The publication data 64 

were collected from the Web of Science by keyword search. 65 

The searching fields were applied only in the Title and Abstract 66 

of publications in order to exclude unrelated topics. The related 67 

patent data were obtained from four patent databases compiled 68 
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by the European Patent Office, United States Patent and 1 

Trademark Office, State Intellectual Property Office of China, 2 

and Taiwan Intellectual Property Office. Based on the patent 3 

and publication data, a professional assessment of relevant MR 4 

sensor parameters was made during the 2nd taskforce meeting at 5 

the Joint Magnetism and Magnetic Materials (MMM)/Intermag 6 

2016, in San Diego, USA. The current status of MR sensor 7 

applications was then discussed, and critical sensor parameters 8 

for non-recording applications were identified.  9 

In Stage 4, published articles and filed patents related to 10 

fundamental MR sensor research were reviewed. A 11 

professional assessment of critical milestones for selected 12 

sensor parameters was made during the 3rd taskforce meeting at 13 

MMM 2016, in New Orleans, USA. Timelines for MR sensor 14 

development and for critical milestones of the sensor 15 

parameters were established and forecasted.  16 

In Stage 5, publications related to MR sensor applications 17 

were analyzed. A professional assessment of future MR sensor 18 

applications was made according to the forecasted critical 19 

milestones for sensor parameters during the 4th taskforce 20 

meeting at Intermag 2017, in Dublin, Ireland. Finally, a review 21 

and prediction of likely MR sensor applications, products, and 22 

services was then performed, and five roadmaps for MR sensor 23 

applications were developed. 24 

The maturity levels of MR sensor applications, products and 25 

services were gauged by the technology readiness levels (TRL) 26 

[142]. In this paper, the classification of TRL defined by 27 

National Aeronautics and Space Administration (NASA) were 28 

adopted [143]. The TRL values of the historical MR sensor 29 

applications were fitted with the logistic model [144, 145]. As 30 

a commonly-used growth trend curve, the logistic model has 31 

been widely utilized to describe the S-shaped feature of the 32 

technological life cycle (TLC) [142, 146, 147], which is 33 

typically comprised of four phases: emergence, growth, 34 

maturity, and saturation, as exhibited in Figure 2. The formula 35 

of the logistic growth curve is 36 

                                               (1) 37 

where Y represents the indicator related to the TRL, t represents 38 

the development time, the constants a, b, and L are the fitting 39 

parameters. In the technology emergence phase (TRL 1-2), 40 

fundamental investigation and basic research are conducted. In 41 

the technology growth phase (TRL 3-4), researches are carried 42 

out to prove the feasibility of the technology. In the technology 43 

maturity phase (TRL 5-6), model/sub-model and full-scale tests 44 

are demonstrated. In the final saturation phase (TRL 7-9), 45 

systems are validated and related products are deployed into 46 

market. In this review, we first fitted the logistic model with the 47 

TRL levels of the historical MR sensor applications so that the 48 

future trends could be predicted by extending the fitting curves 49 

of the model. New opportunities were predicted by utilizing the 50 

extrapolated curve, forecasted milestones, and professional 51 

judgements on critical sensor parameters. The global vision of 52 

new MR sensor (non-recording) applications, products and 53 

services was launched out through the next 15 years and 54 

beyond. 55 

 56 

 57 

Fig. 1. Methodology of roadmap development. 58 
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III. CURRENT STATUS OF MR SENSOR APPLICATIONS 1 

Magnetic field detection has tremendous impact on a large 2 

variety of applications and industries [8, 9, 11-13, 148-152], 3 

which exploits a wide range of physical phenomena and 4 

principles [7, 153-167]. To obtain an overview of magnetic 5 

field sensing techniques, an analysis of statistics of common 6 

magnetic sensors from 1975 to 2017 in the selected patent 7 

databases is shown in Figure 3. To rule out any unrelated 8 

applications, the search queries were applied only in the Title 9 

and Abstract. The list of search keywords for patents statistics 10 

of magnetic field sensors is shown in Table I. Typical magnetic 11 

sensors [13, 148, 149, 168] were taken into account, including 12 

MR sensors [7, 11, 157, 169], Hall effect sensors [26, 155, 170-13 

172], fluxgates [173-177], superconducting quantum 14 

 

Fig. 2. Technological life cycle fitted with the logistic growth model for forecasting future technological development. 

 

Fig. 3. Statistics of common magnetic sensors from 1975 to 2017 in the selected patent databases compiled by EPO, USPTO, SIPO, and TIPO. Inset 

is the percentage of MR sensor patents among all types of magnetic field sensors. The list of keyword search queries for patent statistics is shown in 

Table I. 
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interference devices (SQUID) [156, 178-181], magneto-optical 1 

sensors [161, 182-186], search coils [187-191], magneto-2 

inductive sensors [160, 192-195], magneto-impedance sensors 3 

[160, 196-199], magneto-diodes [153, 200-203], magneto-4 

transistors [154, 204-207], and optically pumped 5 

magnetometers [158, 208-211]. As one of the most commonly-6 

used magnetic sensors, MR sensors cover a relatively large 7 

portion of industrial applications [5, 7, 10-13, 149, 169], 8 

especially during the period from 1988 to 2008, as illustrated in 9 

Figure 3. In general, MR sensors cover over 50% of the 10 

industrial applications. The patent statistics trend of MR sensors 11 

(Figure 3) is well matched with the publication statistics curve 12 

(Figure 4). The list of search keywords for publication statistics 13 

of parallel and perpendicular anisotropic magnetoresistive 14 

(AMR), giant magnetoresistive (GMR), and tunnelling 15 

magnetoresistive (TMR) sensors is shown in Table II. Here, the 16 

perpendicular AMR refers to the planar Hall 17 

magnetoresistance/resistance effect [212-218]. The number of 18 

publications of GMR sensors exhibits an explosive growth after 19 

the discovery of GMR effect in 1988 [1, 2]. After 1995, the 20 

number of publications related to TMR sensors dramatically 21 

increases and starts to exceed that of GMR sensors in 2000. The 22 

total number of publications of MR sensors reaches a peak in 23 

2004-2006 and then shows a slight decrease (Figure 4), which 24 

is consistent with the patent trend (Figure 3).  25 

TABLE I KEYWORD SEARCH QUERIES FOR PATENTS STATISTICS OF MAGNETIC 26 
FIELD SENSORS 27 

Magnetic field sensor Keyword 

MR sensor 

(1) "magnetoresistive" AND "magnetic" AND “sensor” 

(2) "magnetoresistance" AND "magnetic" AND “sensor” 

Hall sensor 

(1) "Hall" AND "magnetic" AND "sensor"; 

(2) "Hall effect" AND "magnetic" AND "sensor"; 

Fluxgate "fluxgate" AND "magnetic" AND "sensor" 

Magneto-optical sensor 

(1) "magneto-optical" AND "magnetic" AND “sensor” 

(2) "magnetic-optic" AND "magnetic" AND "sensor" 

Superconducting quantum 

interference devices 

(1) "superconducting quantum interference device" AND "magnetic" 

AND "sensor" 

(2) "SQUID" AND "magnetic" AND "sensor" 

Search coil "search coil" AND "magnetic" AND "sensor" 

Magneto- 

inductive sensor 

(1) "magneto-inductive" AND "magnetic" AND "sensor" 

(2) "magnetic-inductantance" AND "magnetic" AND "sensor" 

Magneto- 

impedance sensor 

(1) "magneto-impeditive" AND "magnetic" AND "sensor" 

(2) "magnetic-impedance" AND "magnetic" AND "sensor" 

Magneto-diode "magneto-diode" AND "magnetic" AND "sensor" 

    Magneto-transistor "magneto-transistor" AND "magnetic" AND "sensor" 

Optically pumped sensor "optically pumped" AND "magnetic" AND "sensor" 

 28 

 29 

Fig. 4. Publication statistics of AMR, GMR, and TMR sensors from 1975 30 
to 2017 in the Web of Science. The list of search keyword queries for 31 
publication statistics of AMR, GMR, and TMR sensors is shown in Table 32 
II. 33 

 34 

TABLE II  KEYWORD SEARCH QUERIES FOR PUBLICATION STATISTICS OF MR 35 
SENSORS 36 

 

Magnetic field  

sensor 

Keyword 

AMR sensor 

(1) "anisotropic" AND "magnetoresistive" AND "sensor" 

(2) "anisotropic" AND "magnetoresistance" AND "sensor" 

(3) "planar Hall" AND "magnetoresistive" AND "sensor" 

(4) "planar Hall" AND "magnetoresistance" AND "sensor" 

(5) "planar Hall resistance" AND "sensor" 

TMR sensor 

(1) "tunnel" AND "magnetoresistive" AND "sensor" 

(2) "tunnel" AND "magnetoresistance" AND "sensor" 

(3) "tunneling" AND "magnetoresistive" AND "sensor" 

(4) "tunneling" AND "magnetoresistance" AND "sensor" 

(5) "tunnelling" AND "magnetoresistive" AND "sensor" 

(5) "tunnelling" AND "magnetoresistance" AND "sensor" 

GMR sensor 
(1) "giant" AND "magnetoresistive" AND "sensor" 

(2) "giant" AND "magnetoresistance" AND "sensor" 

 37 
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Continuous endeavors from scientists and engineers have 1 

opened up various applications of MR sensor techniques [29-2 

31, 33, 34, 37-46, 48, 50, 51, 53-55, 78, 97, 109, 120, 219-223] 3 

as shown in Figure 5. According to the strength of the measured 4 

 

Fig. 5. Distribution of publications on MR sensor applications including biomedical applications, flexible devices, position sensing (PS) and human-

computer interactions (HCI), non-destructive evaluation and monitoring (NDEM), and navigation and transportation in the periods of (a) 2001-2005, 

(b) 2006-2010, and (c) 2011-2015. 
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field, MR sensor applications can be divided into three major 1 

categories: 1) measuring the Earth’s magnetic field (~μT) [123-2 

125, 129-139, 224-233], 2) measuring small perturbations of 3 

magnetic field (from ~μT to ~nT) [107, 108, 110, 111, 113, 114, 4 

116-121, 234], and 3) measuring ultralow magnetic field (lower 5 

than ~nT) [16, 18-21, 23-31, 33-35, 37-40, 42-44, 46, 48, 50, 6 

51, 53-56, 222, 235].  7 

In the earlier applications in the period of 2001-2005 (Figure 8 

5(a)), MR sensors were frequently used as magnetic compasses 9 

for detecting Earth’s magnetic field in navigation and 10 

transportation (30%) [129, 130, 236, 237], among which 10% 11 

were incorporated into autonomous vehicles, [126, 238] and 12 

wearable/portable devices (10%) [239, 240] as well. On the 13 

other hand, MR sensors were applied for non-destructive 14 

power-grid monitoring (20%) [157, 241] and were utilized as 15 

sensitive magnetic probes for detecting ultra-low magnetic field 16 

in biomedical applications (30%) [18, 20, 21, 24, 27, 29].  17 

In the period of 2006-2010 (Figure 5(b)), more MR sensors 18 

(58%) were used to detect ultralow magnetic field owing to the 19 

improvement of their sensing performance (e.g., sensitivity, 20 

detectivity). Especially, more biomedical applications with MR 21 

sensors were explored (increased from 30% in 2001-2005 to 22 

54% in 2006-2011) [34-40, 42, 222]. With the development of 23 

flexible sensor substrates, a growing number of MR sensors 24 

with high tolerable tensile strain [70, 73, 75] were integrated 25 

into wearable/portable devices [96] (increased from 10% in 26 

2001-2005 to 13% in 2006-2010) for detecting Earth’s 27 

magnetic field and small perturbations of magnetic field. A 28 

series of satellites were equipped with MR sensors for space 29 

exploration (4%) [134, 231, 232] by virtue of their reduced size 30 

and power consumption [242-245]. MR sensors also exhibited 31 

their great compatibility with emerging technologies, such as 32 

PS and HCI (8%) in virtual reality/augmented reality (VR/AR) 33 

[96, 246] and robotics [247].  34 

In the period of 2011-2015 (Figure 5(c)), MR sensors 35 

continued to be widely used in the field of biomedical 36 

applications (45%) [48, 50, 51, 53-57]. Motivated by the 37 

concept of a smart grid, more MR sensors were implemented in 38 

power grid monitoring [110, 113, 116, 119] (increased from 4% 39 

in 2006-2010 to 18% in 2011-2015) in order to detect small 40 

perturbations of the magnetic field and emanating from the 41 

power cables. In order to push forward and realize MR sensor 42 

applications with existing and emerging technologies, further 43 

enhancement of MR sensor performance reflected by the 44 

critical parameters including (1) sensitivity, (2) detectivity, (3) 45 

power consumption, (4) mechanical flexibility, and (5) 46 

robustness, is required. 47 

 

 

Fig. 6.  Development trend for the sensitivity of MR sensors at room temperature from 1995 to 2032. 
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IV. DEVELOPMENT TIMELINES FOR CRITICAL MR SENSOR 1 

PARAMETERS 2 

In order to gain deep insights into the technological 3 

evolution, MR sensor development timescales were 4 

established. Timelines of key sensor performance parameters 5 

including sensitivity, detectivity, power consumption, 6 

mechanical flexibility, and robustness were investigated and 7 

illustrated. Past achievements of these performance parameters 8 

were identified and their driving forces for sensor applications 9 

were discussed. Forthcoming milestones were predicted based 10 

on both the historical trends and fitted curves. 11 

A. Sensitivity  12 

As one of the most fundamental and critical performance 13 

parameters of MR sensors, sensitivity has exhibited a 14 

considerable growth in the last two decades [223, 243, 245, 15 

248-266], as shown in Figure 6. The sensitivity [250, 254] of 16 

MR sensors is defined in the linear operation range of the 17 

magnetic transfer curve as 18 

 19 

                                𝑆 =
𝑀𝑅

2𝜇0𝐻𝑠𝑎𝑡
                                    (2) 20 

 21 

where MR and Hsat represent the MR ratio and saturation field, 22 

respectively. Both increased MR ratio and reduced saturation 23 

field give rise to an improved sensitivity. Large MR ratio can 24 

be obtained by selecting the thin-film materials [262, 267-271], 25 

optimizing the fabrication process [256, 272-274], and device 26 

geometry including layer thicknesses and dimensions [257, 27 

275-277]. Suppression of saturation field can be achieved by 28 

incorporating the sensors with magnetic flux concentrators 29 

(MFCs) [249, 251, 254, 263], utilizing soft ferromagnetic 30 

materials with low saturation field [262], and modifying sensor 31 

area and aspect ratio [257] as well. Due to relatively high MR 32 

ratio of TMR sensors (Figure 7), researchers and engineers 33 

favor TMR elements to fabrication of highly sensitive MR 34 

sensors. For the TMR sensors with an AlOx barrier during the 35 

period of 1995-2002, TMR sensors with sensitivity from 36 

several %/mT to almost two hundred %/mT were fabricated 37 

[242, 269, 278-284]. After replacing the AlOx barrier with the 38 

crystalline MgO barrier, a rapid increase of MR ratio was 39 

accomplished (Figure 6) [269, 270, 285-287], resulting in a 40 

notable enhancement of sensitivity to 300-1000 %/mT (Figure 41 

6) [245, 250, 251, 253, 255]. By integrating MFCs into the 42 

TMR sensors, the saturation field was greatly diminished and 43 

thus the sensitivity was significantly increased [249-251, 254, 44 

263]. Another major improvement of sensitivity was achieved 45 

by designing a sensor array with 1000 TMR elements and 46 

incorporating the sensor array with a MFC [245]. Sensitivity as 47 

high as 3944 %/mT was obtained by utilizing this strategy 48 

[245]. To further improve MR sensitivity to >104 %/mT, two 49 

technological challenges (TC) will need to be achieved: 50 

 

Fig. 7.  Development trend of TMR ratio at room temperature for MTJs from 1995 to 2032. 
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TC 1.1: accomplishment of >1000% MR ratio at room 1 

temperature. 2 

 3 

TC 1.2: accomplishment of <0.1 mT saturation field4 

 at room temperature. 5 

For TC 1.1, the half-metallic Heusler alloy is an attractive 6 

choice of material due to high spin polarization [288-296]. As 7 

shown in Figure 7, MgO-based magnetic tunnel junction (MTJ) 8 

with Heusler alloy electrodes achieved comparable TMR ratio 9 

[267, 292, 297-302] as those MTJs with conventional 10 

ferromagnetic electrodes [264, 270, 303]. However, further 11 

enhancement of TMR was limited by the relatively large lattice 12 

mismatch between the MgO barrier [286] and Heusler alloy 13 

electrodes [304, 305]. This issue was resolved by replacing the 14 

MgO barrier with a spinel MgAl2O4 barrier [271, 305-308]. 15 

Compared to the MgO barrier, smaller lattice spacing of the 16 

MgAl2O4 barrier resulted in a much better lattice match of the 17 

barrier/ferromagnetic layer interface [306, 307, 309]. 18 

Furthermore, a perfectly dislocation-free interface was obtained 19 

by utilizing the cation-disorder spinel (Mg-Al-O) barrier [271, 20 

305], whose lattice spacing was tunable through modifying the 21 

Mg-Al compositions [305]. Therefore, a significantly enhanced 22 

TMR ratio can be expected through utilizing the lattice-tuned 23 

Mg-Al-O barrier and optimizing the Heusler alloy electrodes. 24 

To estimate the forthcoming milestone, the historical data was 25 

fitted with a linear line and the future trend was forecasted by 26 

extrapolating the fitted line. Based on the fitting curve using the 27 

data points of spinel-based MTJs in Figure 7, 800% TMR can 28 

be reached by ~2027, and finally 1000% TMR can be 29 

accomplished by ~2032. For TC 1.2, the saturation field 2μ0Hsat 30 

around 0.08 mT was demonstrated by incorporating the sensor 31 

with a Conetic MFC (gain: ~77 times) in 2011 [243]. In 2015, 32 

a factor of 400 times MFC was reported for an MTJ bridge [R3]. 33 

In 2017, Valadeiro et al. reported a high gain (~400 times) MFC 34 

with a double layer architecture [310]. By using this type of 35 

MFC, the authors believe that the saturation field will be further 36 

reduced from ~0.08 mT to ~0.01 mT in the near future. With 37 

the accomplishment of both TC 1.1 and TC 1.2, one can expect 38 

high-performance TMR sensor with sensitivity approaching 39 

~104 %/mT (1st milestone of sensitivity: Msens1) by ~2027 and 40 

~105 %/mT (2nd milestone of sensitivity: Msens2) by ~2032 (see 41 

the forecasted milestones in Figure 6).   42 

It is worth mentioning that although the linear extrapolation 43 

of MR ratio over time in Figure 7 might be optimistic, the 44 

milestone of sensitivity mentioned above can still be possibly 45 

achieved by advancing the progress of TC 1.2. At present, many 46 

experimental demonstrations already show the gain of hundreds 47 

for MFCs. In fact, larger magnetic field amplification (∼1000 48 

or even higher) can be possibly achieved by implementing the 49 

sensors inside tailor-made MFCs with their shape, dimensions 50 

and geometry (e.g., aspect ratio, the ratio of outer to inner 51 

width), material (e.g., high-permeability material) and the gap 52 

length optimized [311, 312]. As such, the final goal of Msens1 53 

and Msens2 are still expected.  54 

02 satH

 

 

Fig. 8.  Development trend of the detectivity of MR sensors at room temperature from 1995 to 2032. 
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It is also worth mentioning that the noise level of a TMR 1 

sensor (𝑆𝐵) is correlated with its MR ratios. The total field noise 2 

power of a TMR sensor is given by [313] 3 

            𝑆𝐵 = (
𝑑𝐵

𝑑𝑉
)2[𝑆𝑣

𝐴𝑚𝑝 + 𝑆𝑉
𝑠ℎ𝑜𝑡 + 𝑆𝑣

𝑒𝑙𝑒𝑐.1/𝑓] + 𝑆𝐵
𝑡ℎ𝑒𝑟𝑚.𝑚𝑎𝑔. + 𝑆𝐵

𝑚𝑎𝑔.1/𝑓        (3) 4 

                                                      
𝑑𝑉

𝑑𝐵
=

∆𝑅

𝑅

𝑁𝑉𝐽

2𝐵𝑠𝑎𝑡
                                                         (4) 5 

where 
∆𝑅

𝑅
 is the MR ratio, N is the number of MTJs per leg, 𝑉𝐽 6 

is the voltage drop across each MTJ, 𝐵𝑠𝑎𝑡 is the saturation field 7 

of free layer, 8 

𝑆𝑣
𝐴𝑚𝑝 , 𝑆𝑉

𝑠ℎ𝑜𝑡 , 𝑆𝑣
𝑒𝑙𝑒𝑐.1/𝑓 , 𝑆𝐵

𝑡ℎ𝑒𝑟𝑚.𝑚𝑎𝑔. 𝑎𝑛𝑑 𝑆𝐵
𝑚𝑎𝑔.1/𝑓  are 9 

amplifier noise voltage power, shot-noise voltage power, 10 

electronic 1/f noise, thermal magnetic noise, and magnetic 1/f 11 

noise magnetization power respectively. The overall noise level 12 

of MR sensor can be reduced by increasing MR ratio because 13 

the amplifier noise voltage power, shot-noise voltage power, 14 

and electronic 1/f noise can be suppressed by a larger MR ratio 15 

(
∆𝑅

𝑅
 in Eq. (4)); however, the thermal magnetic noise and 16 

magnetic 1/f noise magnetization power do not change with the 17 

MR ratio (
∆𝑅

𝑅
 in Eq. (4)). Further discussion on noise and 18 

detectivity can be found in the next section.  19 

 20 

B. Detectivity 21 

To fabricate high-performance MR sensors for measuring 22 

ultra-low magnetic field, researchers endeavor not only to boost 23 

their sensitivity but also to improve their detectivity which 24 

determines the smallest magnetic signal a sensor can detect [50, 25 

222, 223, 243, 249-255, 257-260, 314-326], as shown in Figure 26 

8. The detectivity [250] of an MR sensor is associated with its 27 

sensitivity and noise level, as expressed by 28 

𝐷 =
1

𝑆
√

𝑆𝑉

𝑉2        (5) 29 

where D is the detectivity, S is the sensitivity, V is the applied 30 

bias voltage and SV/V2 is the normalized noise level. From Eq. 31 

5, both improvement of the sensitivity and suppression of the 32 

sensor noise can enhance the detectivity. As discussed in 33 

Section A, incorporation of the MR sensor array with MFCs can 34 

dramatically improve its sensitivity [245, 252], leading to a 35 

considerable increase of the sensor detectivity. On the other 36 

hand, the sensor detectivity can be greatly enhanced by 37 

reducing the sensor noise through optimization of sensor 38 

fabrication, such as enlarging the sensor area [250, 315], 39 

modifying the annealing process [243, 258, 323], and soft-40 

pinning the sensing layer [249, 257]. Defect-free MR sensors 41 

with relatively large sensing area can greatly reduce the 1/f 42 

noise and the sensor detectivity of ~60 pT/Hz0.5 has been 43 

successfully demonstrated at 10 Hz [257]. Applying hard-axis 44 

bias field [263, 283] or orthogonally soft-pinning the sensing 45 

layer [249, 257] are effective techniques to stabilize the 46 

magnetization of the sensing layer and suppress the sensor 47 

noise. MultiDimension Technology released its highly-48 

sensitive TMR sensors (TMR9001/9002) with detectivity of 49 

~50 pT/Hz0.5 at 10 Hz in a commercial product, and ~20 50 

pT/Hz0.5 at 10 Hz in a larger prototype device [327]. Owing to 51 

unremitting research efforts, detectivity of pT range [243, 249, 52 

252, 254, 257] has been achieved at room temperature and 53 

detectivity of fT range has been demonstrated at low 54 

temperature (77 K) by using superconductor MFCs [28, 222]. 55 

There are other methods for reducing the noise in MR sensors. 56 

In the modulation technique, MFCs are deposited on micro-57 

electro-mechanical systems (MEMS) flaps which are driven to 58 

 

 

Fig. 9.  Development trend of the superconducting critical temperature (Tc) of superconductors from 1967 to 2032. 
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oscillate at very high frequencies [328]. The advantage of 1 

modulation can only be achieved when the sensor element is 2 

responsible for most of 1/f noise, not the other parts of the 3 

sensor system. Moreover, it is challenging to design a 4 

successful fabrication route to combine the MEMS technology 5 

and magnetic sensor. Though the modulation based on MEMS 6 

was presented, and several prototypes were fabricated with 7 

electro-static combs, torsionators, and cantilevers, the 8 

modulation efficiency is low [329]. In the chopping technique, 9 

chopper switches are designed for the output of MR sensors 10 

[330]. The noise characteristics of the chopper switches are 11 

dependent on charge leakage, parasitic capacitance, IC 12 

substrate coupling noise, voltage stability of the drive signal, 13 

and the external electric field sensitive electrodes [331]. All 14 

these factors need to be considered and optimized in order to 15 

suppress the noise. The methods of modulation and chopping 16 

still require research efforts to overcome these technical 17 

challenges. 18 

To accomplish fT/Hz0.5 detectivity at/near room 19 

temperature, two technological challenges (TC) have been 20 

identified:  21 

TC 2.1: development of high-gain (>1000) MFC at/near 22 

room temperature. 23 

TC 2.2: accomplishment of ~10-14 1/Hz normalized noise 24 

level in low frequency range (typically <100 Hz) at/near room 25 

temperature. 26 

Regarding TC 2.1, high-temperature superconductor MFCs 27 

are required to be developed. Comparing superconducting 28 

MFCs and SQUIDs, the SQUIDs have two disadvantages. 29 

Firstly, the Josephson junction of SQUIDs is short-lived and 30 

complicated to fabricate because of poor reproducibility and 31 

low yield, and thus they are expensive [332]. Secondly, though 32 

SQUIDs comprised of ceramic HTS materials could alleviate 33 

the size, weight and power requirements, they have been found 34 

to be difficult to work with because of anisotropic electrical 35 

properties and intrinsic noise [333]. Compared to the 36 

conventional MFCs using soft ferromagnetic materials [249, 37 

250, 254, 317, 326], superconductor MFCs exhibit a much 38 

higher gain (100-1000), as reported in [28, 222]. However, the 39 

application of superconductor MFC is restricted by its relatively 40 

low superconducting critical temperature (Tc) [28, 222, 223, 41 

334-366], which is far below the room temperature, as shown 42 

in Figure 9. The highest known Tc values in the Cu-based and 43 

non-Cu-based superconductors are 133 K [367] and 107 K 44 

[358] at ambient pressure, respectively. Under high pressures, 45 

Tc values of certain superconducting materials can be notably 46 

increased [368-370] and even room-temperature 47 

superconductor MFCs can be realized. When high pressure is 48 

applied, the Tc values around 200 K for non-Cu-based 49 

superconductors have been achieved [368, 369], which is much 50 

higher than their Cu-based superconductor contenders (Tc ~164 51 

K). To predict higher Tc values, a linear curve was fitted with 52 

the past data for the non-Cu-based superconductors in Figure 9. 53 

From the extrapolated curve, one expects the observation of 54 

non-Cu-based superconductors with higher Tc than their Cu-55 

based superconductor contenders by ~2022. The Tc value can 56 

possibly reach ~210 K by ~2027 and exceed ~245 K by ~2032, 57 

which is approaching room temperature.  58 

Regarding TC 2.2, suppression of the noise in the 59 

magnetization-transition region is the primary task because the 60 

sensor noise mainly originates from the magnetization 61 

fluctuations during operation and its magnitude is considerably 62 

larger than that of the electrically originated noise (as exhibited 63 

in the parallel magnetization configuration) [255, 273, 371-64 

383], as shown in Figure 10. Since operation region of MR 65 

sensors is where the magnetization of the sensing layer 66 

 

 

Fig. 10.  Noise reduction trend at room temperature in both the magnetization-transition region and parallel magnetization configuration from 1990 to 

2032. 
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undergoes a transition, we predict the noise reduction trend by 1 

fitting and extrapolating the noise data for the magnetization-2 

transition region with a linear line. Normalized noise level 3 

around ~3×10-14 1/Hz can be expected by ~2027 and one can 4 

estimate noise level to go down to the order of ~1×10-15 1/Hz in 5 

approximately 15 years (i.e., ~2032). Considering the 6 

forecasted accomplishments for both sensitivity and noise level 7 

in the following 15 years, one expects that detectivity of ~1 8 

pT/Hz0.5 (1st Milestone of detectivity: Mdetc 1) can be achieved 9 

by ~2027. Incorporating MR sensors with near-room-10 

temperature superconductor MFC (gain: ~1000 times), the 11 

minimal detectable field of ~10 fT/Hz0.5 (2nd Milestone of 12 

detectivity: Mdetc 2) are expected by ~2032 (see the forecasted 13 

milestones in Figure 8).  14 

It should be noted that the expected detectivity may not be 15 

achievable without the deployment of magnetic shielding 16 

because the external background magnetic field noise may 17 

render the low-field detectivity useless. Magnetic shielding can 18 

effectively eliminate background field noise and facilitate low-19 

field detection [384-395]. Magnetic shielding with high 20 

shielding effectiveness can be fabricated with soft magnetic 21 

materials such as Conetic alloy [395, 396] and multi-layered 22 

structures [397-399]. The field reduction exceeds 25dB for 23 

combined active and passive shields in 2003 [400]. In 2007, a 24 

shielding factor of 6 × 106 was measured in a nested set of three 25 

shields, and a shielding factor of up to 1013 was predicted when 26 

all five shields were used [401]. In the work of Komack’s group 27 

[402], a magnetometer with single-channel sensitivity of 0.75 28 

ft/Hz0.5 was demonstrated by using a ferrite shield, limited only 29 

by the magnetization noise of ferrite and photon shot noise. In 30 

the high-temperature superconducting area, shielding factors as 31 

high as 95% were observed for 3-layer hybrid shielding 32 

structures in 2016 [403]. A group reported their work in which 33 

98% attenuation of the magnetic field was also achieved by 34 

more than five layers of the coated conductor tape wound with 35 

the same orientation and angle to cover the gaps of an inner 36 

layer achieves in 2018 [385]. Some researchers are now making 37 

use of computational intelligence to optimize a series of 38 

shielding parameters such as its material, shape, thickness, and 39 

the number of layers for a higher shielding effectiveness [404-40 

406]. 41 

Also, it is worth mentioning that the influence of MR ratio 42 

and noise are discussed separately in Section IV(A) and (B), 43 

respectively. The discussion in Section IV(A) on sensitivity and 44 

MR ratio is purely based on %/mT as derived from Eq. 2 which 45 

does not take into account the noise. The detailed discussion on 46 

noise is provided in Section IV(B) which elaborates on 47 

detectivity from the point of view of noise level (T/Hz0.5). In 48 

fact, a good MR sensor needs both good MR ratio and low noise 49 

level. Now the researchers are working on the realization of the 50 

ultra-sensitive and high-resolution MR sensors by reducing 51 

their intrinsic noise without sacrificing MR ratios. The authors 52 

in Ref. [407] worked on a TMR device with CoFeB-MgO-53 

CoFeB structures whose MR ratios up to 600% at room 54 

temperature, and presented that the voltage-induced magnetic 55 

anisotropy modulation could be used to control and reduce 56 

magnetic noise in TMR sensors with perpendicular anisotropy. 57 

The magnetic noise was reduced by around one order of 58 

magnitude. In Ref. [320], the yoke-shaped TMR sensors based 59 

on MgO-barrier MTJs have been designed. Their field 60 

sensitivity was up to 27%/mT, while the field detectivity 61 

reached 3.6 nT/Hz0.5 at 10 Hz and 460 pT/Hz0.5 at 1k Hz through 62 

designing a nearly-perpendicular configuration of two 63 

ferromagnetic electrodes. The TMR sensors fabricated with 64 

electron-beam evaporated MgO barriers can provide about an 65 

order of magnitude improvement in their signal-to-noise ratio 66 

compared to the conventional sputtered MgO tunnel barriers 67 

[380]. Frequency noise was investigated in MgO double-barrier 68 

MTJs with TMR ratios up to 250% at room temperature, and 69 

the research disclosed that the double-barrier MTJs were useful 70 

for improving the signal-to-noise ratio compared to single-71 

barrier MTJs under low bias. These methods are critical for the 72 

overall improvement in the field detectivity of MR-sensor 73 

devices and their applications.  74 

 75 

C. Operational performance (power consumption, mechanical 76 

flexibility, robustness) 77 

In addition to high-performance sensing, MR sensors have 78 

other desirable capabilities, including low power consumption 79 

[242-245], high mechanical flexibility [83, 85], and high 80 

robustness [127, 128, 134, 135], as shown in Figure 11.  81 

Power consumption is critical in certain applications 82 

where power supply is limited, such as MR elements used in 83 

spacecraft [226, 229], MR sensors integrated into portable 84 

devices [96, 98, 99], and also MR sensors for the Internet-of-85 

Things (IoT) [408, 409]. As exhibited in Figure 11(a), an MR 86 

sensor with power consumption of 0.1 mW was demonstrated 87 

in 1998 [242]. After more than 10 years of development, a 88 

sensitive 64-element MTJ sensor was fabricated by Liou et al. 89 

in 2011 and each MTJ element only dissipated ~16 μW of 90 

power [243]. The power consumption of MR sensors was then 91 

further reduced to ~3 μW by Yin et al. in 2014 [245]. In the 92 

same year (2014), Honeywell released two nano-powered MR 93 

sensors (SM353LT, SM351LT) in which power consumptions 94 

were as low as ~510 nW and ~590 nW, respectively [244]. By 95 

fitting the historical development over the last two decades with 96 

a linear line, one can expect MR sensors with ultralow power 97 

consumption of ~1 pW (Milestone of power consumption: 98 

Mpow) in ~2022. 99 

Another operational parameter is the mechanical flexibility 100 

of MR sensors [64-87], which is crucial for MR sensors 101 

installed in flexible devices or for MR sensors sustaining 102 

mechanical strains. The development trend of the mechanical 103 

flexibility of MR sensor can be divided into three levels, 104 

namely, moderately flexible (fabricated on a planar substrate), 105 

highly flexible (bendable or able to be elongated), and 106 

extremely flexible (twistable) in Figure 11(b). In “Moderately 107 

flexible” level, MR sensors deposited on/in different flexible 108 
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materials in a planar substrate were fabricated [64-66, 68, 70]. 1 

Parkin et al.  fabricated the first flexible GMR multilayer sensor 2 

on a kapton substrate in 1992 [64]. In 1994, growth of GMR 3 

nanowires in etched polycarbonate membranes were reported. 4 

Since then, MR sensors grown on a variety of planar substrates 5 

were realized, such as mylar, kapton, ultem, polypropylene 6 

               

 

Fig. 11.  Development trend of (a) power consumption, (b) flexibility, and (c) robustness of MR sensors from 1990 to 2032. PDMS represents 

poly(dimethylsiloxane) membranes. 
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sulfide, polystyrene, and poly (2-vinyl pyridine) [65, 66, 68, 1 

70]. After these achievements, mechanical flexibility of MR 2 

sensor was tested and characterized through bending and 3 

elongation in the period of 2008 to 2017 (highly flexible) [73, 4 

78, 80, 85-87]. MR sensors with tolerable tensile strains of 5 

2.7%, 4.5%, 29% were recorded in 2008 [73], 2011 [78], and 6 

2012 [80], respectively. Bending experiments were performed 7 

on both multilayer (1000 bending/unbending cycles) and spin 8 

valve (500 bending/unbending cycles) GMR sensors [73, 80]. 9 

The GMR sensors exhibited no changes in both resistance and 10 

MR ratio after bending/unbending tests. In 2014, Bedoya-Pinto  11 

et al. fabricated flexible TMR sensors on kapton substrates and 12 

obtained TMR ratio of 12% in bent state [85]. In 2015, Freitas’s 13 

group incorporated MR sensors into micromachined silicon 14 

probes, which exhibited constant MR ratio and no significant 15 

changes in their noise level under a continuous tensile stress 16 

[86]. In 2017, the same group fabricated high-performance MTJ 17 

sensing devices (TMR above 150%) on flexible polyimide 18 

substrates [87]. Under controlled mechanical stress conditions, 19 

TMR value showed subtle variation (~1%) and sensitivity 20 

changed by 7.5% when the curvature radius of the device was 21 

reduced down to 5 mm upon bending. These works 22 

unambiguously demonstrated the mechanical flexibility of MR 23 

sensors, elevating the mechanical flexibility level from 24 

“Moderately flexible” to “Highly flexible”. From Figure 11(b), 25 

it requires around 10 years to develop MR sensors from 26 

“Moderately flexible” to “Highly flexible” and each stage lasts 27 

for around 10 years. We therefore expect that the future 28 

milestone of mechanical flexibility (Mflex: “Extremely 29 

flexible”) will be reached in ~2028 with further improvements 30 

on stability of flexible MR sensors and their tolerable tensile 31 

strain. In this stage, the MR sensors are expected to maintain 32 

the MR ratio even after twisting, and thus can be made into 33 

almost any shape [66, 410]. This extremely flexible 34 

performance of MR sensors will allow many future use of 35 

organic electronics for bio-application by forming the MR 36 

sensors on organic substrate [53]. 37 

In addition to the mentioned operational parameters, the 38 

robustness of MR sensors is one of the paramount issues, 39 

especially for sensors operating in hostile environments. 40 

Similarly, the development trend of the robustness of MR 41 

sensors is summarized into three levels, namely, moderately 42 

robust (only thermal endurance), highly robust (multi-degree 43 

environment endurance such as temperature, irradiation, and 44 

vibration), and extremely robust (high endurance in multi-45 

degree environment) in Figure 11(c). In “moderately robust” 46 

level during the period of 2000 to 2001, basic tests on 47 

robustness of MR sensors were conducted on their thermal 48 

stability. In 2000, Lenssen et al. testified the thermal and 49 

magnetic stability of GMR sensors at high temperatures 50 

(>200°C) and large magnetic field (>200 kA/m) [127]. In 2001, 51 

GMR sensors operating with high stability at 170°C for ~4000 52 

h were reported [128]. In “highly robust” level, the robustness 53 

of MR sensors was systematically validated in multi-degree 54 

environements. For example, the application of MR sensors 55 

was validated in aerospace by performing the up-screening tests 56 

and irradiation tests in 2010 [134]. The up-screening tests 57 

included a series of tests, such as vibration, outgassing, and 58 

temperature-aging.  59 

In another published work in 2012, a systematic gamma 60 

irradiation test of MR sensors was carried out [135]. AMR 61 

sensors were tested to be robust against radiation doses of 200 62 

krad with a dose rate of 5 krad/h. In 2015, X-Ray irradiation test 63 

of TMR sensors was performed by Freitas’s group under total 64 

dose level of 43 krad with a much higher dose rate of 36 krad/h 65 

[141]. The device’s sensitivity exhibited a slight reduction 66 

during the irradiation and recovered after the irradiation. From 67 

Figure 10(c), since there is steady progress in robustness level 68 

in the past two decades (from “Moderately robust” in 2000 to 69 

“Highly robust” in 2010), we can expect MR sensors will be 70 

demonstrated to be extremely robust (Milestone of robustness: 71 

Mrob) by ~2020. The achievement of Mrob will enable advanced 72 

applications that critically rely on sensor robustness (e.g., MR 73 

sensor with high stability and long lifetime operating in hostile 74 

environments). These achievements indicate that MR sensors 75 

are promising candidates for a wide range of applications where 76 

power saving, mechanical flexibility, and robustness are of 77 

significant importance.  78 

V. MR SENSOR APPLICATIONS AND FUTURE DIRECTIONS  79 

Continuous research and engineering efforts on MR sensors 80 

have remarkably improved their sensitivity, detectivity, 81 

mechanical flexibility, power consumption, and robustness as 82 

discussed in Section IV, opening up a wide range of 83 

applications [29-31, 33, 34, 37-46, 48, 50, 51, 53-55, 78, 97, 84 

109, 120, 219-223] as shown in Figure 5. Main MR sensor 85 

applications can be categorized into five areas, including 86 

biomedical applications, flexible electronics, PS and HCI, 87 

NDEM, navigation and transportation. To shed light on the 88 

future directions of MR sensor applications, five roadmaps for 89 

these five application areas were developed. The historical data 90 

from literature analysis was fitted with the logistic growth 91 

model to obtain the fitted trend curve. The fitted curve was then 92 

further adjusted and fine-tuned based on the critical milestones 93 

for sensor parameters developed in Section IV and the 94 

consensus of the professional judgements reached during the 95 

taskforce meetings and subsequent communications. Roadmaps 96 

that predict new opportunities for MR sensor technology in 97 

different application areas were created based on this 98 

extrapolated trend curve. Speculations about new MR 99 

applications, products, and services were presented for the next 100 

15 years and beyond. 101 

A. Biomedical applications 102 

Regarding MR sensor applications in the biomedical field, 103 

the detectivity of MR sensors is a paramount issue because the 104 

generated biomagnetic signals are usually rather small, ranging 105 

from nT to fT [14-46, 48-58, 222]. The roadmap is shown in 106 

Figure 12. Biomedical applications for MR sensor technology 107 

can be categorized into two scenarios (Sbiomed): 108 
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Sbiomed1. MR sensors to detect magnetic signals generated 1 

from bio-functionalized nanoparticles/nanostructures  2 

Sbiomed2. MR sensors to directly detect magnetic signals 3 

generated from human organs (e.g., brain, heart, muscles, etc.) 4 

In Sbiomed1, as MR sensor technology improves and matures 5 

after the basic technology research stage (TRL 1-2) from 1975 6 

to 1990, the feasibility of applying MR sensors in biomedical 7 

research was investigated during the period from 1990 to 2004 8 

[16, 18-21, 23, 24, 26, 27]. In 1998, the measurements of 9 

intermolecular forces between DNA-DNA, antibody-antigen, 10 

or ligand-receptor pairs were demonstrated by using GMR 11 

sensors [16]. In 2001, the detection of DNA hybridization was 12 

achieved by using GMR sensor arrays [18]. The feasibility of 13 

adopting MR sensors in biomedical applications was 14 

preliminarily proved and TRL reached 3.  15 

This technology was then further developed by several 16 

groups. In 2002, a group of Instituto de Engenharia de Sistemas 17 

e Computadores and Instituto Superior Tecnico introduced a 18 

method to control the movement of nano/micro-sized magnetic 19 

labels and demonstrated the detection of single microspheres 20 

bonded with biomolecules [19]. Also, AMR sensors were used 21 

to detect micro-sized nanoparticles and a AMR-based bio-22 

sensor prototype was proposed in 2002 [21]. In 2003, the 23 

biological binding of single streptavidin functionalized 24 

magnetic microspheres on the surface of GMR sensors was 25 

detected by Graham et al. from INESC-MN (former INESC) 26 

and IST [23]. In the same year, Wang’s group in Stanford 27 

successfully detected the presence of a single magnetic bead 28 

(Dynabead, 2.8 μm in diameter) with micro-scaled spin valve 29 

GMR sensors [60]. All these works laid the groundwork and 30 

revealed the feasibility of adopting MR sensors in biomedical 31 

research and indicated that MR sensors can be utilized to 32 

develop biomedical technology (TRL 3-4).  33 

After 2004, further development of biomedical technology 34 

with MR sensors then proceeded and focused on detecting 35 

magnetic signals generated from biofunctionalized magnetic 36 

nanoparticles/nanostructures [29-31, 33, 34, 37-39, 41-46, 48, 37 

51, 53-55, 191, 222].  38 

In the period of 2005 to 2008, the detection of bio-39 

functionalized nanoparticles/nanostructures with MR sensors 40 

was demonstrated in both in-vitro and in-vivo conditions [29-41 

31, 33, 34]. In 2005, cystic fibrosis related DNAs were 42 

successfully detected with spin-valve GMR sensors by using an 43 

AC magnetic field focusing technique [29, 30]. Grancharov et 44 

al. successfully detected protein-functionalized and DNA-45 

functionalized monodisperse nanoparticles with a TMR bio-46 

sensor [31]. These results suggested that MR bio-sensors were 47 

validated in laboratory environment and TRL 5 was achieved. 48 

Since then, bio-sensing applications with MR sensors were 49 

developed in relevant environment [35-37, 39, 42, 43, 48, 51, 50 

55]. At the 29th IEEE Engineering in Medicine and Biology 51 

Society conference in 2007, an AMR-based biomagnetic 52 

 

 

Fig. 12.  Roadmap for MR sensors in biomedical applications from 1970 to 2032. 
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prototype was demonstrated to evaluate the gastric activity 1 

contractions and in-vivo tests were performed [35, 36]. In 2008, 2 

a portable bio-sensing prototype was developed and the 3 

detection of magnetic nanoparticle was demonstrated [37].  In 4 

the same year, Wang’s group developed a GMR-based biochip 5 

for DNA detection and Human Papillomavirus (HPV) 6 

genotyping [61]. Their work also showed real-time signal 7 

responses of multiple DNA fragments, which demonstrated the 8 

multiplex detection capability of the GMR-based biochip. 9 

These works revealed that MR-based bio-sensing prototypes 10 

were tested and implemented in practical environment and TRL 11 

6 was reached.  12 

After 2008, bio-sensing chips/systems with MR sensors were 13 

developed and thus MR sensor-based biomedical technology 14 

was elevated to a higher level. In 2009, a portable GMR 15 

platform was demonstrated for detecting magnetically-labelled 16 

DNA by Germano et al. [39]. Furthermore, Wang’s group 17 

developed a multiplex GMR-based bio-sensing platform for 18 

protein detection in blood and cell lysates [62]. The developed 19 

platform exhibited an extensive linear dynamic range over six 20 

orders of magnitude and a protein detecting resolution down to 21 

attomolar level. In 2014, the detection and characterization of 22 

circulating tumor cells (CTCs) were conducted with a GMR-23 

based biochip and CTCs were detected in the blood samples 24 

from lung cancer patients [54]. In 2018, the detection of 25 

Bacillus Calmette-Guérin bacteria was also carried out with an 26 

MR-based bio-sensing platform for tuberculosis diagnosis [63]. 27 

These works elevated the laboratory achievements of MR bio-28 

sensor technology to the clinical/near-clinical level (TRL ~7).  29 

Compared to MR sensor applications in Sbiomed1, the 30 

requirements of MR detectivity is much higher in Sbiomed2, 31 

which is attributed to the fact that the generated magnetic 32 

signals from human organs are merely in the range of pT (e.g., 33 

magnetic field produced by heart) to fT (e.g., magnetic field 34 

produced by brain) [14]. For the biomagnetic signals produced 35 

from human organs, two most-investigated signals are 36 

generated from the heart and brain. These signals contain 37 

valuable information and lead to two application areas, 38 

magnetocardiography (MCG) [17, 22, 50] and 39 

magnetoencephalography (MEG) [14], respectively. Seven 40 

years after the detectivity of pT range was reached in 2004 [28], 41 

MCG biomagnetic signals from healthy volunteers were 42 

recorded and a magnetocardiography MCG signal distribution 43 

was mapped with a highly sensitive (pT) GMR sensor in 2011 44 

[50]. These technology demonstrations indicated that bio-45 

sensing subsystems/systems with MR sensors were validated in 46 

operational environments, and TRL 7 was achieved. 47 

To predict and outline the future biomedical applications, the 48 

above historical biomedical developments summarized from 49 

the published literature were fitted with the logistic growth 50 

model and the extrapolated trend curve was established (Figure 51 

12). Adjustment of the curve was then performed based on the 52 

critical milestones for sensitivity and detectivity derived in 53 

Sections IV(A) and IV(B) and the professional assessment 54 

consensed by the roadmap taskforce. Likely biomedical 55 

applications with MR sensors were then predicted and their 56 

TRL levels were estimated.  57 

Synthesis of DNA-functionalized or even DNA-bases-58 

functionalized nanoparticles will possibly enable 59 

commercialized genotyping applications [49] with MR sensor 60 

technologies. With the achievement of Msens1 (~104 %/mT) and 61 

Mdetc1 (~1 pT/Hz0.5) in ~2027, MR sensor can be used to 62 

accurately detect the real-time magnetic signals from 63 

magnetically-labeled DNA fragments or entities. After 64 

improving the multiplexing features [41, 45, 61] and localized 65 

detection ability of MR sensors [34], we expect that 66 

commercialized genotyping products with MR sensors will be 67 

released and the corresponding TRL of level 8-9 will be 68 

achieved.  69 

The development of genotyping applications with MR 70 

sensors will promisingly facilitate the diagnosis and treatment 71 

of genetic diseases. Continuous efforts on synthesis of various 72 

bio-functionalized magnetic nanoparticles or nanostructures 73 

[23, 31, 40] will stimulate the application of highly-sensitive 74 

MR sensors in molecular diagnosis [15, 25]. However, the MR-75 

based molecular diagnosis systems are required to be validated 76 

and their commercialization requires Food and Drug 77 

Administration (FDA) clearance from the government of the 78 

targeting market. We therefore expect that MR-based molecular 79 

diagnosis products or services will be commercialized available 80 

a few years later than genotyping and its maturity will reach a 81 

slightly lower TRL of level ~8 in 2030. This accomplishment 82 

can promisingly offer personalized diagnosis and possibly lead 83 

to optimized therapies for individual patients.  84 

On the other hand, a more challenging category of 85 

application, MR-sensor-based MEG requires fT range 86 

detectivity and therefore will be developed after the 87 

achievement of Msens1 (~104 %/mT) and Mdetc1 (~1 pT/Hz0.5) in 88 

~2027. Through further improvement of sensitivity and 89 

detectivity towards Msens2 (~105 %/mT) and Mdetc2 (~10 90 

fT/Hz0.5) respectively, one can expect the implementation of 91 

MR-sensor-based MEG applications (TRL~8) with elaboration 92 

on clinical level around or after 2032.  93 

Apart from MR sensing elements, the other key factors such 94 

as magnetic labels, surface chemistry, microfluidic systems and 95 

electronics setup are critical for achieving a high-performance, 96 

automated, portable point-of-care bioanalytical assays [411]. 97 

The size of the MR sensing element and the bio-molecule 98 

binding capacity of the magnetic bead need to be carefully 99 

designed [9]. A reliable biochip platform needs a fine control of 100 

the surface chemistry in order to achieve immobilization 101 

efficiency and specificity and avoid corrosive effect. A 102 

microfluidic system is required to establish mechanism for 103 

sample delivery protocol and controlled washing [411]. Last but 104 

not least, the system miniaturization of signal processing and 105 

system automation will be implemented with electronics 106 

microsystems for building point-of-care devices [412, 413]. 107 
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B. Mechanically flexible electronics 1 

Flexible electronic devices have gained increasing interest 2 

due to the promising potential applications offered by their 3 

pliable surface geometries [78, 81, 83, 85]. MR-based devices 4 

have been implemented on various types of flexible substrates, 5 

such as stretchable and deformable polymeric materials [64, 70, 6 

75, 78, 81, 85], and even papers [79, 83]. This roadmap is 7 

shown in Figure 13.  8 

The flexible MR sensors are required to be robust against 9 

mechanical bending or stretching and withstand many cycles of 10 

deformations without the degradation of sensing performance. 11 

The emergence and growth of the flexible MR sensor 12 

technology took place in the period of 1992-2007 [64-72]. In 13 

1992, Parkin et al. investigated the GMR effect in Co/Cu 14 

multilayers deposited on a Kapton polyimide substrate by 15 

magnetron sputtering [64]. In 1994, growth of GMR nanowires 16 

in etched polycarbonate membranes were reported by Piraux et 17 

al. [65]. Two years later (1996), Parkin successfully fabricated 18 

spin-valve GMR sensors on other flexible organic films (mylar, 19 

a transparent film, and ultem polyimide) [66]. These works built 20 

the foundation and proved the feasibility of manufacturing 21 

flexible MR sensors, pushing the TRL of the flexible MR sensor 22 

technology towards level 3.  23 

This technology was then further developed by several 24 

groups. In 2002, Yan et al. deposited GMR multilayers on 25 

flexible polypyrrole films [68]. The mechanical flexibility of 26 

the prepared GMR film was tested by cutting it into various 27 

shapes. In 2006, Uhrmann et al. reported the mechanical 28 

flexibility of GMR spin valves grown on polyimide substrates 29 

and the sensors were elastic up to an elongation of 3% [70]. 30 

These studies further proved the feasibility of flexible MR 31 

sensor technology and TRL 4 was reached.  32 

After 2006, the mechanical flexibility of MR sensors was 33 

tested through the bending and strain experiments [73, 78, 80, 34 

85]. In 2008, tensile strain measurement was carried out on the 35 

GMR sensors on polyester substrates and the stress was applied 36 

to the GMR sensors by performing in-plane elongation [73]. 37 

The sensors exhibited great stability and withstood 1000 38 

bending/unbending cycles with no degradation of GMR ratio. 39 

In 2011, multilayer GMR sensors on free-standing 40 

polydimethylsiloxane membranes revealed a high GMR of 50% 41 

and the GMR effect was preserved with tensile strain up to 4.5% 42 

[78]. These works demonstrated the mechanical flexibility of 43 

MR sensors and pushed the TRL towards level ~5.  44 

The mechanical flexibility of MR sensor was then further 45 

enhanced. In 2012, the tolerable tensile strain as high as 29% 46 

was achieved by depositing spin valves on pre-stretched and 47 

pre-wrinkled polydimethylsiloxane substrates [80]. In 2014, 48 

Bedoya-Pinto et al. successfully deposited TMR sensors on 49 
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kapton substrates and demonstrated the preservation of TMR 1 

effect in bent states [85]. Also, flexible MR sensors prepared 2 

with printable magneto-sensitive inks were reported by 3 

Karnaushenko et al. [79]. The printable MR inks were prepared 4 

by a process including magnetron sputtering, rinsing, ball 5 

milling, and mixing. The prepared inks were then painted on 6 

various substrates (e.g., papers, polymers, and ceramics) and 7 

the fabricated sensors with GMR response up to 8% were 8 

demonstrated. This fabricated GMR sensor was integrated into 9 

a paper-based electronic circuit and acted as a magnetic switch 10 

of the whole circuit, which confirmed the functionality of 11 

flexible sensing systems/subsystems with MR sensors. These 12 

works revealed that the mechanical flexibility of MR sensors 13 

was validated in practical environments and TRL reached level 14 

6 and approached early stage of level 7.  15 

The enhancement of mechanical flexibility will enable the 16 

applications of MR sensors in wearable and portable 17 

electronics. Most of the reported flexible MR sensors were 18 

composed of a flexible polymeric substrate and a conventional 19 

MR multilayer structure [53, 64, 66, 68, 70-73, 75, 78, 80, 84, 20 

85]. Although the polymeric substrate was robust against 21 

mechanical deformations, the MR response of the multilayer 22 

tended to degrade after many bending cycles [73], which 23 

essentially limited its sensing performance. To resolve this 24 

issue, all-polymeric-based (APB) or all-organic-based (AOB) 25 

MR devices are required to be developed, which is a promising 26 

pathway toward highly deformable and bendable MR sensors. 27 

An important step forward for the APB or AOB MR devices 28 

was the demonstration of MR effect in an organic spin valve 29 

where the organic V[TCNE]x (x ~ 2, TCNE: 30 

tetracyanoethylene) served as ferromagnetic layers and the 31 

rubrene (C42H28) was used as the insulating barrier [77]. After 32 

the achievement of Mrob (extremely robust) in ~2020 and the 33 

development of sensor mechanical flexibility towards Mflex 34 

(extremely flexible) in ~2028, one can expect the realization of 35 

APB or AOB MR system (TRL 7-8) in ~2023 with higher 36 

mechanical flexibility as well as better robustness through 37 

performing necessary deformation and bending evaluations.  38 

The implementation of APB or AOB MR sensors will lead to 39 

the achievement of fabricating MR sensors with higher 40 

mechanical flexibility as well as better robustness, promoting 41 

the application of MR sensors in wearable, portable, and 42 

printable electronics. Particularly, the printable MR sensors will 43 

revolutionize the field of magnetoelectronics offering low-cost 44 

and large-scale production in manufacturing processes. 45 

Through research efforts on the synthesis and optimization of 46 

MR inks, paints, and pastes, we expect that the printable MR 47 

sensors with high processability (TRL~8) can be accomplished 48 

in a short period (in ~2025).  49 

After then, hybrid magnetoelectronic devices can be 50 

developed by integrating printed MR sensors in a purpose-51 

designed electronic circuit (e.g., authorization, monitoring, data 52 
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recording, etc.). The integrated MR sensor can serve as a 1 

magnetic-information acquisition element or a magnetically-2 

manipulable option in the hybrid magnetoelectronic devices. 3 

However, the implementation of actual hybrid 4 

magnetoelectronic systems (TRL-9) will be expected within 5 

five years (in ~2030) after the demonstration of the high 6 

processability of printable MR sensors. The development of 7 

printable MR sensors can promisingly reduce the fabrication 8 

cost, weight, and physical dimension of MR sensors by 9 

replacing conventional substrates (Si) with standard printing 10 

materials (paper, polymer, ceramics), promoting the high-11 

volume production of printable magnetoelectronics. 12 

C. Position sensing (PS) and human-computer interaction 13 

(HCI) 14 

 Owing to the high sensitivity, low power consumption and 15 

small physical dimension, MR sensors have been considered as 16 

promising magnetic sensors embedded in PS applications [88-17 

91] and HCI systems [94-101, 414]. This roadmap is shown in 18 

Figure 14.  19 

In PS applications, MR-based linear and angular sensors are 20 

used to acquire incremental or absolute scale data from 21 

magnetic linear rulers, code wheels, and human body [88-91, 22 

94, 96, 97, 100, 101]. Through software development and 23 

integration of computer interface, the obtained information can 24 

be processed and further utilized in HCI implementations.  25 

In the period of 2002 to 2003, the feasibility of integrating 26 

MR sensors into PS and HCI was investigated [92-94]. In 2002, 27 

an MR-sensor-based steering controller for outdoor mobile 28 

robot was designed [92]. A computer simulation was performed 29 

to verify the performance of the controller. In 2003, Chen et al.  30 

proposed a head-motion-controlled wheelchair with an MR-31 

based tilt sensor integrated into the headgear [94]. The 32 

comfortability and safety of the developed wheelchair were 33 

tested and verified. Basic biomechanical motions were captured 34 

and processed in these works, which proved the feasibility of 35 

integrating MR sensors into PS and HCI and raised the 36 

corresponding TRL to 3-4.  37 

This technology was further investigated and the acquisition 38 

and analysis of more complicated biomechanical motions and 39 

postures were carried out [95-101, 414]. In 2004, Bonnet et al. 40 

introduced a novel method to evaluate the postural stability with 41 

an orientation sensor containing GMR magnetometers and 42 

accelerometers [95]. By virtue of the high sensitivity of the 43 

orientation sensor, subtle postural variations were captured and 44 

could be utilized in clinical balance assessments. In 2006, Bae 45 

et al. were able to track the wrist gestures and control the 46 

movements of the robot with GMR-based wearable gloves [96]. 47 

These works demonstrated the operation of HCI prototypes 48 

with MR sensors and boosted the TRL to 5-6.  49 

The HCI systems/subsystems were then developed and the 50 

TRL was elevated to a higher level. In 2009, the acquisition of 51 

three-dimensional mandibular movements was realized by 52 

using a GMR-based device by Santos et al. [97]. A computer 53 

application was developed to analyze the movements and 54 

generate diagnosis reports. In the period of 2013 to 2014, a 3 55 

degree-of-freedom (DOF) finger tracking system was 56 

demonstrated by using a commercially available 3-axis MR 57 
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sensor [100, 101]. Both finger joint position and finger 1 

movement configurations (stationary joint, flexing joint, etc.) 2 

were captured and evaluated. These works validated the 3 

operational performance of the MR-sensor-based HCI 4 

systems/subsystems and suggested that the TRL entered level 5 

7.  6 

Based on past developments and professional consensus of 7 

the roadmap taskforce members, the future potential MR-based 8 

HCI applications were predicted. As demonstrated in the 9 

reported HCI systems with MR sensor description, 10 

biomechanical movements of various body parts can be 11 

effectively captured and recorded by processing and analyzing 12 

the acquired magnetic data. This type of biomechanical data 13 

will likely be used in the field of AR and VR. With the 14 

achievement of enhanced sensitivity (Msens1, ~104 %/mT) and 15 

detectivity (Mdetc1, ~1 pT/Hz0.5) in ~2027, one can expect that 16 

AR/VR devices integrated with high-performance MR sensors 17 

(TRL ~8) will be available.  18 

Commonly-used joysticks will then be replaced by 19 

wearable MR-based controllers to realize uncumbersome HCI 20 

interfaces. MR sensors can also be integrated into artificial 21 

limbs of disabilities and the obtained biomechanical signals can 22 

be processed to assist their desired movements.  23 

Further improvement of sensitivity and detectivity will 24 

enable accurate detection of biomechanical signals and 25 

reduction of power consumption (Mpow, ~1 pW) will extend the 26 

lifetime of the artificial limbs with MR sensors, which will push 27 

forward its maturity level to 8-9 in around 2028. Furthermore, 28 

the implementation of MR-based man-controlled robots will be 29 

possibly realized by collecting and processing all the 30 

biomechanical movements. However, such technology will 31 

require a tremendous amount of tests and assessments and 32 

further improvement of MR sensor performance (Msens2, ~105 33 

%/mT; Mdetc2, ~10 fT/Hz0.5). We therefore estimate that the full 34 

maturity (i.e., TRL 8-9) of the MR-based man-controlled robots 35 

will be accomplished around 2032.  36 

D. Non-destructive evaluation and monitoring (NDEM) 37 

 Compared to destructive sensing devices, NDEM with MR 38 

sensors can be easily installed and accessed by end users, 39 

enabling effective acquisition of magnetic or magnetic-related 40 

information from the subsystems/systems under monitoring 41 

[102-104, 107, 108, 110, 111, 113, 114, 116-122]. This 42 

roadmap is shown in Figure 15.  43 

The feasibility of utilizing MR sensors in NDEM was first 44 

tested by several groups in 2002. The MR-sensor-based NDEM 45 

of subsurface mechanical and chemical damages in metallic or 46 

magnetic components was introduced, especially the 47 

components used in high-standard products (e.g., aircrafts) 48 

[102-104]. A GMR-based inspection probe was developed to 49 

detect the subsurface fatigue cracks and holes under airframe 50 

fasteners [104]. The functionality of the developed probe was 51 

studied by both finite-element-method simulation and 52 

experiment. In the same year, a GMR-based gradiometer was 53 

introduced to measure the tensile stress of the SS400 steels 54 

[102]. Ray Rempt from the Boeing company also proposed an 55 

8-element MR scanner for inspecting the subsurface corrosion 56 
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of the airframe [103]. The stress damages in the steels were 1 

evaluated and visualized by interpreting the sensor data with a 2 

signal processing algorithm. These results suggested that the 3 

feasibility of NDEM technique with MR 4 

components/breadboards was validated in practical conditions. 5 

The maturity of NDEM with MR sensors reached TRL 3-4. 6 

 Another promising application of the non-destructive MR 7 

sensors is the evaluation and monitoring of the power grids. 8 

Abundant studies demonstrated the feasibility of using MR 9 

sensors for monitoring both the high-voltage overhead 10 

transmission lines and underground power cables [106, 110, 11 

111, 113, 114, 116-121]. In 2011, a proof-of-concept laboratory 12 

setup was constructed to determine the phase current and line 13 

position of transmission lines by Sun et al. [110]. In 2012, Pai 14 

et al. introduced an MR-based power meter to measure near-15 

field voltage and current waveforms of a power cord [114]. 16 

Accuracy of power measurement better than 5% was 17 

accomplished. These works demonstrated the operation 18 

performance of NDEM prototype with MR sensors and 19 

indicated the achievement of TRL 5-6.  20 

Further studies were performed to establish MR-sensor-21 

based NDEM systems/subsystems. Pong’s group proposed and 22 

developed several novel MR-based platforms to monitor the 23 

loading voltages and currents of power lines [111, 116-118, 24 

120, 121]. The MR-based monitoring platforms were able to 25 

characterize the fault location [111] and operation state of the 26 

power lines by extracting the loading current data [116]. 27 

Utilizing the capacitive-coupling between the power lines and 28 

induction bars, the voltages of the power lines were accurately 29 

evaluated and the ability of high-frequency transient 30 

measurement was demonstrated [120]. The phase current of the 31 

power line was reconstructed by analyzing the magnetic field 32 

from the power lines. The feasibility and accuracy of the 33 

proposed method were verified by a scaled laboratory platform 34 

and then validated by performing an on-site experiment in a 35 

substation [121]. This MR-assisted voltage monitoring system 36 

was validated with a scaled testbed. These achievements 37 

demonstrated that the validation of MR-sensor-based NDEM 38 

systems in practical environment and marked the maturity of 39 

NDEM technology with MR sensors (TRL 7-8).     40 

Continuous efforts on improving sensing performance of 41 

MR sensors will promote the development of MR-based 42 

NDEM systems. The maturity of this application will enable 43 

large-scale evaluation of key parameters of power grids, such 44 

as current [106, 113, 114, 116], voltage [114, 119, 120], phase 45 

[110, 116, 117], power flow [114, 119], power quality [119], 46 

load [117, 119], transmission and distribution line conditions 47 

[111, 116, 117, 120]. By analyzing and processing the power 48 

grid parameters, the real-time state of power grids can be 49 

evaluated, enabling the prompt determination and response of 50 

power faults or abnormal conditions in a wide area. After the 51 

achievement of Msens1 (~104 %/mT) and Mdetc1 (~1 pT/Hz0.5) in 52 

~2027, the implementation of the large-scale power grid 53 

monitoring systems with MR sensors (TRL 7-8) will be 54 

expected. The full establishment of these systems (TRL 8-9) 55 

will require a large quantity of supporting facilities and 56 

therefore will be realized in a long-term period (after ~2027).  57 

With the further improvement of MR sensor sensitivity and 58 

detectivity to Msens2 (~105 %/mT) and Mdetc2 (~10 fT/Hz0.5) in 59 

~2032, another promising field of application is a large-scale 60 

geomagnetic monitoring system, which will be utilized to 61 

monitor subtle geomagnetic disturbances related to some 62 

geomagnetic hazards, such as seismic activities [109]. MR 63 

sensors can be installed on a large seismically-active zone to 64 

monitor abnormal geomagnetic changes that are associated with 65 

seismic activities. With the assistance of a reference permanent 66 

magnet, MR sensors can also be used as displacement sensors 67 

to detect the abnormal disturbances related to foreshock 68 

patterns or plate dynamics [109]. However, the implementation 69 

of a reliable geomagnetic monitoring system with MR sensors 70 

(TRL 8-9) requires a long-term investigation of geomagnetism 71 

and cooperation between geological and magnetic societies, 72 

which will take more time to progress and will be realized 73 

around 2032.     74 

 75 

E. Navigation and transportation 76 

 MR-based magnetometers have been widely used in 77 

navigation and transportation systems as well [123-126, 129-78 

133, 136-139]. This roadmap is shown in Figure 16.  79 

In the period of 1997 to 2005, the feasibility of applying MR 80 

sensors in navigation and transportation was investigated. In 81 

1997, MR sensors provided a solid-state solution for building 82 

compass navigation systems for their high sensitivity, good 83 

repeatability and small size [123]. In 1998, an electronic 84 

compass with MR sensor was introduced [140]. The compass 85 

reading was tilt compensated and the disturbance from nearby 86 

ferrous materials was corrected. In 2005, an AMR-based 87 

navigation system was proposed [130]. With calibration of 88 

sensor’s triplet deviation, the introduced navigation system 89 

provided information about actual azimuth, roll and pitch with 90 

improved accuracy. In 2005, a dead-reckoning navigation 91 

system was developed for pedestrian with an array of 92 

accelerometers and MR sensors. MR sensors became capable 93 

of collecting more informative data by virtue of the 94 

development and commercialization of 3-axis/3D MR-based 95 

magnetometers [131, 133, 136]. The commercial dead-96 

reckoning and inertial navigation systems using MR sensors 97 

have also been developed. For example, the Lord Sensing has 98 

been producing attitude and head reference systems (e.g. Lord 99 

MicroStrain 3DM-GX5-35) with MR sensors to provide 100 

attitude and navigation solutions  [415]. The Honeywell has 101 

been producing inertial navigation system (e.g. TALIN 2000) 102 

with MR sensors to provide navigation, pointing and weapon 103 

stabilization [416]. All these research works proved the 104 

feasibility of applying MR sensors in the fields of navigation 105 

and transportation (TRL 3-4).  106 
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The technology was further developed and demonstrated 1 

from 2007 to 2010. In 2007, by integrating the 3-axis MR 2 

sensor with accelerometers and gyroscopes, a real-time attitude 3 

and heading reference system (AHRS) was reported by 4 

Cordoba et al. [131]. The constructed system was equipped in 5 

unmanned aerial vehicles (UAVs) and accurate attitude angle 6 

measurements were performed for the UAVs operating in both 7 

accelerated and non-accelerated conditions. To validate the 8 

AHRS in various dynamic conditions, Lai et al. designed and 9 

constructed a 3-axis rotating platform in 2010 [133], which was 10 

able to simulate dynamic conditions in the operation of different 11 

unmanned vehicles (unmanned underwater vehicles (UUVs), 12 

UAVs, self-driving vehicles). Another promising application of 13 

MR-based magnetometers is the vehicle detection and 14 

monitoring [129, 132, 138, 139], which makes use of the local 15 

magnetic field disturbance caused by moving vehicles. In 2002, 16 

a GMR-based vehicle detection and monitoring module was 17 

introduced [129]. The local magnetic field disturbance was 18 

successfully detected and the speed of the car was measured on 19 

site. These works demonstrated the implementation of MR 20 

sensors in navigation and transportation systems in relevant 21 

conditions and the accomplishment of TRL 5-6.  22 

With the enhancement of the sensing ability of MR sensors, 23 

the functionalization and performance of the MR-based vehicle 24 

detection systems were remarkably improved [137-139]. In 25 

2013, Zhou et al. reported the real-time location estimation of 26 

vehicles by utilizing an AMR array [138]. In 2015, the 27 

classification of various types of vehicles were achieved by 28 

analyzing the characteristics of the detected field disturbance 29 

signals [139]. These works demonstrated the possibility of 30 

achieving high-level autonomous vehicles with MR sensors, 31 

such as UUVs, UAVs, crash-proof vehicles, and self-driving 32 

vehicles, which marked the later stage of TRL 6 for navigation 33 

and transportation systems with MR sensor technology.  34 

Considering that the AHRS with MR sensors has already 35 

been validated in several operating conditions [131], one can 36 

expect the integration of AHRS with MR sensors (TRL 7-8) 37 

into UUVs and UAVs by ~2027 with the achievement of Msens1 38 

(~104 %mT), Mdetc1 (~1 pT/Hz0.5). However, the 39 

implementation of crash-proof and self-driving vehicles with 40 

MR sensors would be much more difficult. MR sensors 41 

equipped in these vehicles are required to possess ultra-high 42 

sensing performance. The detected magnetic disturbance from 43 

all the surrounding vehicles and objects are required to be 44 

considered and analysed to avoid possible risks. Therefore, one 45 

can expect that the realization of crash-proof and self-driving 46 

vehicles with MR sensors (TRL 7-9) around or after 2032 with 47 

the achievement of Msens2 (~105 %/mT), Mdetc2 (~10 fT/Hz0.5). 48 

Since the complexity of autonomous crash-proof vehicles is 49 

lower and thus technologically less complicated than that of 50 

 

 

Fig. 17.  Contribution and impact of MR sensor technology in the concept of smart living, including smart home, smart healthcare, smart grid, and smart 

transportation. 
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self-driving vehicles, the authors believe that the crash-proof 1 

vehicles with MR sensors will be implemented a few years 2 

earlier than self-drving vehicles in ~2030. 3 

VI. OUTLOOK AND PERSPECTIVES 4 

The field of MR sensors is now rapidly evolving from 5 

science to technology. The proliferation of MR devices with 6 

high operational and sensing performance is opening up a 7 

variety of applications based on MR technologies, such as 8 

biomedical applications, flexible electronics, PS and HCI, 9 

NDEM, and navigation and transportation. The widespread 10 

utilization of MR sensors will also offer more data and 11 

information (magnetic or magnetic-related) to the Internet of 12 

Things (IoT) [417-420], enriching and upgrading the context of 13 

smart living [421-424], such as smart home [423, 425-427], 14 

smart healthcare [421, 428-430], smart grid [105-108, 118], and 15 

smart transportation [431-434], as shown in Figure 17. One of 16 

the key supporting features of smart living is the acquisition and 17 

utilization of sufficient data and information from the “Things”, 18 

which requires a large amount of networked sensors for 19 

information collection and processing [426]. Therefore, the 20 

robust MR sensors with low cost, low power consumption, 21 

small physical dimension, and superb sensing performance can 22 

be excellent candidates as networked sensors in each aspect of 23 

smart living.  24 

A smart home is a residence equipped with sensor and 25 

communication technologies that monitor the household 26 

appliances/resident behavior and provide proactive services 27 

[421, 429]. Pervasive MR sensors can be embedded in 28 

household products, monitoring the states (e.g., on, off, 29 

standby) of household products [119]. The evaluated data can 30 

also be stored in the cloud and accessible to the residents on 31 

their smartphones, personal computers, and wearable devices. 32 

The wasteful usage of each household appliance can then be 33 

identified and avoided via adaptive control or remote control by 34 

residents. With the integration of IoT platform, a pervasive 35 

home energy management system will be developed and 36 

implemented. Furthermore, the acquired usage data of 37 

household products and residents’ behavior can be analyzed 38 

and used to generate the life pattern of the resident. Customized 39 

household services (e.g., personalized household appliance 40 

automation) can therefore be delivered to the residents.  41 

MR devices can also be used as smart-healthcare sensors to 42 

support independent living of the disabled and elderly, as well 43 

as to relieve the workload from family caregivers. Real-time 44 

physiological state or movement will be monitored with 45 

wearable/portable MR sensors [94-97, 100, 101]. Abnormal 46 

situations will be immediately alerted so that necessary 47 

assistance can be provided in time. With the development of 48 

MR-based MCG or MEG sensors [50], they can be attached on 49 

the body of patients with cardiac or encephalic diseases. Timely 50 

warning can be sent to the corresponding server when a cardiac 51 

or encephalic event is detected. Medical assistances and actions 52 

can then be taken by doctors and therapists. Also, low-cost, 53 

small-size, and highly wearable/portable MR biomedical 54 

sensors can be integrated into point-of-care (POC) devices [51], 55 

which can be widely distributed in hospitals, homes, and in 56 

outdoor areas. Immediate clinical services can be delivered to 57 

patients when diagnosis is completed using these POC devices. 58 

With the help of the POC technology and IoT platform, 59 

patients’ past and present healthcare data will be monitored and 60 

recorded. These healthcare data will be accessible to clinicians 61 

or authorized entities. Based on the analysis and evaluation of 62 

the data, healthcare products and services can be provided in 63 

time whenever/wherever they are needed, facilitating the 64 

implementation of pervasive healthcare.  65 

Regarding the smart grid, MR sensors can be deployed in 66 

large-scale for monitoring transmission and distribution 67 

network. Each MR sensor or sensor array is used to monitor the 68 

real-time power grid parameters, such as current [106, 113, 114, 69 

116], voltage [114, 119, 120], phase [110, 116, 117], power 70 

flow [114, 119], power quality [119], load [117, 119], 71 

transmission and distribution line conditions [111, 116, 117, 72 

120]. Power grid abnormal conditions (e.g., fault, sagging, 73 

overload, and imbalance) can be evaluated and pinpointed 74 

based on analysis of measured power grid parameters [111, 116, 75 

117]. Necessary actions can then be performed by operation 76 

staff and predictive decisions can be made for ensuring efficient 77 

transmission and distribution of power in smart cities. The 78 

establishment of the large-scale MR-based NDE power-grid 79 

monitoring system will provide more dynamic and pervasive 80 

monitoring information. This is critical for systematically 81 

evaluation of the existing power grid system and makes the 82 

integration of renewable energy possible.  83 

For the smart transportation aspect, smart sensor networks 84 

with a large amount of MR sensors can be deployed on roads 85 

and vehicles and integrated into a wireless sensor network. The 86 

spatial and temporal distribution of vehicles correlates with 87 

magnetic field and can be collected by MR sensors, because a 88 

vehicle induces perturbation in the local Earth’s magnetic field 89 

as is passed by a sensor [129, 138, 139]. As such, dynamic 90 

traffic information including vehicle speed [129], vehicle 91 

location [138], occupancy rate [129, 139], and traffic flow 92 

volume [129, 139] can be obtained and processed by the server. 93 

The traffic data can then be analyzed by a traffic management 94 

center and utilized to establish a large-scale traffic monitoring 95 

and management system. With the improvement of stability and 96 

efficiency of this type of system, crash-proof and self-driving 97 

vehicles can be further developed promoting the development 98 

of autonomous vehicle transportation systems. Through 99 

establishment of international standards as well as cooperation 100 

across institutions, more revolutionary MR-related products 101 

and technologies may be developed and sustainable MR 102 

industries can be established, which will in turn enrich and 103 

upgrade the content of smart living in the coming 15 years and 104 

beyond. 105 
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VII. CONCLUSION AND FUTURE WORK 1 

The roadmap of MR sensors (non-recording) was developed 2 

in this paper. The past and current status of MR sensors was 3 

identified by analyzing the patent and publication statistics, and 4 

the timescales of MR sensors were established and predicted. 5 

MR devices are expected to proliferate with high sensing and 6 

operational performance such in the area of biomedical 7 

applications, flexible electronics, PS and HCI, NDEM, and 8 

navigation and transportation. More investment on MR sensors 9 

is needed to reduce their costs in order to compete with Hall-10 

effect sensors. Tens of millions of Hall effect devices are made 11 

each year, making the price of Hall-effect sensors cheaper than 12 

the MR sensors due to economy of scale [435]. The cost of MR 13 

sensor will continue to decrease as the sales volume increases. 14 

At high market volume of MR sensors, the cost difference 15 

between Hall sensor and MR sensors is very small. MR sensor 16 

can provide unique performance that Hall elements cannot do 17 

which makes the widespread use of MR sensor possible. 18 
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