Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/85712
Title: Kinetic Monte Carlo simulation of strained heteroepitaxy in three dimensions
Authors: Lung, Man-tat
Degree: M.Phil.
Issue Date: 2005
Abstract: Morphological evolution of strained heteroepitaxial films is studied using a kinetic Monte Carlo method in three dimensions. The film-substrate structure is modeled by a cubic lattice of balls and springs representing atoms and elastic interactions. Atomic surface diffusion is simulated using an activated hopping algorithm. The hopping barrier depends on both atomic coordination and elastic stress so that poorly coordinated or highly stressed atoms hop preferentially. The elastic stress is efficiently computed repeatedly during every stage in the surface evolution using a Green's function method and a super-particle coarsening approximation. Applying our algorithms, films of area up to 64 by 64 atoms are studied. We have simulated annealing of initially flat films. At relatively high temperature, the film surface develops ripples, which later grow into three dimensional (3D) islands. At lower temperature, two dimensional (2D) islands and 3D pits are observed. The pits subsequently develop into grooves. Simulations of film deposition are also conducted. At low deposition rate, isolated 3D islands are observed. At higher deposition rate comparable to the corresponding surface roughening rate, morphologies similar to those from annealing are observed.
Subjects: Hong Kong Polytechnic University -- Dissertations
Epitaxy -- Mathematical models
Pages: ix, 52 leaves : ill. (some col.) ; 30 cm
Appears in Collections:Thesis

Show full item record

Page views

4
Citations as of May 15, 2022

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.