Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/82206
PIRA download icon_1.1View/Download Full Text
Title: Modeling monthly pan evaporation process over the Indian central Himalayas : application of multiple learning artificial intelligence model
Authors: Malik, A
Kumar, A
Kim, S
Kashani, MH
Karimi, V
Sharafati, A
Ghorbani, MA
Al-Ansari, N
Salih, SQ
Yaseen, ZM
Chau, KW 
Issue Date: 2020
Source: Engineering applications of computational fluid mechanics, 2020, v. 14, no. 1, p. 323-338
Abstract: The potential of several predictive models including multiple model-artificial neural network (MM-ANN), multivariate adaptive regression spline (MARS), support vector machine (SVM), multi-gene genetic programming (MGGP), and 'M5Tree' were assessed to simulate the pan evaporation in monthly scale (EPm) at two stations (e.g. Ranichauri and Pantnagar) in India. Monthly climatological information were used for simulating the pan evaporation. The utmost effective input-variables for the MM-ANN, MGGP, MARS, SVM, and M5Tree were determined using the Gamma test (GT). The predictive models were compared to each other using several statistical criteria (e.g. mean absolute percentage error (MAPE), Willmott's Index of agreement (WI), root mean squared error (RMSE), Nash-Sutcliffe efficiency (NSE), and Legate and McCabe's Index (LM)) and visual inspection. The results showed that the MM-ANN-1 and MGGP-1 models (NSE, WI, LM, RMSE, MAPE are 0.954, 0.988, 0.801, 0.536 mm/month, 9.988% at Pantnagar station, and 0.911, 0.975, 0.724, and 0.364 mm/month, 12.297% at Ranichauri station, respectively) with input variables equal to six were more successful than the other techniques during testing period to simulate the monthly pan evaporation at both Ranichauri and Pantnagar stations. Thus, the results of proposed MM-ANN-1 and MGGP-1 models will help to the local stakeholders in terms of water resources management.
Keywords: Pan evaporation
Multiple model strategy
Gamma test
Indian central himalayas
Meteorological variables
Publisher: Taylor & Francis
Journal: Engineering applications of computational fluid mechanics 
ISSN: 1994-2060
EISSN: 1997-003X
DOI: 10.1080/19942060.2020.1715845
Rights: © 2020 The Author(s).
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,distribution, and reproduction in any medium, provided the original work is properly cited.
The following publication Anurag Malik, Anil Kumar, Sungwon Kim, Mahsa H. Kashani, VahidKarimi, Ahmad Sharafati, Mohammad Ali Ghorbani, Nadhir Al-Ansari, Sinan Q. Salih, ZaherMundher Yaseen & Kwok-Wing Chau (2020) Modeling monthly pan evaporation processover the Indian central Himalayas: application of multiple learning artificial intelligencemodel, Engineering Applications of Computational Fluid Mechanics, 14:1, 323-338 is available at https://dx.doi.org/10.1080/19942060.2020.1715845
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Malik_Pan_Evaporation_Indian.pdf4.48 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

28
Citations as of May 22, 2022

Downloads

29
Citations as of May 22, 2022

SCOPUSTM   
Citations

52
Citations as of May 26, 2022

WEB OF SCIENCETM
Citations

50
Citations as of May 26, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.