Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/81101
PIRA download icon_1.1View/Download Full Text
Title: Water storage variations in tibet from GRACE, ICESat, and hydrological data
Authors: Zou, F 
Tenzer, R 
Jin, SG
Issue Date: 2019
Source: Remote sensing, 1 May 2019, v. 11, no. 9, 1103, p. 1-23
Abstract: The monitoring of water storage variations is essential not only for the management of water resources, but also for a better understanding of the impact of climate change on hydrological cycle, particularly in Tibet. In this study, we estimated and analyzed changes of the total water budget on the Tibetan Plateau from the Gravity Recovery And Climate Experiment (GRACE) satellite mission over 15 years prior to 2017. To suppress overall leakage effect of GRACE monthly solutions in Tibet, we applied a forward modeling technique to reconstruct hydrological signals from GRACE data. The results reveal a considerable decrease in the total water budget at an average annual rate of -6.22 +/- 1.74 Gt during the period from August 2002 to December 2016. In addition to the secular trend, seasonal variations controlled mainly by annual changes in precipitation were detected, with maxima in September and minima in December. A rising temperature on the plateau is likely a principal factor causing a continuous decline of the total water budget attributed to increase melting of mountain glaciers, permafrost, and snow cover. We also demonstrate that a substantial decrease in the total water budget due to melting of mountain glaciers was partially moderated by the increasing water storage of lakes. This is evident from results of ICESat data for selected major lakes and glaciers. The ICESat results confirm a substantial retreat of mountain glaciers and an increasing trend of major lakes. An increasing volume of lakes is mainly due to an inflow of the meltwater from glaciers and precipitation. Our estimates of the total water budget on the Tibetan Plateau are affected by a hydrological signal from neighboring regions. Probably the most significant are aliasing signals due to ground water depletion in Northwest India and decreasing precipitation in the Eastern Himalayas. Nevertheless, an integral downtrend in the total water budget on the Tibetan Plateau caused by melting of glaciers prevails over the investigated period.
Keywords: Water storage balance
Leakage effect
Lakes
Glacier melting
Tibetan Plateau
Publisher: Molecular Diversity Preservation International
Journal: Remote sensing 
EISSN: 2072-4292
DOI: 10.3390/rs11091103
Rights: © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
The following publication Zou, F.; Tenzer, R.; Jin, S. Water Storage Variations in Tibet from GRACE, ICESat, and Hydrological Data. Remote Sens. 2019, 11, 1103, 23 pages is available at https://dx.doi.org/10.3390/rs11091103
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Zou_Storage_Tibet_ICESat.pdf4.94 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

48
Citations as of May 15, 2022

Downloads

50
Citations as of May 15, 2022

SCOPUSTM   
Citations

15
Citations as of May 12, 2022

WEB OF SCIENCETM
Citations

13
Citations as of May 19, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.